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Abstract The main motivation of our work is to create an efficient algorithm that de-
cides hypertranscendence of solutions of linear differential equations, via the parame-
terized differential and Galois theories. To achieve this, we expand the representation
theory of linear differential algebraic groups and develop new algorithms that cal-
culate unipotent radicals of parameterized differential Galois groups for differential
equations whose coefficients are rational functions. P. Berman and M.F. Singer pre-
sented an algorithm calculating the differential Galois group for differential equations
without parameters whose differential operator is a composition of two completely re-
ducible differential operators. We use their algorithm as a part of our algorithm. As
a result, we find an effective criterion for the algebraic independence of the solutions
of parameterized differential equations and all of their derivatives with respect to the
parameter.
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1 Introduction

A special function is said to be hypertranscendental if it does not satisfy any alge-
braic differential equation. The study of functional hypertranscendence has recently
appeared in various areas of mathematics. In combinatorics, the question of the hy-
pertranscendence of generating series is frequent because it gives information on the
growth of the coefficients: for instance, the work of Kurkova and Raschel [30] solved
a famous conjecture about the differential algebraic behaviour of generating series of
walks on the plane. Dreyfus, Roques, and Hardouin [18] gave criteria to test the hy-
pertranscendence of generating series associated to p-automatic sequences and more
generally Mahler functions, generalizing the work of Nguyen [40], Nishioka [41], and
Randé [46]. Also, when the derivation encodes the continuous deformation of an aux-
iliary parameter, the hypertranscendence is connected to the notion of isomonodromic
deformation (see the work of Mitschi and Singer [37]).

The work of Cassidy, Hardouin, and Singer [13,22] were motivated by a study
of hypertranscendence using Galois theory. Starting from a linear functional equation
with coefficients in a field with a “parametric” derivation, they were able to construct
a geometric object, called the parameterized differential Galois group, whose symme-
tries control the algebraic relations between the solutions of the functional equation
and all of their derivatives. The question of hypertranscendence of solutions of linear
functional equations is thus reduced to the computation of the parameterized differ-
ential Galois groups of the equations (see for instance the work of Arreche [1] on the
incomplete gamma function γ(x, t) and the work [18]). The parameterized differential
Galois groups are linear differential algebraic groups as introduced by Kolchin and
developed by Cassidy [8]. These are groups of matrices whose entries satisfy systems
of polynomial differential equations, called defining equations of the parameterized
differential Galois group.

Then, in this context of Galois theory, one can address a direct problem, that is,
the question of the algorithmic computation of the parameterized differential Galois
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group. For linear functional equations of order 2, one can find a Kovacic-type algo-
rithm initiated by Dreyfus [17] and completed by Arreche [2]. In [36], Minchenko,
Ovchinnikov, and Singer gave an algorithm that allows to test if the parameterized
differential Galois group is reductive and to compute the group in that case. In [35],
they also show how to compute the parameterized differential Galois group if its quo-
tient by the unipotent radical is conjugate to a group of matrices with constant entries
with respect to the parametric derivations. The algorithms of [35,36] rely on bounds
on the order of the defining equations of the parameterized differential Galois group,
which allows to use the algorithm obtained by Hrushovski [24] and has been further
analyzed and improved by Feng [19] in the case of no parametric derivations.

In this paper, we study the parameterized differential Galois group of a differential
operator of the form L1(L2(y)) = 0 where L1,L2 are completely reducible differential
operators. This situation goes beyond the previously studied cases, because the pa-
rameterized Galois group of such an equation is no longer reductive and its quotient
by its unipotent radical might not be constant. If there is no parametric derivation,
this problem was solved by Berman and Singer in [4] for differential operators and
rephrased using Tannakian categories by Hardouin [21]. The general case is however
more complicated because, unlike the case of no parameters, the order of the defining
equations of the parameterized differential Galois group is no longer controlled by the
order of the functional equation L1(L2(y)) = 0. Therefore, we present an algorithm
that relies on bounds (see Section 3.3.3) and, in a generic situation, we find a descrip-
tion of the parameterized differential Galois group. In this description, the defining
equations of the unipotent radical are obtained by applying standard operations to
linear differential operators (cf. [21]).

However, by a careful study of the extension of completely reducible represen-
tations of quasi-simple linear differential algebraic groups, we are able to deduce a
complete and effective criterion to test the hypertranscendence of solutions of inho-
mogeneous linear differential equations (Theorem 4.7).

The paper is organized as follows. We start with a brief review of the basic no-
tions in differential algebra, linear differential algebraic groups, and linear differential
equations with parameters in Section 2. Our algorithmic results for calculating param-
eterized differential Galois groups are presented in Section 3. Our effective criterion
for hypertranscendence of solutions of extensions of irreducible differential equations
is contained in Section 4.2, which is preceded by Section 4.1, where we extend re-
sults of Minchenko and Ovchinnikov [34] for the purposes of the hypertranscendence
criterion. We use this criterion to prove hypertranscendence results for the Lommel
differential equation in Section 4.3.

2 Preliminary notions

We shall start with some basic notions of differential algebra and then recall what
linear differential algebraic groups and their representations are.
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2.1 Differential algebra

Definition 2.1 A differential ring is a ring R with a finite set ∆ = {δ1, . . . ,δm} of com-
muting derivations on R. A ∆ -ideal of R is an ideal of R stable under any derivation
in ∆ .

In the present paper, ∆ will consist of one or two elements. Let R be a ∆ -ring. For
any δ ∈ ∆ , we denote

Rδ = {r ∈ R |δ (r) = 0},
which is a ∆ -subring of R and is called the ring of δ -constants of R. If R is a field and a
differential ring, then it is called a differential field, or ∆ -field for short. For example,
R = Q(x, t), ∆ = {δ ,∂}, and ∂ = ∂/∂x, δ = ∂/∂ t, forms a differential field. The
notion of R-∆ -algebra is defined analogously.

The ring of ∆ -differential polynomials K{y1, . . . ,yn} in the differential indetermi-
nates, or ∆ -indeterminates, y1, . . . ,yn and with coefficients in a ∆ -field (K,∆), is the
ring of polynomials in the indeterminates formally denoted{

δ
i1
1 · . . . ·δ

im
m yi

∣∣ i1, . . . , im ≥ 0, 1≤ i≤ n
}

with coefficients in K. We endow this ring with a structure of K-∆ -algebra by setting

δk

(
δ

i1
1 · . . . ·δ

im
m yi

)
= δ

i1
1 · . . . ·δ

ik+1
k · . . . ·δ im

m yi.

Definition 2.2 (see [32, Corollary 1.2(ii)]) A differential field (K,∆) is said to be
differentially closed or ∆ -closed for short, if, for every (finite) set of ∆ -polynomials
F ⊂ K{y1, . . . ,yn}, if the system of differential equations F = 0 has a solution with
entries in some ∆ -field extension L, then it has a solution with entries in K.

For ∂ ∈ ∆ , the ring K[∂ ] of differential operators, or ∂ -operators for short, is the
K-vector space with basis 1,∂ , . . . ,∂ n, . . . endowed with the following multiplication
rule:

∂ ·a = a ·∂ +∂ (a).
To a ∂ -operator L as above, one can associate the linear homogeneous ∂ -polynomial

L(y) = an∂
ny+ . . .+a1∂y+a0y ∈ K{y}.

In what follows, we assume that every field is of characteristic zero.

2.2 Linear differential algebraic groups and their unipotent radicals

In this section, we first introduce the basic terminology of Kolchin-closed sets, lin-
ear differential algebraic groups and their representations. We then define unipotent
radicals of linear differential algebraic groups, reductive linear differential algebraic
groups and their structural properties. We continue with the notion of conjugation to
constants of linear differential algebraic groups.

Let (k,δ ) be a differentially closed field, C = kδ , and (F,δ ) a δ -subfield of k.
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2.2.1 First definitions

Definition 2.3 A Kolchin-closed (or δ -closed, for short) set W ⊂ kn is the set of
common zeroes of a system of δ -polynomials with coefficients in k, that is, there
exists S⊂ k{y1, . . . ,yn} such that

W = {a ∈ kn | f (a) = 0 for all f ∈ S} .

We say that W is defined over F if W is the set of zeroes of δ -polynomials with
coefficients in F . More generally, for an F-δ -algebra R,

W (R) = {a ∈ Rn | f (a) = 0 for all f ∈ S} .

Definition 2.4 If W ⊂ kn is a Kolchin-closed set defined over F , the δ -ideal

I(W ) = { f ∈ F{y1, . . . ,yn} | f (w) = 0 for all w ∈W (k)}

is called the defining δ -ideal of W over F . Conversely, for a subset S of F{y1, . . . ,yn},
the following subset is δ -closed in kn and defined over F :

V(S) = {a ∈ kn | f (a) = 0 for all f ∈ S} .

Remark 2.5 Since every radical δ -ideal of F{y1, . . . ,yn} is generated as a radical δ -
ideal by a finite set of δ -polynomials (see, for example, [47, Theorem, page 10], [27,
Sections VII.27-28]), the Kolchin topology is Ritt–Noetherian, that is, every strictly
decreasing chain of Kolchin-closed sets has a finite length.

Definition 2.6 Let W ⊂ kn be a δ -closed set defined over F . The δ -coordinate ring
F{W} of W over F is the F-∆ -algebra

F{W}= F{y1, . . . ,yn}
/
I(W ).

If F{W} is an integral domain, then W is said to be irreducible. This is equivalent to
I(W ) being a prime δ -ideal.

Example 2.7 The affine space An is the irreducible Kolchin-closed set kn. It is defined
over F , and its δ -coordinate ring over F is F{y1, . . . ,yn}.

Definition 2.8 Let W ⊂ kn be a δ -closed set defined over F . Let I(W ) = p1∩ . . .∩pq
be a minimal δ -prime decomposition of I(W ), that is, the pi ⊂ F{y1, . . . ,yn} are
prime δ -ideals containing I(W ) and minimal with this property. This decomposition
is unique up to permutation (see [27, Section VII.29]). The irreducible Kolchin-closed
sets Wi = V(pi) are defined over F and called the irreducible components of W . We
have W =W1∪ . . .∪Wq.
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Definition 2.9 Let W1 ⊂ kn1 and W2 ⊂ kn2 be two Kolchin-closed sets defined over
F . A δ -polynomial map (morphism) defined over F is a map

ϕ : W1→W2, a 7→ ( f1(a), . . . , fn2(a)) , a ∈W1 ,

where fi ∈ F{y1, . . . ,yn1} for all i = 1, . . . ,n2.
If W1 ⊂W2, the inclusion map of W1 in W2 is a δ -polynomial map. In this case,

we say that W1 is a δ -closed subset of W2.

Example 2.10 Let GLn ⊂ kn be the group of n×n invertible matrices with entries in
k. One can see GLn as a Kolchin-closed subset of kn2 × k defined over F , defined
by the equation det(X)y− 1 in F

{
kn2 × k

}
= F{X ,y}, where X is an n× n-matrix

of δ -indeterminates over F and y a δ -indeterminate over F . One can thus identify
the δ -coordinate ring of GLn over F with F{Y,1/det(Y )}, where Y = (yi, j)1≤i, j≤n
is a matrix of δ -indeterminates over F . We also denote the special linear group that
consists of the matrices of determinant 1 by SLn ⊂ GLn.

Similarly, if V is a finite-dimensional F-vector space, GL(V ) is defined as the
group of invertible k-linear maps of V ⊗F k. To simplify the terminology, we will also
treat GL(V ) as Kolchin-closed sets tacitly assuming that some basis of V over F is
fixed.

Remark 2.11 If K is a field, we denote the group of invertible matrices with coeffi-
cients in K by GLn(K).

Definition 2.12 ([8, Chapter II, Section 1, page 905]) A linear differential algebraic
group G⊂ kn2

defined over F is a subgroup of GLn that is a Kolchin-closed set defined
over F . If G⊂ H ⊂ GLn are Kolchin-closed subgroups of GLn, we say that G is a δ -
closed subgroup, or δ -subgroup of H.

Proposition 2.13 Let G⊂GLn be a linear algebraic group defined over F. We have:

(1) G is a linear differential algebraic group.
(2) Let H ⊂ G be a δ -subgroup of G defined over F, and the Zariski closure H ⊂ G

be the closure of H with respect to the Zariski topology. In this case, H is a linear
algebraic group defined over F, whose polynomial defining ideal over F is

I(H)∩F [Y ]⊂ I(H)⊂ F{Y} ,

where Y = (yi, j)1≤i, j≤n is a matrix of δ -indeterminates over F.

