next up previous

2 Spherocylinders/Spheres

Koda's Stability analysis / Second virial approximation:

\fbox{
\parbox{450pt}{
\begin{itemize}
\item
Write excess free energy of mi...
...l free energy
the system will prefer the smectic phase.
\par
\end{itemize} }
}


Central quantity: $2 \times 2$ stability matrix $\mbox{${\bf S}$}(X, \eta, k)$ with elements $s_{ij}$ that contain integrals

\begin{displaymath}
I_{ij} \equiv
\int_{\textstyle V_{excl}(\vec{0})} d\vec{r}
\cos kz
\end{displaymath}



Here are the matrix elements of $\mbox{${\bf S}$}_{ex}$:
\begin{displaymath}
s_{ij}^{ex} =
\frac{1}{4}
\frac{\eta}{\left[ (1-X_{2})f_{1}+X_{2}\right]}
X_{i} X_{j} \frac{I_{ij}(k)}{v_{2}}
\end{displaymath} (1)

where
$\eta$ ... packing fraction (total)
$f_{1} = v_{1} / v_{2}$ ... volume ratio linear particle / sphere

This result is valid for hard particles having cylindrical and inversion symmetry ( $z \rightarrow -z$) mixed with hard spheres.

When $det ( \mbox{${\bf S}$})$ gets negative: $\Longrightarrow$Smectic Demixing!

Needed: $V_{excl}$ and its cosine transform!
V_excl for: (a) SC-SC, (b) SC-SPH, (c) SPH-SPH




Applet Koda_sc: Start




MC results for $l_{c}/d=5$, $conc_{sph}=0.25$:
 
    eta=0.25    
 
    eta=0.55




It works even for $l_{c}/d=4$ (and $conc_{sph}=0.50$):
 
    eta=0.252    
 
    eta=0.515




Modulus squ. of smectic mode



next up previous
F. J. Vesely / University of Vienna