Definition 2.14 Let G be a linear differential algebraic group defined over F . The
irreducible component of G containing the identity element e is called the identity
component of G and denoted by G◦. The linear differential algebraic group G◦ is a
δ -subgroup of G defined over F . The linear differential algebraic group G is said to
be connected if G = G◦, which is equivalent to G being an irreducible Kolchin-closed
set [8, page 906].
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Definition 2.15 ([9],[43, Definition 6]) Let G be a linear differential algebraic group
defined over F and let V be a finite-dimensional vector space over F . A δ -polynomial
group homomorphism ρ : G→ GL(V ) defined over F is called a representation of G
over F . We shall also say that V is a G-module over F . By a faithful (respectively, sim-
ple, semisimple) G-module, we mean a faithful (respectively, irreducible, completely
reducible) representation ρ : G→ GL(V ).

The image of a δ -polynomial group homomorphism ρ : G→H is Kolchin closed
[8, Proposition 7]. Moreover, if ker(ρ) = {e}, then ρ is an isomorphism of linear
differential algebraic groups between G and ρ(G) [8, Proposition 8].

Definition 2.16 ([10, Theorem 2]) A linear differential algebraic group G is unipo-
tent if one of the following equivalent conditions holds:

(1) G is conjugate to a differential algebraic subgroup of the group of unipotent upper
triangular matrices;

(2) G contains no elements of finite order > 1;
(3) G has a descending normal sequence of differential algebraic subgroups

G = G0 ⊃ G1 ⊃ . . .⊃ GN = {e}

with Gi/Gi+1 isomorphic to a differential algebraic subgroup of the additive group
Ga.

One can show that a linear differential algebraic group G defined over F admits
a largest normal unipotent differential algebraic subgroup defined over F [33, Theo-
rem 3.10].

Definition 2.17 Let G be a linear differential algebraic group defined over F . The
largest normal unipotent differential algebraic subgroup of G defined over F is called
the unipotent radical of G and denoted by Ru(G). The unipotent radical of a linear
algebraic group H is also denoted by Ru(H).

Note that, for a linear differential algebraic group G, we always have

Ru(G)⊂ Ru(G)

and this inclusion can be strict [33, Example 3.17].

2.2.2 Almost direct products and reductive linear differential algebraic group

We recall what reductive linear differential algebraic groups are and how they decom-
pose into almost direct products of tori and quasi-simple subgroups.

Definition 2.18 A linear differential algebraic group G is said to be simple if {e} and
G are the only normal differential algebraic subgroups of G.
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Definition 2.19 A quasi-simple linear (differential) algebraic group is a finite central
extension of a simple non-commutative linear (differential) algebraic group.

Definition 2.20 ([33, Definition 3.12]) A linear differential algebraic group G de-
fined over F is said to be reductive if Ru(G) = {e}.

By definition, the following holds for linear differential algebraic groups:

simple =⇒ quasi-simple =⇒ reductive.

Example 2.21 SL2 is quasi-simple but not simple, while PSL2 is simple.

Proposition 2.22 ([36, Remark 2.9]) Let G⊂ GLn be a linear differential algebraic
group defined over F. If G ⊂ GLn is a reductive linear algebraic group, then G is a
reductive linear differential algebraic group.

Proposition 2.23 Let G ⊂ GL(V ) be a linear differential algebraic group. The fol-
lowing statements are equivalent:

(1) the G-module V is semisimple;
(2) V is semisimple as a G-module, where G⊂GL(V ) stands for the Zariski closure;
(3) G is reductive;
(4) V is semisimple as a G◦-module;
(5) V is semisimple as a G◦-module.

Proof For every subspace U ⊂ V , the set N of elements g ∈ GL(V ) preserving U
is an algebraic subgroup of GL(V ). Therefore, U is G-invariant if and only if it is
G-invariant:

G⊂ N⇔ G⊂ N.

This implies (1)⇔(2). The equivalences (2)⇔(3)⇔(4) are well-known (see, for ex-
ample, [50, Chapter 2]). Since the Kolchin topology contains the Zariski topology of
GL(V ), G◦ is Zariski irreducible, hence, equals G◦. Applying (1)⇔(2) to the case of
a connected G, we obtain (4)⇔(5). ut

Definition 2.24 Let G be a group and G1, . . . ,Gn some subgroups of G. We say that
G is the almost direct product of G1, . . . ,Gn if

(1) the commutator subgroups [Gi,G j] = {e} for all i 6= j ;
(2) the morphism

ψ : G1× . . .×Gn→ G, (g1, . . . ,gn) 7→ g1 · . . . ·gn

is an isogeny, that is, a surjective map with a finite kernel.

We summarize some results on the decomposition of reductive, algebraic and dif-
ferential algebraic, groups in the theorem below. We refer to Definition 2.3 for the
notation G(C) with G a linear (differential) algebraic group defined over C.



Galois groups of parametrized differential equations, with applications to hypertranscendence 9

Theorem 2.25 Let G⊂ GLn be a linear differential algebraic group defined over F.
Assume that G⊂ GLn is a connected reductive algebraic group. Then

(1) G is an almost direct product of a torus H0 and non-commutative normal quasi-
simple linear algebraic groups H1, . . . ,Hs defined over Q;

(2) G is an almost direct product of a Zariski dense δ -closed subgroup G0 of H0 and
some δ -closed subgroups Gi of Hi for i = 1, . . . ,s ;

(3) moreover , either Gi = Hi or Gi is conjugate by a matrix of Hi to Hi(C) ;

The Hi’s are called the quasi-simple components of G; the Gi’s are called the δ -
quasi-simple components of G.

Proof Part (1) can be found in [25, Theorem 27.5, page 167]. Parts (2) and (3) are
contained in [33, proof of Lemma 4.5] and [11, Theorems 15 and 18]. ut

Remark 2.26 As noticed in [36, Section 5.3.1], the decomposition of G as above can
be made effective.

Proposition 2.27 If ν : G1×G2→ G is a surjective homomorphism of linear differ-
ential algebraic groups and V is a simple G-module, then V , viewed as a G1×G2-
module via ν , is isomorphic to V1⊗V2, where each Vi is a simple Gi-module.

Proof Since ν is surjective, V is simple as a G1×G2-module. Let V1 be a simple
(non-zero) G1-submodule of V and U ⊂V the sum of all G1-submodules isomorphic
to V1. Since all elements of G2 send V1 to an isomorphic submodule, we obtain that
U is G1×G2-invariant. Since V is G1×G2-simple, U = V . We choose a direct sum
decomposition

V =
⊕
j∈J

U j, U j ∼=V1 for all j ∈ J,

and, for each j ∈ J, a non-zero u j ∈U j, and let V2 = span j∈J{u j} ⊂ V . We see that,
as G1-modules, V ∼=V1⊗V2, where G1 acts trivially on V2.

By [51, Exercise 11.30], every endomorphism of V1 ⊗V2 commuting with the
action of G1 has the form idV1⊗A, where A is an endomorphism of V2. This means that
V2 has a structure of a G2-module such that the G1-module isomorphism V ∼=V1⊗V2
extends to a G1 ×G2-module isomorphism. Since V is G1 ×G2-simple, V2 is G2-
simple. It remains to note that the representation Gi→GL(Vi), i = 1,2, is differential
since it is isomorphic to a subrepresentation of the representation Gi→ GL(V ). ut

Definition 2.28 A connected linear differential algebraic group T is called a δ -torus
if there is an isomorphism α of T onto a Zariski dense δ -subgroup T ′ ⊂ (k×)n, n≥ 0.

Let T ′C = (C×)n. By [8, Proposition 31], T ′C ⊂ T ′. Let TC = α−1(T ′C). The δ -subgroup
TC does not depend on the choice of α: since any differential homomorphism
(C×)n → (k×)m is monomial in each of the m components, its image is contained
in (C×)m.
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Corollary 2.29 Let G⊂GL(V ) be a connected linear differential algebraic group. If
the G-module V is simple and non-constant, then there exists a δ -torus T ⊂ G such
that V is semisimple and non-constant as a T -module.

Proof Since V is simple, G is reductive by Proposition 2.23. By Theorem 2.25, G
decomposes as an almost direct product of a δ -torus G0 and δ -quasi-simple compo-
nents Gi, 1≤ i≤ s. By Proposition 2.27, V is a tensor product of simple Gi-modules
Wi. By [33, Theorem 3.3], representations of Gi on Wi are polynomial, that is, extend
to algebraic representations ρi : Gi→ GL(Wi).

Since V is non-constant, there is an i, 0 ≤ i ≤ s, such that Wi is non-constant. If
i > 0, then Gi = Gi. Indeed, otherwise Gi ' H(C), where H = Gi is a quasi-simple
algebraic group defined over C (see Theorem 2.25). Since all algebraic representations
of H are defined over Q (see, for example, [5, Section 5]), ρi(Gi) is conjugate to
constants, which contradicts the assumption on Wi. Thus, Gi = Gi, and we can take T
to be a maximal torus of Gi (see [25, Sections 21.3-21.4]). If i = 0, let T = G0. ut

2.2.3 Conjugation to constants

Conjugation to constants will play an essential role in our arguments. We recall what
it means. As before, k is a differentially closed field containing F and C is the field of
δ -constants of k.

Definition 2.30 Let G ⊂ GLn be a linear algebraic group over F . We say that G is
conjugate to constants if there exists h ∈ GLn such that hGh−1 ⊂ GLn(C). Similarly,
we say that a representation ρ : G→ GLn is conjugate to constants if ρ(G) is conju-
gate to constants in GLn.

Proposition 2.31 Let ρ : G ⊂ GL(W )→ GL(V ) be a representation of a linear dif-
ferential algebraic group G such that G ⊂ GL(W ) is a connected reductive linear
algebraic group. Assume that ρ is defined over the field C. With notation of Theorem
2.25, assume that Z acts by constant weights on V and that, for all i = 1, . . . ,s, either
Hi 6= Gi or ρ|Hi is the identity. Then there exists g ∈ G such that

ρ
(
gGg−1)⊂ GL(V )(C).

Proof Let S = {i |Hi = Gi}. By assumption, ρ(Hi) = {1} for all i ∈ S. By Theorem
2.25, for all i /∈ S, there exists gi ∈ Gi such that giHig−1

i ⊂ Gi(C). Set

g = ∏
i∈S

gi ∈ G.

Let h ∈ G. Since G is the almost direct product of Z and of its δ -quasi-simple
components, there exist z ∈ Z and, for i ∈ {1, . . . ,s}, an element hi ∈ Hi such that
h = zh1 · . . . ·hs. Now,

ρ
(
ghg−1)= ρ(z)∏

i/∈S
ρ
(
gihig−1

i
)
.
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Since ρ is defined over the constants and gihig−1
i ∈ Gi(C) for all i /∈ S, we find that

ρ
(
gihig−1

i
)
⊂ GL(V )(C).

Since ρ(z) is also constant, the same holds for ρ
(
ghg−1

)
. ut

2.3 Parameterized differential modules

In this section, we recall the basic definitions of differential modules and prolongation
functors for differential modules with parameters. We then continue with the notion
of complete integrability of differential modules and its relation to conjugation to
constants of parameterized differential Galois groups. We also show a new result,
Proposition 2.54, which relates the conjugation to constants of a linear differential
algebraic group and of its identity component.

2.3.1 Differential modules and prolongations

Let K be a ∆ = {∂ ,δ}-field. We denote by k (respectively, C) the field of ∂ (respec-
tively, ∆ )-constants of K. We assume for simplicity that (k,δ ) is differentially closed
(this assumption was relaxed in [20,53,39]). Therefore, unless explicitly mentioned,
any Kolchin-closed set considered in the rest of the paper is a subset of some kn.

Definition 2.32 A ∂ -module M over K is a left K[∂ ]-module that is a finite-
dimensional vector space over K.

Let M be a ∂ -module over K and let {e1, . . . ,en} be a K-basis of M . Let A =
(ai, j) ∈ Kn×n be the matrix defined by

∂ (ei) =−
n

∑
j=1

a j,ie j, i = 1, . . . ,n. (2.1)

Then, for any element m = ∑
n
i=1 yiei, where Y = (y1, . . . ,yn)

T ∈ Kn, we have

∂ (m) =
n

∑
i=1

∂ (yi)ei−
n

∑
i=1

(
n

∑
j=1

ai, jy j

)
ei.

Thus, the equation ∂ (m) = 0 translates into the linear differential system ∂ (Y ) = AY .

Definition 2.33 Let M be a ∂ -module over K and {e1, . . . ,en} be a K-basis of M .
We say that the linear differential system ∂ (Y ) = AY , as above, is associated to the
∂ -module M (via the choice of a K-basis). Conversely, to a given linear differential
system ∂ (Y ) = AY , A = (ai, j) ∈ Kn×n, one associates a ∂ -module M over K, namely
M = Kn with the standard basis (e1, . . . ,en) and action of ∂ given by (2.1).
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Another choice of a K-basis X = BY , where B ∈ GLn(K), leads to the differential
system

∂ (X) = (B−1AB−B−1
∂ (B))X .

Definition 2.34 We say that a linear differential system ∂ (X)= ÃX , with Ã∈Kn×n, is
K-equivalent (or gauge equivalent over K) to a linear differential system ∂ (X) = AX ,
with A ∈ Kn×n, if there exists B ∈ GLn(K) such that

Ã = B−1AB−B−1
∂ (B).

One has the following correspondence between linear differential systems and lin-
ear differential equations. For L = ∂ n +an−1∂ n−1 + . . .+a0 ∈ K[∂ ], one can consider
the companion matrix

AL =


0 1 . . . 0

0
. . . . . .

...
...

. . . 0 1
−a0 −a1 . . . −an−1

 .

The differential system ∂Y = ALY induces a ∂ -module structure on Kn, which we
denote by L . Conversely, the Cyclic vector lemma [45, Proposition 2.9] states that
any ∂ -module is isomorphic to a ∂ -module L , of the above form, provided k ( K.

Definition 2.35 A morphism of ∂ -modules over K is a homomorphism of K[∂ ]-
modules.

One can consider the category DiffK of ∂ -modules over K:

Definition 2.36 We can define the following constructions in DiffK :

(1) The direct sum of two ∂ -modules, M1 and M2, is M1⊕M2 together with the
action of ∂ defined by

∂ (m1⊕m2) = ∂ (m1)⊕∂ (m2).

(2) The tensor product of two ∂ -modules, M1 and M2, is M1⊗K M2 together with
the action of ∂ defined by

∂ (m1⊗m2) = ∂ (m1)⊗m2 +m1⊗∂ (m2).

(3) The unit object 1 for the tensor product is the field K together with the left K[∂ ]-
module structure given by

(a0 +a1∂ + · · ·+an∂
n)( f ) = a0 f + · · ·+an∂

n( f )

for f ,a0, . . . ,an ∈ K.
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(4) The internal Hom of two ∂ -modules M1,M2 exists in DiffK and is denoted by
Hom(M1,M2). It consists of the K-vector space HomK(M1,M2) of K-linear
maps from M1 to M2 together with the action of ∂ given by the formula

∂u(m1) = ∂ (u(m1))−u(∂m1).

The dual M ∗ of a ∂ -module M is the ∂ -module Hom(M ,1).
(5) An endofunctor D : DiffK → DiffK , called the prolongation functor, is defined as

follows: if M is an object of DiffK corresponding to the linear differential system
∂ (Y ) = AY , then D(M ) corresponds to the linear differential system

∂ (Z) =
(

A δ (A)
0 A

)
Z.

The construction of the prolongation functor reflects the following idea. If U is a
fundamental solution matrix of ∂ (Y ) = AY in some ∆ -field extension F of K, that is,
∂ (U) = AU and U ∈ GLn(F), then

∂ (δU) = δ (∂U) = δ (A)U +Aδ (U).

Then,
(

U δ (U)
0 U

)
is a fundamental solution matrix of ∂ (Z) =

(
A δ (A)
0 A

)
Z. Endowed

with all these constructions, it follows from [44, Corollary 3] that the category DiffK
is a δ -tensor category (in the sense of [44, Definition 3] and [26, Definition 4.2.1]).

In this paper, we will not consider the whole category DiffK but the δ -tensor sub-
category generated by a ∂ -module. More precisely, we have the following definition.

Definition 2.37 Let M be an object of DiffK . We denote by {M }⊗,δ the smallest
full subcategory of DiffK that contains M and is closed under all operations of linear
algebra (direct sums, tensor products, duals, and subquotients) and under D. The cate-
gory {M }⊗,δ is a δ -tensor category over k. We also denote by {M }⊗ the full tensor
subcategory of DiffK generated by M . Then, {M }⊗ is a tensor category over k.

Similarly, the category Vectk of finite-dimensional k-vector spaces is a δ -tensor
category. The prolongation functor on Vectk is defined as follows: for a k-vector space
V , the k-vector space D(V ) equals k[δ ]≤1⊗k V , where k[δ ]≤1 is considered as the
right k-module of δ -operators up to order 1 and V is viewed as a left k-module.

Definition 2.38 Let M be an object of DiffK . A δ -fiber functor ω : {M }⊗,δ →Vectk
is an exact, faithful, k-linear, tensor compatible functor together with a natural iso-
morphism between DVectk ◦ ω and ω ◦D{M }⊗,δ [26, Definition 4.2.7], where the
subscripts emphasize the category on which we perform the prolongation. The pair(
{M }⊗,δ ,ω

)
is called a δ -Tannakian category.

Theorem 2.39 ([20, Corollaries 4.29 and 6.2]) Let M be an object of DiffK . Since
k is δ -closed, the category {M }⊗,δ admits a δ -fiber functor and any two δ -fiber
functors are naturally isomorphic.
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Definition 2.40 Let M be an object of Diffk and ω : {M }⊗,δ → Vectk be a δ -fiber
functor. The group Galδ (M ) of δ -tensor isomorphisms of ω is defined as follows.
It consists of the elements g ∈ GL(ω(M )) that stabilize ω(V ) for every ∂ -module
V obtained from M by applying the linear constructions (subquotient, direct sum,
tensor product, and dual), and the prolongation functor. The action of g on ω(V ) is
obtained by applying the same constructions to g. We call Galδ (M ) the parameterized
differential Galois group of (M ,ω), or of M when there is no confusion.

Theorem 2.41 ([44, Theorem 2]) Let M be an object of DiffK and ω : {M }⊗,δ →
Vectk be a δ -fiber functor. The group Galδ (M )⊂GL(ω(M )) is a linear differential
algebraic group defined over k, and ω induces an equivalence of categories between
{M }⊗,δ and the category of finite-dimensional representations of Galδ (M ).

Definition 2.42 We say that a ∂ -module M over K is trivial if it is either (0) or
isomorphic as ∂ -module over K to 1n for some positive integer n. For G a linear
differential algebraic group over k, we say that a G-module V is trivial if G acts
identically on V .

Remark 2.43 For M an object of DiffK and ω : {M }⊗,δ → Vectk a δ -fiber functor,
the following holds: a ∂ -module N in {M }⊗,δ is trivial if and only if ω(N ) is a
trivial Galδ (M )-module.

Remark 2.44 The parameterized differential Galois group depends a priori on the
choice of a δ -fiber functor ω . However, since two δ -fiber functors for {M }⊗,δ are
naturally isomorphic, we find that the parameterized differential Galois groups that
these functors define are isomorphic as linear differential algebraic groups over k.
Thus, if it is not necessary, we will speak of the parameterized differential Galois
group of M without mentioning the δ -fiber functor.

Forgetting the action of δ , one can similarly define the group Gal(M ) of tensor
isomorphisms of ω : {M }⊗→ Vectk. By [14], the group Gal(M ) ⊂ GL(ω(M )) is
a linear algebraic group defined over k, and ω induces an equivalence of categories
between {M }⊗ and the category of k-finite-dimensional representations of Gal(M ).
We call Gal(M ) the differential Galois group of M over K.

Proposition 2.45 ([22, Proposition 6.21]) If M is an object of DiffK and ω :
{M }⊗,δ → Vectk is a δ -fiber functor, then Galδ (M ) is a Zariski dense subgroup
of Gal(M ) (see Proposition 2.13).

Definition 2.46 A parameterized Picard–Vessiot extension, or PPV extension for
short, of K for a ∂ -module M over K is a ∆ -field extension KM that is generated
over K by the entries of a fundamental solution matrix U of a differential system
∂ (X) = AX associated to M and such that K∂

M = K∂ . The field K(U) is a Picard–
Vessiot extension (PV extension for short), that is, a ∂ -field extension of K gener-
ated by the entries of a fundamental solution matrix U of ∂ (X) = AX such that
K(U)∂ = K∂ .
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A parameterized Picard–Vessiot extension associated to a ∂ -module M depends
a priori on the choice of a K-basis of M , which is equivalent to the choice of a linear
differential system associated to M . However, one can show that gauge equivalent
differential systems lead to parameterized Picard–Vessiot extensions that are isomor-
phic as K-∆ -algebras. In [14], Deligne showed that a fiber functor corresponds to a
Picard–Vessiot extension; it is shown in [20, Theorem 5.5] that the notions of δ -fiber
functor and parameterized Picard–Vessiot extension are equivalent.

Definition 2.47 Let M be a ∂ -module over K. Let ∂ (X) = AX be a differential
system associated to M over K with A ∈ Kn×n and let KM be a PPV extension
for ∂ (X) = AX over K. The parameterized Picard–Vessiot group, or PPV-group for
short is denoted by Galδ (KM /K) and is the set of ∆ -automorphisms of KM over K,
whereas the Picard–Vessiot group (usually called the differential Galois group in the
literature) of KM over K, by definition, is the set of ∂ -automorphisms of a Picard–
Vessiot extension K(U) of K in KM , where U ∈ GLn(KM ) is a fundamental solution
matrix of ∂ (X) = AX . This group is denoted by Gal(KM /K).

Remark 2.48 Let U ∈ GLn(KM ) be a fundamental solution matrix of ∂ (X) = AX .
For any τ ∈ Galδ (KM /K), there exists [τ]U ∈ GLn(k) such that τ(U) = U [τ]U . The
map

Galδ (KM /K)→ GLn, τ 7→ [τ]U

is an embedding and identifies Galδ (KM /K) with a δ -closed subgroup of GLn. One
can show that another choice of fundamental solution matrix as well as another choice
of gauge equivalent linear differential system yield a conjugate subgroup in GLn.
Similarly, one can represent Gal(KM /K) as a linear algebraic subgroup of GLn. With
these representations of the Picard–Vessiot groups, one can show that Picard–Vessiot
groups and differential Galois groups are isomorphic in the parameterized and non-
parameterized cases.

In the PPV theory, a Galois correspondence holds between differential algebraic sub-
groups of the PPV-group and ∆ -sub-field extensions of KM (see [22, Theorem 6.20]
for more details). Moreover, the δ -dimension of Galδ (M ) coincides with the δ -
transcendence degree of KM over K (see [22, page 374 and Proposition 6.26] for
the definition of the δ -dimension and δ -transcendence degree and the proof of their
equality). Moreover, the defining equations of the parameterized differential Galois
group reflect the differential algebraic relations among the solutions (see [22, Propo-
sition 6.24]). Therefore, given a ∂ -module M over K, we find that the defining equa-
tions of the parameterized differential Galois group Galδ (M ) over k determine the
differential algebraic relations between the solutions in KM over K.

Definition 2.49 A ∂ -module M is said to be completely reducible if, for every ∂ -
submodule N of M , there exists a ∂ -submodule N ′ of M such that M = N ⊕
N ′. We say that a ∂ -operator is completely reducible if the associated ∂ -module is
completely reducible.
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By [45, Exercise 2.38], a ∂ -module is completely reducible if and only if its differ-
ential Galois group is a reductive linear algebraic group. Moreover, for a completely
reducible ∂ -module M , any object in {M }⊗ is completely reducible.

2.3.2 Isomonodromic differential modules

Definition 2.50 ([13, Definition 3.8]) Let A ∈ Kn×n. We say that the linear differ-
ential system ∂Y = AY is isomonodromic (or completely integrable) over K if there
exists B ∈ Kn×n such that

∂ (B)−δ (A) = AB−BA.

Remark 2.51 One can show that a linear differential system ∂Y = AY is isomon-
odromic if and only if there exists a ∆ -field extension L of K and B ∈ Kn×n such
that the system {

∂Y = AY

δY = BY

has a fundamental solution matrix with coefficients in L.

We recall a characterization of complete integrability in terms of the PPV theory.

Proposition 2.52 ([13, Proposition 3.9]) Let M be a ∂ -module over K and ∂ (Y ) =
AY , with A ∈ Kn×n, be an associated linear differential system. The following state-
ments are equivalent:

– Galδ (M ) is conjugate to constants in GL(ω(M )) (see Definition 2.30);
– The linear differential system ∂ (Y ) = AY is isomonodromic over K.

The proof of the following result was provided to the authors by Michael F. Singer
and will be used in the proof of Proposition 2.54.

Lemma 2.53 Given a linear differential algebraic group G ⊂ GLn defined over a
differentially closed field (k,δ ) and any ∆ = {∂ ,δ}-field K such that K∂ = k, there
exists a ∆ -field extension F of K such that F∂ = k and G can be realized as a pa-
rameterized differential Galois group over F in the given faithful representation of
G⊂ GLn.

Proof We first consider the “generic” case: we construct a ∆ -field extension E of K
with no new ∂ -constants such that GLn is a parameterized differential Galois group of
a ∂ -module M over E. Assume we have constructed E and let EM be a PPV extension
of M over E. For any differential algebraic subgroup G of GLn, let F be the fixed
field of G in EM , i.e., the elements of EM fixed by G. By the PPV correspondence,
G is the parameterized differential Galois group of EM over F . Moreover,

K∂ = k⊂ F∂ ⊂ E∂

M = k.
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To construct the fields EM and E for GLn, we shall follow the construction from [31,
pages 87–89]. Let {zi, j} be a set of n2 ∆ -differential indeterminates over K. Let EM =
K〈zi, j〉∆ be a ∆ -field of differential rational functions in these indeterminates. Note
that the δ -constants of EM are k, as in [31, Lemma 2.14]. Let Z = (zi, j) ∈ GLn(EM )
and A = (∂Z)(Z)−1. We then have that

∂Z = AZ. (2.2)

Let E be the ∆ -field generated over K by the entries of A. Then, EM is a PPV exten-
sion of E for equation (2.2). Since Z is a matrix of ∆ -differential indeterminates, any
assignment Z 7→ Zg for g ∈ GLn(K) defines a ∆ -K-automorphism φg of EM over K.
If we restrict to those g ∈ GLn = GLn(k), then φg leaves A fixed and so all elements
of E are left fixed. Therefore, GLn is a subgroup of the PPV-group of EM over E.
Since this PPV-group is already a subgroup of GLn, we must have that the PPV-group
of EM over E is GLn. ut

The proof of the following result uses PPV theory, which does not appear in the
statement. It is, therefore, of interest to find a direct proof of it as well.

Proposition 2.54 Let G⊂GL(V ) be a linear differential algebraic group over k and
let G◦ be the identity component of G. If G◦ is conjugate to constants in GL(V ), then
the same holds for G.

Proof By Lemma 2.53, let K be a ∆ -field with K∂ = k such that G is a parameterized
differential Galois group of a ∂ -module M over K and the embedding G ⊂ GL(V )
is the faithful representation G→ GL(ω(M )). Let L/K be a PPV extension for M
over K. One can identify G with Galδ (L/K), the group of automorphisms of L over
K commuting with δ and ∂ . Let F be the subfield of L fixed by G◦. By the PPV
correspondence [13, Theorem 9.5], the group of automorphisms of L over F commut-
ing with {δ ,∂} coincides with G◦ and the extension F/K is algebraic since G/G◦ is
finite.

Let ∂ (Y ) = AY be a linear differential system associated to M . The parameter-
ized differential Galois group of M over F is G◦ and thus conjugate to constants by
assumption. Proposition 2.52 implies that ∂ (Y ) = AY is isomonodromic over F , that
is, there exists B ∈ Fn×n such that

∂ (B)−δ (A) = AB−BA. (2.3)

Let K0 be the subfield extension of F generated over K by the coefficients of the matrix
B. Without loss of generality, we can assume that K0/K is a finite Galois extension
in the classical sense. We denote by Gal(K0/K) its differential Galois group and by r
its degree. By [45, Exercise 1.24], there exist unique derivations, still denoted ∂ and
δ extending ∂ and δ to K0. Moreover, any element of Gal(K0/K) commutes with the
action of δ and ∂ on K0. If we let

C =
1
r ∑

τ∈Gal(K0/K)

τ(B),
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then C has coefficients in K and satisfies

∂ (A)−δ (C) = ∂ (A)− 1
r

(
∑

τ∈Gal(K0/K)

τ(δ (B))

)

= ∂ (A)− 1
r

(
∑

τ∈Gal(K0/K)

τ (∂ (A)−BA+AB)

)
= ∂ (A)−∂ (A)+CA−AC. (2.4)

This shows that ∂ (Y ) = AY is isomonodromic over K. By Proposition 2.52, we find
that G is conjugate to constants in GLn. ut

3 Calculating the parameterized differential Galois group of L1(L2(y)) = 0

In this section, given two completely reducible ∂ -modules L1 and L2, we study
the parameterized differential Galois group of an arbitrary ∂ -module extension U
of L1 by L2. In Section 3.1, we describe Galδ (U ) as a semi-direct product of a
δ -closed subgroup of Hom(ω(L1),ω(L2)) by the parameterized differential Galois
group Galδ (L1⊕L2) (see Theorem 3.3). In Section 3.2, we perform a first reduction
that allows us to set L1 equal to the trivial ∂ -module 1.

In Theorem 3.13, we show how one can recover a complete description of the
parametrized differential Galois group of U from the knowledge of the parametrized
differential Galois group of its reduction. In Section 3.3, we thus focus on the com-
putation of the parameterized differential Galois group of an arbitrary ∂ -module ex-
tension U of 1 by a completely reducible ∂ -module L .

We then show that one can decompose L in a “constant” and a “purely non-
constant” part. This decomposition yields a decomposition of Ru(Galδ (U )). For K =
k(x), the computation of Galδ (U ) for the “constant part” can be deduced from the
algorithms contained in [35], whereas the computation of the “purely non-constant”
part results from Section 3.3.2 and Theorem 3.19. Finally, in Section 3.3.3, we show,
under some assumption on L , that Ru(Galδ (U )) is the product of the “constant” and
“purely non-constant” parts (see Theorem 3.25).

Throughout this section, K is a (δ ,∂ )-field of characteristic zero, whose field of
∂ -constants k is assumed to be δ -closed. We denote also by C the field of δ -constants
of k. We fix a δ -fiber functor ω : DiffK → Vectk on DiffK (see Definition 2.38). Any
parameterized differential Galois group in this section shall be computed with respect
to ω and is a linear differential algebraic group defined over k. Any representation is,
unless explicitly mentioned, defined over k.

3.1 Structure of the parameterized differential Galois group

Let L1,L2 ∈ K[∂ ] be two completely reducible ∂ -operators, and let us denote by L1
(respectively, by L2) the ∂ -module corresponding to L1(y) = 0 (respectively, L2(y) =
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0). The ∂ -module U over K, corresponding to L1(L2(y)) = 0, is an extension of L1
by L2,

0 // L2
i // U

p // L1 // 0

in the category of ∂ -modules over K.

Definition 3.1 For any object X in {U }⊗,δ , we define Stab(X ) (respectively,
Stabδ (X )) as the set of (respectively, δ -) tensor automorphisms in Gal(U ) (respec-
tively, Galδ (U )) that induce the identity on ω(X ).

By [15, II.1.36], Stab(X ) (respectively, Stabδ (X )) is a linear (respectively, dif-
ferential) algebraic group over k. One has also that Stabδ (X ) is Zariski dense in
Stab(X ). Moreover, we have:

Lemma 3.2 For any object X in {U }⊗,δ , the group Stabδ (X ) (respectively,
Stab(X )) is normal in Galδ (U ) (respectively, Gal(U )).

Proof We prove only the parameterized statement. Let g ∈ Galδ (U ) and h ∈
Stabδ (X ). One has to show that ghg−1 induces the identity on ω(X ). It is suffi-
cient to remark that, by definition, any element of Galδ (U ) stabilizes ω(X ). ut

The aim of this section is to prove the following theorem.

Theorem 3.3 If L1,L2 are completely reducible ∂ -modules over K and if U is a
∂ -module extension over K of L1 by L2, then

(1) Galδ (U ) is an extension of Galδ (L1 ⊕ L2) by a δ -subgroup W ⊂
Hom(ω(L1),ω(L2)).

(2) W is stable under the action of Galδ (L1⊕L2) on Hom(ω(L1),ω(L2)) given by

g∗φ = gφ(g−1) for any (g,φ) ∈ Galδ (L1⊕L2)×Hom(ω(L1),ω(L2)).

Remark 3.4 The parameterized differential Galois group Galδ (L1 ⊕L2) acts on
the objects of the δ -tensor category generated by ω(L1⊕L2). The k-vector space
Hom(ω(L1),ω(L2)) belongs to this category, and the action of Galδ (L1⊕L2) on
Hom(ω(L1),ω(L2)) detailed above is just the description of the Tannakian repre-
sentation.

Before proving this theorem, we need some intermediate lemmas.

Lemma 3.5 The linear differential algebraic group Galδ (U ) is an extension of the
reductive linear differential algebraic group Galδ (L1⊕L2) by the linear differential
algebraic group Stabδ (L1⊕L2).

Proof Since {L1⊕L2}⊗,δ is a full δ -tensor subcategory of {U }⊗,δ , the linear dif-
ferential algebraic group Galδ (L1⊕L2) is a quotient of Galδ (U ). We denote the
quotient map by

π : Galδ (U )→ Galδ (L1⊕L2).
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Then kerπ = Stabδ (L1⊕L2). Since L1 and L2 are completely reducible, L1⊕L2
is completely reducible as well. This means that Galδ (L1⊕L2) is reductive. Since
the latter group is the Zariski closure of Galδ (L1⊕L2) in GL(ω(L1⊕L2)), [36,
Remark 2.9] implies that Galδ (L1⊕L2) is a reductive linear differential algebraic
group. ut

We will relate Stabδ (L1⊕L2) to Ru(Galδ (U )) and describe more precisely the
structure of the latter group. By the exactness of ω , ω(U ) is an extension of ω(L1)
by ω(L2) in the category of representations of Galδ (U ).

Lemma 3.6 In the above notation, let s be a k-linear section of the exact sequence:

0 // ω(L2)
ω(i) // ω(U )

ω(p) // ω(L1)
s

ll // 0 (3.1)

We consider the following map

ζU : Galδ (U )→ Hom(ω(L1),ω(L2)), g 7→
(
x 7→ g(s(g−1x))− s(x)

)
.

Then the restriction of the map ζU to Stabδ (L1⊕L2) is a one-to-one morphism of
linear differential algebraic groups. Moreover, the linear differential algebraic group
Stabδ (L1⊕L2) is abelian and coincides with Ru(Galδ (U )).

Proof For all g1, g2 ∈ Galδ (U ), we have:

ζU (g1g2)(x) = g1ζU (g2)(g−1
1 x)+ζU (g1)(x). (3.2)

If g1,g2 ∈ Stabδ (L1⊕L2), equation (3.2) gives

ζU (g1g2) = ζU (g1)+ζU (g2).

This means that ζU is a morphism of linear differential algebraic groups from
Stabδ (L1⊕L2) to Hom(ω(L1),ω(L2)).

Moreover, let {e j} j=1...s (respectively, { fi}i=1...r) be a k-basis of ω(L2) (respec-
tively, ω(L1)). Then {

ω(i)(ei),s( f j)
}

i=1,...,s, j=1,...r

is a k-basis of ω(U ). If g ∈ Stabδ (L1⊕L2)∩ker(ζU ), then g induces the identity
on {

ω(i)(ei),s( f j)
}

i=1,...,s, j=1,...r

and thereby on ω(U ). Therefore, by definition of Galδ (U ), the element g is the
identity element and, therefore, ker

(
ζU

∣∣
Stabδ (L1⊕L2)

)
is trivial.

Since Hom(ω(L1),ω(L2)) is abelian, the same holds for Stabδ (L1 ⊕L2).
Moreover, Stabδ (L1 ⊕L2) is unipotent. Indeed, let e be the identity element in
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Galδ (U ), x ∈ ω(L1), and g ∈ Stabδ (L1 ⊕L2). Since gs(x)− s(x) ∈ ω(L2), we
have

(g− e)2(s(x)) = (g− e)(gs(x)− s(x)) = g(gs(x)− s(x))− (gs(x)− s(x)) = 0.

Reasoning as above, we find that (g − e)2 is zero on ω(U ). By Lemma 3.2,
Stabδ (L1⊕L2) is also normal and, hence, must be contained in Ru(Galδ (U )). By
[10, Theorem 1], the image of a unipotent linear differential algebraic group is unipo-
tent. By Lemma 3.5, Stabδ (L1 ⊕L2) is the kernel of the projection of Galδ (U )
on the reductive linear differential algebraic group Galδ (L1⊕L2). It follows that
Ru(Galδ (U )) is contained in Stabδ (L1⊕L2), which ends the proof. ut

Remark 3.7 Since two sections of (3.1) differ by a map from ω(L1) to ω(L2), one
sees that, when restricted to Ru(Galδ (U )) = Stabδ (L1⊕L2), the map ζU is inde-
pendent of the choice of the section.

By the above lemma, Ru(Galδ (U )) is an abelian normal subgroup of Galδ (U ).
Since Galδ (L1⊕L2) is the quotient of Galδ (U ) by Ru(Galδ (U )) and Ru(Galδ (U ))
is abelian, the linear differential algebraic group Galδ (L1⊕L2) acts by conjugation
on Ru(Galδ (U )). The lemma below shows that this action is compatible with the
action of Galδ (L1⊕L2) on Homk(ω(L1),ω(L2)).

Lemma 3.8 For all g1 ∈ Galδ (U ), g2 ∈ Ru(Galδ (U )), and x ∈ ω(L1), we have

ζU

(
g1g2g1

−1)(x) = g1
(
ζU (g2)

(
g−1

1 x
))

= g1 ∗ζU (g2)(x),

where ∗ denotes the natural action of Galδ (L1⊕L2) on Hom(ω(L1),ω(L2)) via

g∗φ = g◦φ ◦g−1 for φ ∈ Hom(ω(L1),ω(L2)) and g ∈ Galδ (L1⊕L2).

Proof Let e denote the identity element in Galδ (U ). From (3.2), we find that, for all
x ∈ ω(L1),

g1ζU

(
g1
−1)(g−1

1 x
)
= ζU (e)(x)−ζU (g1)(x) =−ζU (g1)(x). (3.3)

Applying repeatedly (3.2), we deduce that

ζU

(
g1g2g1

−1)(x) = g1
(
ζU

(
g2g1

−1)(g−1
1 x
))

+ζU (g1)(x)

= g1
(
g2ζU

(
g1
−1)(g−1

2 g−1
1 x
)
+ζU (g2)

(
g−1

1 x
))

+ζU (g1)(x)

= g1ζU (g2)
(
g−1

1 x
)
+g1g2g−1

1
(
g1ζU

(
g−1

1
)(

g−1
1 g1g−1

2 g−1
1 x
))

+ζU (g1)(x),

for all x ∈ ω(L1). Since

g1g2g1
−1, g1g−1

2 g1
−1 ∈ Ru(Galδ (U )) = Stabδ (L1⊕L2),
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we get that, for all x ∈ ω(L1),

g1g2g−1
1
(
g1ζU

(
g−1

1
)(

g−1
1 g1g−1

2 g−1
1 x
))

+ζU (g1)(x)

= g1ζU

(
g−1

1
)
(g−1

1 x)+ζU (g1)(x) = 0.

We conclude that, for all x ∈ ω(L1),

ζU

(
g1g2g1

−1)(x) = g1ζU (g2)
(
g−1

1 x
)
. ut

Proof (Proof of Theorem 3.3) By the above, Galδ (U ) is an extension of Galδ (L1⊕
L2) by Ru(Galδ (U )). The action of Galδ (L1⊕L2) on Ru(Galδ (U )) is deduced
from the action by conjugation of Galδ (U ) on its unipotent radical.

Combining Lemma 3.6 and Lemma 3.8, we can identify via ζU , the unipo-
tent radical Ru(Galδ (U )) with a δ -closed subgroup of Hom(ω(L1),ω(L2)) and
the action of Galδ (L1 ⊕L2) on Ru(Galδ (U )) by conjugation with the action of
Galδ (L1 ⊕L2) on Hom(ω(L1),ω(L2)), induced by the Galδ (L1 ⊕L2)-module
structure on ω(L1⊕L2). ut

Remark 3.9 The extension in Theorem 3.3 does not split in general. For example,

G =


a 0 0

0 1 b
0 0 1

 ∈ GL3(k)

∣∣∣∣∣δ (b) = δ (a)
a


is a linear differential algebraic group such that the quotient map G→G/Ru(G)∼= k×
does not have any δ -polynomial section. Indeed, otherwise, G would have a projection
onto Ru(G) ∼= C = kδ , which is impossible, because G is strongly connected [12,
Example 2.25].

Remark 3.10 If K = k(x) and ∂ = ∂

∂x , the knowledge of R = Ru(Galδ (U )) allows
one to compute G = Galδ (U ) algorithmically. Indeed, one can compute the nor-
malizer N of R in GL(ω(U )). Note that G ⊂ N. By the differential version of the
Chevalley theorem [33, Theorem 5.1] (see also [6, proof of Theorem 5.6]), there
is U0 ∈ {U }⊗,δ and a differential representation ρ : N → GL(ω(U0)) such that
R = kerρ . The proof of this Chevalley theorem leads to a constructive procedure
to find U0 and ρ . Since Galδ (U0) = ρ(G) is reductive, one can compute it [36]. We
can find G as ρ−1(Galδ (U0)).

In view of Remark 3.10, our aim is to compute the parameterized differential
Galois group of U . To this purpose, we will perform a first reduction that will allow
us to simplify our computation.
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3.2 A first reduction

Let L1,L2 ∈ K[∂ ] be two completely reducible ∂ -operators. Let us denote the ∂ -
module over K corresponding to L1(y) = 0 (respectively, L2(y) = 0) by L1 (respec-
tively, by L2). The ∂ -module U corresponding to L1(L2(y)) = 0 is an extension of
L1 by L2,

0 // L2
i // U

p // L1 // 0 (3.4)

in the category of ∂ -modules over K. In this section, we recall the methods of [4] to
show that we can restrict ourselves to the case in which L1 is of the form ∂ − ∂b

b for
some b ∈ K∗.

We first describe the reduction process in terms of ∂ -modules. Since the functor
Hom(L1,−) is exact, (3.4) gives the exact sequence:

0 // Hom(L1,L2) // Hom(L1,U ) // Hom(L1,L1) // 0 (3.5)

We pull back (3.5) by the diagonal embedding

d : 1→ Hom(L1,L1), λ 7→ λ idL1 ,

where 1 is the unit object. We obtain an exact sequence

0 // Hom(L1,L2) // R(U ) // 1 // 0 (3.6)

where R(U ) is the ∂ -module deduced from U by the pullback. We call the ∂ -module
R(U ) the reduction of U . We recall that, as a K-vector space, R(U ) coincides with
the set {

(φ ,λ ) ∈ Hom(L1,U )×1
∣∣ p◦φ = λ idL1

}
.

Remark 3.11 An effective interpretation of this reduction process in terms of matrix
differential equations immediately follows from [4, page 15].

Proposition 3.12 With notation above, we have

(1) The parameterized differential Galois group Galδ (Hom(L1,L2)) is a quotient of
Galδ (L1⊕L2) and is a reductive linear differential algebraic group;

(2) By Lemma 3.6, one can identify Ru(Galδ (U )) (respectively, Ru(Galδ (R(U ))))
with a differential algebraic subgroup of Hom(ω(L1),ω(L2)) (respectively, of
Hom(k,Hom(ω(L1),ω(L2)))). Then the canonical isomorphism

φ : Hom(k,Hom(ω(L1),ω(L2)))→ Hom(ω(L1),ω(L2)), ψ 7→ ψ(1)

induces an isomorphism of linear differential algebraic groups between
Ru(Galδ (R(U ))) and Ru(Galδ (U )) ;
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(3) By Lemma 3.8, Galδ (L1 ⊕L2) (respectively, Galδ (Hom(L1,L2))) acts on
Ru(Galδ (U )) (respectively, on Ru(Galδ (R(U )))). These actions are compatible
with the isomorphism φ .

Proof
(1) Since Hom(L1,L2) (respectively, L1 ⊕ L2) is a subobject of {U }⊗,δ ,

its parameterized differential Galois group is a quotient of Galδ (U )
by Stabδ (Hom(L1,L2)) (respectively, by Stabδ (L1 ⊕ L2) = Stabδ (L1) ∩
Stabδ (L2)). It is not difficult to see that we have the inclusion

Stabδ (L1⊕L2)⊂ Stabδ (Hom(L1,L2))

Since stabilizers of objects in {U }⊗,δ are normal in Galδ (U ) by Lemma 3.2, we
can apply [10, Proposition 2] to get that

Galδ (Hom(L1,L2)) = Galδ (U )
/

Stabδ (Hom(L1,L2))

is a quotient of

Galδ (L1⊕L2) = Galδ (U )
/

Stabδ (L1⊕L2)

by
Stabδ (Hom(L1,L2))

/
Stabδ (L1⊕L2).

The same reasoning in the non-parameterized case shows that Gal(Hom(L1,L2))
is a quotient of Gal(L1⊕L2). Since quotients of reductive algebraic groups are
reductive, [36, Remark 2.9] allows us to conclude that Galδ (Hom(L1,L2)) is a
reductive linear differential algebraic group.

(2) Since R(U ) is an object of {U }⊗,δ , Galδ (R(U )) is a quotient of Galδ (U ), and
we denote the canonical surjection by π . The image of Stabδ (Hom(L1,L2)) via
π coincides with the stabilizer of Hom(L1,L2) in Galδ (R(U )) and, thus, with
Ru(Galδ (R(U ))) by Lemmas 3.5 and 3.6.
Let H ⊂ Ru(Galδ (R(U ))) be the image of Stabδ (L1⊕L2) by π . By [8, Propo-
sition 7, page 908], H is a differential algebraic subgroup of Ru(Galδ (R(U ))).
Since Stabδ (L1⊕L2) is normal in Galδ (U ) and π is surjective, H is normal in
Ru(Galδ (R(U ))), and we can consider the quotient map

p : Ru(Galδ (R(U )))→ Ru(Galδ (R(U )))
/

H .

Since quotients of unipotent linear differential algebraic groups are unipotent by
[10, Theorem 1], the linear differential algebraic group Ru(Galδ (R(U )))/H is
unipotent. Note that

Ru
(

Galδ (R(U ))
)/

H = π
(

Stabδ (Hom(L1,L2))
)/

π
(

Stabδ (L1⊕L2)
)

(3.7)

The surjective morphism π is induced via δ -Tannakian equivalence by the inclu-
sion of δ -Tannakian categories {R(U )}⊗,δ ⊂ {U }⊗,δ . This inclusion restricts
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to the inclusion of the usual Tannakian categories {R(U )}⊗ ⊂ {U }⊗, which
shows, taking the Zariski closure, that π extends to a surjective morphism of al-
gebraic groups π : Gal(U )→ Gal(R(U )). One can show that the quotient

π(Stab(Hom(L1,L2)))
/

π(Stab(L1⊕L2))

coincides with the Zariski closure of Ru(Galδ (R(U )))/H.
Let KL1⊕L2 (respectively, KHom(L1,L2)) denote the usual PV extension of L1⊕
L2 (respectively, of Hom(L1,L2)) over K. Let KU (respectively, KR(U )) denote
the usual PV extension of U (respectively, of R(U ))) over K. We have the fol-
lowing tower of ∂ -field extensions:

KU

KR(U ) KL1⊕L2

KHom(L1,L2)

K

We see that

Gal
(
KL1⊕L2

/
KHom(L1,L2)

)
= Stab(Hom(L1,L2))

/
Stab(L1⊕L2) .

Since KHom(L1,L2) is a PV extension of K, the group Gal
(
KL1⊕L2

/
KHom(L1,L2)

)
is normal in Gal

(
KL1⊕L2/K

)
by the PV correspondence. Therefore,

Gal
(
KL1⊕L2

/
KHom(L1,L2)

)
is a reductive algebraic group. Since

π : Stab(Hom(L1,L2))
/

Stab(L1⊕L2))

→ π
(

Stab(Hom(L1,L2))
)/

π
(

Stab(L1⊕L2)
)

is a quotient map, we deduce from the above identifications that the Zariski clo-
sure of Ru(Galδ (R(U )))/H is a reductive algebraic group. We conclude by [36,
Remark 2.9] that Ru(Galδ (R(U )))/H is reductive. On the other hand, since
Ru(Galδ (R(U )))/H is both unipotent and reductive, it must be equal to {e},
and we have

π
(

Stabδ (L1⊕L2)
)
= π

(
Stabδ (Hom(L1,L2))

)
= Ru(Galδ (R(U ))) . (3.8)

We recall the notation of Lemma 3.6. We denote by s a k-linear section of the
exact sequence of finite-dimensional representations of Galδ (U ):

0 // ω(L2)
ω(i) // ω(U )

ω(p) // ω(L1)
s

ll // 0 .
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Then, we identify Ru(Galδ (U )) = Stabδ (L1 ⊕ L2) with the image of
Stabδ (L1⊕L2) by

ζU : Ru(Galδ (U ))→ Homk(ω(L1),ω(L2)) , g 7→
(
x 7→ gs(g−1x)− s(x)

)
.

Since ω is compatible with Hom, the map

r : k→ ω(R(U )), λ 7→ (λ s,λ ),

is a k-linear section of t

0 // Hom(ω(L1),ω(L2)) // ω(R(U ))
t // k
r
nn

// 0

We apply again Lemma 3.6 to identify Ru(Galδ (R(U ))) = π
(

Stabδ (L1⊕L2)
)

with its image via

ζR(U ) : Galδ (R(U ))→ Hom(k,Homk(ω(L1),ω(L2)))

g 7→
(
λ 7→ gr(λ )g−1− r(λ )

)
.

Identifying Hom(k,Hom(ω(L1),ω(L2))) with Hom(ω(L1),ω(L2)) via φ , we
find that

ζU = φ ◦ζR(U ) ◦π. (3.9)

We have

Ru
(

Galδ (U )
)
= ζU

(
Stabδ (L1⊕L2)

)
= ζR(U ) ◦π

(
Stabδ (L1⊕L2)

)
= Ru

(
Galδ (R(U ))

)
,

where we have used Remark 3.7.
(3) The compatibility of the actions comes from Lemma 3.8, (3.9), and (3.8). ut

We combine Proposition 3.12 and Theorem 3.3 in the following Theorem.

Theorem 3.13 If L1,L2 are completely reducible ∂ -modules over K and if U is a
∂ -module extension of L1 by L2, then

(1) Galδ (U ) is an extension of Galδ (L1 ⊕ L2) by a δ -subgroup W of
ω(Hom(L1,L2)).

(2) W = Ru(Galδ (R(U ))), where R(U ) is an extension of 1 by the completely re-
ducible ∂ -module Hom(L1,L2), and the action of Galδ (L1⊕L2) on W is given
by composing the quotient map of Galδ (L1⊕L2) on Galδ (Hom(L1,L2)) with
the action of Galδ (Hom(L1,L2)) on ω(Hom(L1,L2)).
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3.3 The unipotent radical of the parameterized differential Galois group of an
extension of 1 by a completely reducible ∂ -module L

Let L be a completely reducible ∂ -module over K and U be an extension of 1 by
L . In this section, we study Ru(Galδ (U )).

In terms of ∂ -operators, the situation corresponds to the following. Let L∈K[∂ ] be
a completely reducible ∂ -operator and L be the associated ∂ -module. An extension
U of 1 by L corresponds to an inhomogeneous differential equation of the form
L(y) = b for some b ∈ K∗. The main result of [4] is to show that Ru(Gal(U )) =
ω(L0), where L0 is the largest ∂ -module of L such that

(1) L = L1L0 ;
(2) L1(y) = b has a solution in K.

From Lemma 3.6, we know that Ru(Galδ (U )) can be identified with a differential al-
gebraic subgroup W of ω(L0), stable under the natural action of Galδ (L ) on ω(L ).
In [21], the result of [4] was rephrased in Tannakian terms and it was proved that
L0 is the smallest subobject of L such that the pushout of the extension U by the
quotient map π : L →L /L0 is a trivial (split) extension. Such a characterization no
longer holds in general in the parameterized setting. Indeed, the classification of dif-
ferential algebraic subgroups of vector groups shows that W coincides with the zero
set of a finite system of linear homogeneous differential equations with coefficients in
k. Therefore, we have two possibilities:

– either W is given by linear homogeneous polynomials and it is a finite-
dimensional vector space over k, that is, W is an algebraic subgroup of ω(L0) ;

– or W is given by linear homogeneous δ -polynomials of order greater than 0, and
W is a vector space over C = kδ .

In the first case, we deduce from the δ -Tannakian equivalence for the category
{L }⊗,δ that W = ω(L̃0) for a submodule L̃0 of L if and only if it is an algebraic
subgroup of ω(L0). In this situation, we show that L̃0 is the smallest ∂ -submodule of
L such that the parameterized differential Galois group of the pushout of the exten-
sion U by the quotient map π : L →L /L̃0 is reductive (see Theorem 3.19). This
last condition can be tested by an algorithm contained in [36].

If W is not given by linear homogeneous δ -polynomials of order 0, then W is not
of the form ω(L̃ ) for any L̃ . Moreover, the order of the defining equations of W can
be as high as required even for second order differential equations:

Example 3.14 For n≥ 0, let

z(x, t,n) =
n

∑
j=0

t j ln(x+ j) ; a(x, t,n) =
∂ z(x, t,n)

∂x
=

n

∑
j=0

t j

x+ j
∈ k(x) ,

where k is a differentially closed field with respect to ∂/∂ t containing Q(t). Then the
function z(x, t,n) satisfies the following second order differential equation in y(x, t)
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over k(x) :

∂

(
∂y(x,t)

∂x

/
a(x, t,n)

)
∂x

= 0 ⇐⇒ ∂ 2y(x, t)
∂x2 −

∂a(x,t,n)
∂x

a(x, t,n)
∂y(x, t)

∂x
= 0.

Since ln(x), . . . , ln(x + n) are algebraically independent over k(x) by [42,16], and
∂ n+1z(x,t,n)

∂ tn+1 = 0, and

k(x)(ln(x), . . . , ln(x+n)) = k(x)
(

∂ j(z(x, t,n))
∂ t j

∣∣∣ j ≥ 0
)
,

we have

Galδ =

{(
1 a
0 1

) ∣∣∣ ∂ n+1a
∂ tn+1 = 0

}
.

In Section 3.3.1, we give a decomposition of L into “constant and purely non-
constant” parts, which allows us to distinguish between the two cases for the unipotent
radical W described above. In Section 3.3.2, we treat the “purely non-constant case”.
In Section 3.3.3, we give a general algorithm to compute Ru(Galδ (U )) under the as-
sumption that L has no non-zero trivial ∂ -submodules in the sense of Definition 2.42.

3.3.1 Decomposition of the completely reducible ∂ -module L

The following lemma gives a decomposition of a completely reducible ∂ -module into
a direct sum of ∂ -modules, a “constant” one and a “purely non-constant” one.

Lemma 3.15 Let L be a completely reducible ∂ -module and ρ : Galδ (L ) →
GL(ω(L )) be the representation of the parameterized differential Galois group of
L on ω(L ). Then there exist ∂ -submodules Lc and Lnc of L such that

– L = Lc⊕Lnc ;
– the representation of Galδ (L ) on Lc is conjugate to constants in GL(ω(Lc)),

that is, any differential system associated to Lc is isomonodromic by Proposition
2.52;

– Lc is maximal for the properties above, that is, there is no non-zero ∂ -submodule
N of Lnc such that the representation of Galδ (L ) on N is conjugate to con-
stants in GL(ω(N )).

Proof Let L1, . . . ,Lr be irreducible ∂ -submodules such that L =L1⊕ . . .⊕Lr. We
have

GL(ω(L )) =
r

∏
i=1

GL(ω(Li)) .

Let S be the set of indices i in {1, . . . ,r} such that the representation of Galδ (L ) on
ω(Li) is conjugate to constants in GL(ω(Li)). Setting

Lc =
⊕
i∈S

Li and Lnc =
⊕
i/∈S

Li
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allows to conclude the proof. ut

Remark 3.16 The above construction is effective. Let L be a completely reducible
∂ -module over K = C(z) with ∂ (z) = 1 and ∂ (C) = 0. There are many algorithms
that compute a factorization of L into a direct sum of irreducible ∂ -submodules: see,
for instance, [23,48]. Thus, we can find a linear differential system associated to L
of the form

∂ (Y ) =


A1 0 . . . 0
0 A2 . . . 0
...

. . . . . .
...

0 . . . 0 Ar

Y

with Ai ∈ Kni×ni for all i = 1, . . . ,r and such that ∂ (Y ) = AiY is an irreducible differ-
ential system. For all i = 1, . . . ,r, let Li be a ∂ -module associated to ∂ (Y ) = AiY . Let
S be the set of indices i such that there exists a matrix Bi ∈ Kni×ni such that

δ (Ai)−∂ (Bi) = BiAi−AiBi .

Since there are algorithms to find rational solutions of linear differential systems (see
[3]), the construction of the set S is also effective. We can set

Lc =
⊕
i∈S

Li and Lnc =
⊕
i/∈S

Li .

This decomposition motivates the following definition.

Definition 3.17 A ∂ -module L over K is said to be constant if the representation
of Galδ (L ) on ω(L ) is conjugate to constants in GL(ω(L )). On the contrary, the
∂ -module L is said to be purely non-constant if there is no non-zero ∂ -submodule
N of L such that the representation of Galδ (L ) on ω(N ) is conjugate to constants
in GL(ω(N )).

Remark 3.18 We say that a G-module V is purely non-constant if, for every non-zero
G-submodule W of V , the induced representation ρ : G→ GL(W ) is non-constant.
By the Tannakian equivalence, a ∂ -module L is purely non-constant if and only if
the Galδ (L )-module ω(L ) is purely non-constant.

Recall that U is a ∂ -module extension of 1 by L . We consider the pushout of

0 // L // U // 1 // 0

by the projection of L on Lc (respectively, on Lnc). We find two exact sequences of
∂ -modules:

0 // Lc // Uc // 1 // 0 (3.10)

and
0 // Lnc // Unc // 1 // 0 (3.11)

We deduce from Lemma 3.6 that



30 Charlotte Hardouin et al.

– Ru(Galδ (U )) is a differential algebraic subgroup of ω(L ) ;
– Ru(Galδ (Uc)) is a differential algebraic subgroup of ω(Lc) ;
– Ru(Galδ (Unc)) is a differential algebraic subgroup of ω(Lnc).

The quotient Galδ (Uc)
/

Ru(Galδ (Uc)) is Galδ (Lc), which is, by construction,
conjugate to constants. We can use [35] to compute Ru(Galδ (Uc)). Section 3.3.2
shows how to compute the unipotent radical of the parameterized differential Ga-
lois group of an extension of 1 by a purely non constant completely reducible mod-
ule. Finally, Section 3.3.3 shows how to combine Section 3.3.2 with [35] to deduce
Ru(Galδ (U )) from the computation of Ru(Galδ (Uc)) and Ru(Galδ (Unc)) .

3.3.2 The purely non-constant case

The aim of this section is to prove the following theorem.

Theorem 3.19 Let L be a purely non-constant completely reducible ∂ -module over
K. Let U be a ∂ -module extension of 1 by L . Then, Ru(Galδ (U )) = ω(L̃0), where
L̃0 is the smallest ∂ -submodule of L such that Galδ (U /L̃0) is reductive.

By Theorem 3.13, Ru(Galδ (U )) is a δ -closed subgroup of ω(L ), which is stable
under the action of Galδ (L ). We show that any such subgroup is a k-vector subspace.
We conclude this with a proof of Theorem 3.19.

The algorithm contained in [36] allows one to test whether the unipotent radical
of a linear algebraic group is trivial. This algorithm relies on bounds on the order of
the defining equations of the parameterized differential Galois group. Combined with
Theorem 3.19, we find a complete algorithm to compute Ru(Galδ (U )).

Theorem 3.19 implies among other things that Ru(Galδ (U )) is an algebraic sub-
group of Ru(Gal(U )). Despite the fact that Galδ (U ) (respectively, Galδ (L )) is
Zariski dense in Gal(U ) (respectively, Gal(L )), it might happen that Ru(Galδ (U ))
is contained in a proper Zariski closed subgroup of Ru(Gal(U )) as it is shown in the
following example.

Example 3.20 Let V = spank{x2,xy,y2,x′y− xy′} ⊂ k{x,y}, and let us consider the
following representation ρ : PSL2→ GL(V ) (cf. [34, Example 3.7]):

(
a b
c d

)
mod

{(
1 0
0 1

)
,

(
−1 0
0 −1

)}
7→


a2 ab b2 a′b−ab′

2ac ad +bc 2bd 2(bc′−ad′)
c2 cd d2 c′d− cd′

0 0 0 1

 . (3.12)

Note that ρ(PSL2) = G3
a o PSL2, and we have: Ru(PSL2) = {e} whereas Ru(G3

a o
PSL2) = G3

a. By [49, Theorem 1.1 and Lemma 2.2], we can construct a ∂ -module U

such that Galδ (U ) = PSL2, and ρ is the representation of Galδ (U ) on ω(U ) (so
that Gal(U ) = G3

a oPSL2). We can also construct a ∂ -module L such that U is an
extension of 1 by L in the given representation.
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For a subset B of a k-vector space V , we denote by kB the smallest k-subspace of
V that contains B. Note that kB consists of all finite linear combinations of elements
of B with coefficients in k.

Proposition 3.21 Let G be a reductive linear differential algebraic group and V
a purely non-constant completely reducible G-module. Then every G-invariant δ -
subgroup A⊂V is a submodule.

Proof We need only to show that A is k-invariant. Let us assume that G is connected.
The general case will follow by Propositions 2.23 and 2.54, which imply that V is
completely reducible and purely non-constant as a G◦-module.

Let us prove that A is k-invariant by induction on dimV . Let B be minimal among
the non-zero G-invariant δ -subgroups of V that are contained in A, which exists by
the Ritt–Noetherianity of the Kolchin topology. In what follows, we shall prove that
kB = B. Assuming this, by the semisimplicity of V , let W ⊂ V be a G-invariant k-
subspace such that V = B⊕W . Then A = B⊕ (W ∩A), and k(W ∩A) =W ∩A by the
inductive hypothesis. Therefore, kA = A.

Let us show that there exists x ∈ k \C such that xB = B. Since V is purely non-
constant, V ′ = kB is purely non-constant, and so it contains a simple non-constant
submodule U . By Corollary 2.29, there exists a δ -torus T ⊂G such that U semisimple
and non-constant as a T -module. By the construction of T (see the proof of Corol-
lary 2.29) and Proposition 2.27, every simple G-module is semisimple as a T -module.
Therefore, V and V ′ are semisimple as T -modules. Hence, T is an algebraic torus, and
there is a direct sum of weight spaces

V ′ =
⊕

χ

V ′χ (3.13)

over all algebraic characters χ : T → k×. By definition,

V ′χ =
{

v ∈V ′ | t(v) = χ(t)v for all t ∈ T
}
.

Note that V ′χ , viewed as C-linear spaces, are weight spaces with respect to T (C) = TC.
Since any character χ (being defined by monomials) is uniquely determined by its
restriction to T (C), the direct sum (3.13) is also the weight space decomposition of
the C-space V ′ with respect to the action of TC. SinceTC ⊂ T ⊂G and the δ -subgroup
B ⊂ V ′ is G-invariant, B is also TC-invariant. Moreover, B is a C-vector space [8,
Proposition 11]. Therefore, we have the weight decomposition of the C-space with
respect to the action of TC:

B =
⊕

χ

Bχ , where Bχ =
(

B∩V ′χ
)
.

Since V ′ = kB, V ′χ = kBχ . In particular, Bχ is non-zero if V ′χ is. By the definition of
T , there is a character χ of T such that χ(T ) 6⊂C and V ′χ 6= {0}. Therefore, there exist
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b ∈ Bχ , b 6= 0, and t ∈ T such that t acts on b by multiplication by a non-constant
element x. We fix such an x. Due to the G-invariance of xB, we obtain that B∩ xB is a
G-invariant non-trivial δ -subgroup of B. Since B is minimal, xB = B.

On the one hand, the set S = {a ∈ k |aB⊂ B} is a C-subalgebra of k. On the other
hand,

S =
⋂
b∈B

ϕ
−1
b (B), ϕb : k→V, t 7→ tb ,

is a δ -subgroup of k. Therefore, by [29, Theorem II.6.3, page 97], S =C or k. Since
x ∈ S, S = k. ut

Proof (Proof of Theorem 3.19) By Theorem 3.13, Ru(Galδ (U )) is a δ -closed sub-
group W of ω(L ) which is stable under the action of Galδ (L ). Proposition 3.21
shows that W is a k-vector space and thereby a Galδ (L )-module. By δ -Tannakian
equivalence for the category {L }⊗,δ , we obtain that W is of the form ω(W ) for
some ∂ -submodule W ⊂L ⊂U . Thus, it remains to prove that W is the smallest ∂ -
submodule L̃0 of L such that the parameterized differential Galois group of U /L̃0
is reductive.

Let us show that the set V of subobjects W of L such that Ru(Galδ (U /W )) =
{1} admits a smallest subobject with respect to the inclusion. It is enough to prove
that, if V1 and V2 belong to V, their intersection W lies in V. Denote by G, G1,
and G2 the parameterized differential Galois groups of U /W , U /V1, and U /V2,
respectively. The quotient maps U /W → U /Vi give rise to homomorphisms ϕi :
G→ Gi, i = 1,2. Since Gi are reductive, Ru(G) ⊂ kerϕi. Therefore, it suffices to
show that kerϕ1 ∩ kerϕ2 = {1}. For each g ∈ G, the condition g ∈ kerϕi means that
g(u)− u ∈ ω(Vi) for all u ∈ ω(U ). Therefore, every element of kerϕ1 ∩ kerϕ2 acts
trivially on ω(U )/ω(W ).

As in the notation of Lemma 3.6, let s be a k-linear section of the last arrow of the
following exact sequence

0→ ω(L )→ ω(U )→ k→ 0

and let ζU be its associated cocycle. By Lemma 3.6 and Proposition 3.21, the cocycle
ζU identifies Ru(Galδ (U )) with a k-vector subgroup W = ω(W ) of ω(L ) for some
∂ -submodule W ⊂U . To conclude the proof, we have to show that W = ω(L̃0).

It follows from the definition of ζ that the diagram

Galδ (U )

ρ

��

ζU // ω(L )

β

��
Galδ (U /W )

ζU /W // ω(L /W )

(3.14)

where the vertical arrows are induced by the quotient maps, is commutative. By the
definition of W and exactness of ω , the composition βζU vanishes on Ru(Galδ (U )).



Galois groups of parametrized differential equations, with applications to hypertranscendence 33

Since ω(U /W ) is a faithful Galδ (U /W )-module and ω(L /W ) has no non-zero
trivial Galδ (L /W )-submodule by assumption, and therefore no non-zero trivial
Galδ (U /W )-submodules by assumption, Propositions 3.22 and 3.23 below show that

Ru(Galδ (U /W )) = ρ(Ru(Galδ (U ))) .

Since ζ is one-to-one on the unipotent radical, we conclude that the linear differential
algebraic group Galδ (U /W ) is reductive. Therefore, W ⊃ L̃0. If we replace W with
a ∂ -submodule V ⊂U in the above diagram such that Galδ (U /V ) is reductive, we
obtain that

ω(V )⊃ ζU (Ru(Galδ (U ))) =W .

Thus, ω(L̃0)⊃W . ut

Recall that unipotent linear differential algebraic groups are connected. (Other-
wise they would have unipotent finite quotients, which is impossible.) Therefore, for
every linear differential algebraic group G, we have Ru(G) = Ru(G◦) = Ru(G)◦.

Proposition 3.22 Let ρ : G→H be a surjective homomorphism of linear differential
algebraic groups. Assume that, for every proper subgroup N ⊂ Ru(H) that is normal
in H, the group Ru(H/N) is not central in (H/N)◦=H◦/N. Then ρ(Ru(G)) =Ru(H).

Proof Let N = ρ(Ru(G))⊂ Ru(H). By the surjectivity of ρ , the group N is normal in
H. Consider the epimorphism of quotients

ν : G/Ru(G)→ H/N

induced by ρ . The linear differential algebraic group ν−1(Ru(H/N))◦ is normal in the
reductive linear differential algebraic group (G/Ru(G))◦. Therefore, it is reductive
itself. By Theorem 2.25, ν−1(Ru(H/N))◦ is an almost direct product of a δ -closed
subgroup Z of a central torus T ⊂ (G/Ru(G))◦ and of quasi-simple linear differential
algebraic groups Hi. Since the subgroups Hi coincide with their commutator groups,
they cannot have unipotent images unless ν(Hi) = {e}. We conclude that ν(Z) =
Ru(H/N). Since Z is central in (G/Ru(G))◦ and ν is surjective, the group ν(Z) is
central in (H/N)◦. It follows from the assumption that N = Ru(H). ut

Proposition 3.23 The assumption on H in Proposition 3.22 is satisfied if there exists
a short exact sequence

0→V →U → 1→ 0

of H◦-modules, where U is a faithful H◦-module and V is a H◦-semisimple module
with no non-zero trivial H◦-submodule.

Remark 3.24 Note that if the H◦-module V has no trivial H◦-submodules, then V has
no non-zero C-vector space fixed by the action of H◦. Indeed, let f be a nonzero
element of a C-vector space fixed by H◦, then the k-vector space spanned by f is
fixed by H◦.
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Proof It suffices to prove the statement for connected H. Let N ⊂ Ru(H) be a δ -
subgroup that is normal in H and such that Ru(H/N) is central in H/N. Since we
have a commutative diagram

H // H/N

Ru(H)
?�

OO

// Ru(H/N),
?�

OO

the latter implies that, for all g∈ Ru(H), one has hgh−1 ∈ gN. Let u∈U be an element
whose image in 1 is non-zero. Moreover, Ru(H) acts trivially on V because V is H-
semi-simple. Thus, the map

ζ : Ru(H)→V, g 7→ gu−u

is an H-equivariant one-to-one homomorphism of linear differential algebraic groups
(see proofs of Lemmas 3.6 and 3.8), that is, for all h ∈ H and g ∈ Ru(H), we have

hgu−hu = hgh−1u−u.

The δ -subgroups ζ (Ru(H)) and ζ (N) of V are thus stable under the action of H. Note
that ζ (Ru(H)) and ζ (N) are C-vector spaces since, as δ -subgroup of V , they are zero
sets linear homogeneous differential equations over k.

Let n ∈ N be such that hgh−1 = gn and n′ ∈ N be such that gng−1 = n′. Then

h(gu−u) = hgu−hu = gnu−u = n′gu−u+n′u−n′u

= n′(gu−u)+n′u−u = gu−u+n′u−u,

since gu− u ∈ V and Ru(H) acts trivially on V . Therefore, H acts trivially on
ζ (Ru(H))/ζ (N). Since ζ (Ru(H)) is H-semisimple as H-module over C, the H-
module

ζ (Ru(H))/ζ (N)⊂ ζ (Ru(H))⊂V

is a C-vector space fixed by the action of H. This contradicts the assumption on V . It
follows that Ru(H) = N. ut

3.3.3 A general algorithm

Will will explain a general algorithm to compute the unipotent radical of a ∂ -module
extension U of 1 by a completely reducible ∂ -module L . We recall that L can be
decomposed as the direct sum of a constant ∂ -module Lc and a purely non-constant
∂ -module Lnc. Considering the pushouts of the extension U with respect to the de-
composition of L , we find the following two exact sequences of ∂ -modules:

0 // Lc // Uc // 1 // 0
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and
0 // Lnc // Unc // 1 // 0

We assume that K = k(x) so that we can use the algorithm contained in [35] to com-
pute Ru(Galδ (Uc)) and the algorithm of Section 3.3.2 to compute Ru(Galδ (Unc)).
The quotient map U → U /Uc = Unc induces an epimorphism α : Galδ (U ) →
Galδ (Unc). Similarly, we find an epimorphism β : Galδ (U )→ Galδ (Uc). The fol-
lowing theorem allows us to compare Ru(Galδ (U )) with the groups computed above.

Theorem 3.25 Let K = k(x), L ,U ,Uc,Unc be as above. Assume that L has no
non-zero trivial ∂ -submodule. Then the map

α×β : Ru(Galδ (U ))→ Ru(Galδ (Unc))×Ru(Galδ (Uc))

is an isomorphism of linear differential algebraic groups.

Proof We will use the notion of differential type τ(G) of a linear differential algebraic
group G (see [12, Section 2.1] and [35, Definition 2.2]). Recall that, in the ordinary
case, τ can only take the values −1, 0, or 1. We will also use the following result:

Lemma 3.26 ([12, Equation (1), page 195]) Let G be a linear differential alge-
braic group and H be a normal differential algebraic subgroup of G. Then τ(G) =
max{τ(H),τ(G/H)} .

Let us consider the commutative diagram:

Ru((Galδ (Uc))� _

��

Ru((Galδ (U ))� _

��

βoo α // Ru((Galδ (Unc))� _

��
ω(Uc) ω(U ) = ω(Uc)⊕ω(Unc)oo // ω(Unc)

(3.15)

Here, the vertical arrows correspond to embedding (that is, a one-to-one homomor-
phism) via the associated cocycles (see (3.14)). The horizontal arrows of the lower
row correspond to natural projections. Note that Ru((Galδ (Uc)), Ru((Galδ (U )), and
Ru((Galδ (Unc)) are all abelian groups (see Theorem 3.3). It follows from (3.15) that
α×β is an embedding. Then, by [12, Corollary 2.4] and Lemma 3.26,

τ
(
Ru(Galδ (U )

)
≤ τ
(
Ru(Galδ (Uc))×Ru(Galδ (Unc))

)
= max

{
τ
(
Ru(Galδ (Uc))

)
,τ
(
Ru(Galδ (Unc))

)}
.

Since α and β are surjective, we find that

τ
(
Ru(Galδ (U )

)
= max

{
τ
(
Ru(Galδ (Uc))

)
,τ
(
Ru(Galδ (Unc))

)}
.

If Ru(Galδ (Unc)) 6= {e}, it is isomorphic to a non-trivial vector group over k and its
differential type is 1 (see [12, Example 2.9]). Moreover, since the unipotent radicals
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considered above are δ -closed subgroups of vector groups, they are either algebraic
groups and their differential type is 1, or finite-dimensional C-vector spaces of dif-
ferential type 0. If Ru(Galδ (Unc) = {e}, we have nothing to prove. Thus, we assume
that Ru(Galδ (Unc) 6= {e} and that its differential type is 1. By the discussion above,
we can also assume that

τ(Ru(Galδ (U ))) = 1.

Since L has no non-zero trivial ∂ -submodule, the same holds for Lc and Lnc.
By Propositions 3.22 and 3.23, α and β are surjective. Let R0 ⊂ Ru(Galδ (U ))
stand for the strong identity component of Ru(Galδ (U )) ([12, Definition 2.6]).
Since Ru(Galδ (Unc)) is algebraic by Theorem 3.19, it is strongly connected by [12,
Lemma 2.8 and Example 2.9]. We have

α(R0) = Ru(Galδ (Unc))

(Indeed, otherwise α(R0)( Ru(Galδ (Unc)). By definition of the strong identity com-
ponent, we find that

τ
(
Ru(Galδ (U ))/R0

)
< 1.

However,
τ(Ru(Galδ (Unc))/α(R0)) = 1,

because Ru(Galδ (Unc)) is strongly connected. Therefore, we have a surjective map

Ru(Galδ (U ))/R0→ Ru(Gnc)/α(R0)

from a linear differential algebraic group of differential type smaller than 1 onto a lin-
ear differential algebraic group of differential type 1, which is impossible. Therefore,
the group product map

R0×kerα → Ru(Galδ (U )), (r0,x) 7→ r0x

is onto. To finish the proof, it suffices to show that

β (kerα) = Ru(Galδ (Uc)).

If β (R0) 6= {e}, it is strongly connected and

τ(β (R0)) = τ(R0) = 1.

Since τ
(
Ru(Galδ (Unc))

)
= 0 (see [35, Theorem 2.13]), we have β (R0) = {e} (by

Lemma 3.26). Thus,
β (kerα) = Ru(Galδ (Unc)). ut

4 Criteria of hypertranscendance

We start with a new result in the representation theory of quasi-simple and reductive
linear differential algebraic groups, which we further use for a hypertranscendence
criterion.
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4.1 Extensions of the trivial representation

Let (k,δ ) be a δ -closed field such that chark = 0 and let C be its field of δ -constants.
Let G ⊂ GLn(k) be a connected linear differential algebraic group over k. We recall
the definition of the Lie algebra of G, following [8, Chapter 3].

Definition 4.1 A k-linear derivation D of the field of fractions k〈G〉 of the δ -
coordinate ring k{G} of G is called a differential derivation if D◦δ = δ ◦D.

In particular, every differential derivation is determined by its values on the matrix
entries that differentially generate k{G} and, therefore, can be represented by an n×n
matrix. The group G acts by right translations on the set of differential derivations of
k〈G〉.

Definition 4.2 The set LieG of invariant differential derivations, denoted also by g,
is called the Lie algebra of G.

This is a C-Lie subalgebra of the Lie algebra gln(k) = LieGLn(k) of all n× n
matrices. Moreover, g is also a δ -subgroup of the additive group of gln(k). Every
δ -homomorphism of linear differential algebraic groups gives rise (by taking the dif-
ferential) to a C-homomorphism of their Lie algebras. We refer to [8, Chapter 3] for
the details.

Definition 4.3 A g-module (respectively, C-g-module) is a finite-dimensional k-
vector space (respectivelty, C-vector space, possibly infinite-dimensional) V together
with a C-Lie algebra homomorphism ν : g→ gl(V ), where gl(V ) denotes the Lie
algebra of k-linear endomorphisms of V .

Every G-module V is also a g-module, where ν = dρ : g→ gl(V ) is the differential
(see [8, pages 928-929]) of the homomorphism ρ : G→ GL(V ). (Formally, to agree
with the above definitions, we assume that a basis of V is chosen, hence we can
identify GL(V ) and gl(V ) with GLn(k) and gln(k), respectively.) The definitions of
simple, semisimple, and other types of g-modules that we use here are analogues to
those for G-modules.

It follows from [8, Proposition 20] that, if G ⊂ GLn(k) is given by polynomial
equations, then LieG coincides with the Lie algebra of the group G considered as an
algebraic group. Moreover, for an arbitrary linear differential algebraic group G ⊂
GLn(k), the Lie algebra LieG of its Zariski closure G coincides with the k-span of
LieG in gln(k). Recall that, in the case of G = G, LieG is a G-module, which is called
adjoint, where the action of G is induced from its action on gln(k) by conjugation.
The differential of the corresponding homomorphism Ad : G→ GL(g) gives the k-
Lie algebra map ad : g→ gl(g) defining the structure of the g-module on g, also called
adjoint. One has (adx)(y) = [x,y] for all x,y ∈ g.

For any group, Lie algebra, or ring R, we denote the set of R-module homomor-
phisms by HomR(V,W ).



38 Charlotte Hardouin et al.

For a C-Lie algebra g, let gk = k⊗C g denote the k-Lie algebra with the bracket
determined by

[x⊗ξ ,y⊗η ] = xy⊗ [ξ ,η ] ∀x,y ∈ k, ξ ,η ∈ g.

We have the inclusion
g'C⊗g⊂ k⊗g= gk.

If g ⊂ h are Lie algebras, then we also consider h as a g-module under the adjoint
action.

Lemma 4.4 Let H ⊂GLn(C) be a reductive algebraic group and h=LieH ⊂ gln(C).
Let g⊂ hk be a C-Lie subalgebra containing h and

0→V →W → 1→ 0 (4.1)

an exact sequence of g-modules (over k). If

(1) sequence (4.1) splits as a sequence of h-modules and
(2) Homhk(hk,V ) = 0 (in other words, V does not contain quotients of the adjoint

representation of hk),

then sequence (4.1) splits.

Proof If one chooses a basis {e1, . . . ,en−1,en} of W such that V = span{e1, . . . ,en−1},
then the matrix ρ(ξ ) ∈ gl(W ) corresponding to ξ ∈ g can be written in the form(

α(ξ ) ϕ(ξ )
0 0

)
,

where α : g→ gl(V ) determines the g-module structure on V and ϕ : g→ V is a C-
linear map. The fact that ρ defines a homomorphism of Lie algebras is the following
condition on ϕ:

ϕ ([ξ ,η ]) = α(ξ )ϕ(η)−α(η)ϕ(ξ ) ∀ξ ,η ∈ g. (4.2)

Choosing another vector for en, one obtains another C-linear map ϕ ′ : g→ V , which
is called equivalent to ϕ . Sequence (4.1) splits if and only if ϕ is equivalent to 0.

Let us choose en in such a way that

ϕ(ξ ) = 0 ∀ξ ∈ h, (4.3)

which is possible due to assumption (1). It follows from (4.2) and (4.3) that

ϕ ([ξ ,η ]) = α(ξ )ϕ(η) ∀ξ ∈ h, η ∈ g. (4.4)

Since H is reductive, by [52, page 97, Theorem] and [50, Chapter 2], there exist simple

h-submodules h1, . . . ,hm in h such that h =
m⊕

i=1
hi. Let B ⊂ k be a C-basis of k as a
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C-vector space. For each a ∈ k and i, 1≤ i≤ m, a⊗hi is a simple C-h-submodule of
hk and

hk =
⊕

1≤i≤m
b∈B

b⊗hi. (4.5)

For every C-h-submodule I ⊂ hk, let I′ be a maximal sum of the simple components
in decomposition (4.5) with I′ ∩ I = {0}. Such an h-submodule I′ exists by Zorn’s
lemma. We will show that

hk = I⊕ I′. (4.6)

Let S = b⊗hi for some b ∈ B and 1≤ i≤m. If S∩
(
I⊕ I′

)
= {0}, then I∩

(
S⊕ I′

)
=

{0}. Indeed, if v ∈ I and v = v1 + v2, where v1 ∈ S and v2 ∈ I′, then v2 = v− v1 ∈
S∩
(
I ⊕ I′

)
, and so v = v1 ∈ I ∩ S = {0}. By the maximality of I′, S ⊂ I′, which

contradicts S∩
(
I⊕ I′

)
= {0}. Therefore,

S∩
(
I⊕ I′

)
6= {0}. (4.7)

Since S is a simple h-module, (4.7) implies that S ⊂ I ⊕ I′. Thus, (4.6) holds and
therefore hk is a semisimple h-module. (cf. [7, §4.1]).

The C-h-module g is semisimple. Indeed, every h-invariant subspace J ⊂ g has a
complementary invariant subspace J′ in hk, since hk is semisimple. Therefore,

g= J⊕
(
J′∩g

)
.

Thus, to prove that ϕ is the zero map, it suffices to show that ϕ(J) = {0} for every
simple C-h-submodule J ⊂ g. Since such J is isomorphic to hi for some i, 1≤ i≤ m,
we have the h-equivariant C-linear map

µ : h π→ hi ' J ⊂ g
ϕ→V,

where π is the projection with respect to an h-invariant decomposition h = hi⊕ h′i,
and the h-equivariance of ϕ is implied by (4.4) . Since µ extends to the k-linear hk-
equivariant map hk → V , assumption (2) yields that µ is the zero map. Therefore,
ϕ(J) = {0}. ut

Lemma 4.5 Let G be a connected linear differential algebraic group and g be its
Lie algebra. Any G-module W is completely reducible if and only if it is completely
reducible as a g-module.

Proof Let GW denote the image of G in GL(W ). The G-module W is completely
reducible if and only if it is completely reducible as a GW -module. The latter is equiv-
alent to W being completely reducible as a GW -module. Since chark = 0, this is
equivalent to the semisimplicity of W viewed as the LieGW -module (see [52, page 97,
Theorem]). Since LieGW is the k-span of LieGW ⊂ gl(W ), W is completely reducible
as a LieGW if and only if it is completely reducible as a LieGW -module. Since, by
[8, Proposition 22], LieGW is an image of g in gl(W ), W is completely reducible as a
g-module if and only if W is completely reducible as a LieGW -module. ut
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Theorem 4.6 Let G be a connected linear differential algebraic group over k and

0→V →W → 1→ 0 (4.8)

an exact sequence of G-modules, where V is faithful and semisimple. Let G denote the
Zariski closure of G in GL(V ). If V , viewed as a G-module, does not contain non-zero
submodules isomorphic to a quotient of the adjoint module for G, that is, if

HomG(LieG,V ) = 0,

then sequence (4.8) splits.

Proof By Lemma 4.5, it is sufficient to show that W is completely reducible as a g-
module. Since G admits a faithful completely reducible representation (given by V ),
it is reductive. Therefore, by [33, Lemma 4.5], there is a δ -isomorphism ν : H̃ → G,
where H̃ ⊂GLr(k) is a δ -group such that its δ -subgroup HC = H̃∩GLr(C) is Zariski
dense (the Zariski topology on H̃ is induced from GLr(k)).

Let H = ν(HC) and h= LieH. We will show that h and g satisfy the hypotheses of
Lemma 4.4, which would thus yield the proof (in particular, we will identify g with a
subalgebra of hk). The differential algebraic group H 'HC is reductive. Indeed, if its
unipotent radical were non-trivial, Ru(HC)∩ H̃ would be a non-trivial normal unipo-
tent differential algebraic subgroup of H̃, which is impossible due to the reductivity
of G' H̃.

Let us show that ν extends to an algebraic isomorphism ν : HC→G of the Zariski
closures. By [33, Theorem 3.3], this would follow if the G-module V is completely
reducible and HC is reductive. It only remains to prove the latter. Since HC is reductive,
Cr is a completely reducible HC-module. Therefore, kr is completely reducible as an
HC-module. Thus, HC is reductive.

The differential dν defines an isomorphism between k-Lie algebras LieHC and
LieG. Since LieHC ⊂ glr(C) and any C-basis of glr(C) is also a k-basis of glr(k), we
obtain that any C-basis of LieHC is k-linearly independent. Since LieHC is the k-span
of LieHC, we can therefore write

LieHC = k⊗C LieHC.

Applying dν , this implies that

LieG = k⊗C h= hk.

Therefore, we have
h⊂ g⊂ hk.

Since every δ -representation of HC is polynomial and HC is reductive, every δ -
representation of HC is completely reducible. Therefore, W is completely reducible
as an H-module (and h-module), and so sequence (4.8) splits as a sequence of h-
modules. Finally, using [52, page 97, Theorem] and LieG = gk, we conclude that

Homgk(gk,V ) = HomLieG

(
LieG,V

)
= HomG

(
LieG,V

)
= 0. ut
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4.2 A practical criterion of hypertranscendance

Let ∆ = {∂ ,δ} be a set of two derivations. Let K be a ∆ -field such that K∂ = k (recall
that k is δ -closed). From the results of the previous sections, we obtain the following
criterion for the hypertranscendence of the solutions of L(y) = b, for irreducible L ∈
K[∂ ].

Theorem 4.7 Let L ∈ K[∂ ] be an irreducible ∂ -operator such that Gal(L) is a quasi-
simple linear algebraic group. Denote n = ordL and m = dimGal(L). Suppose that
m 6= n. Let b ∈ K∗ and F a ∆ -field extension of K such that F∂ = k and F contains z,
a solution of L(y) = b, and u1, . . . ,un, K-linearly independent solutions of L(y) = 0.
Then

– the functions v1, . . . ,vm,z, . . . ,∂ n−1z and all their derivatives with re-
spect to δ are algebraically independent over K, where {v1, . . . ,vm} ⊂
{u1, . . . ,∂

n−1u1, . . . ,un, . . . ,∂
n−1un} is a maximal algebraically independent over

K subset

if and only if

– the linear differential system ∂ (B)− δ (AL) = ALB−BAL, where AL denotes the
companion matrix of L, has no solutions B ∈ Kn×n and

– the linear differential equation L(y) = b has no solutions in K.

Example 4.8 If L∈K[∂ ] and Gal(L) = SLn, where n= ordL≥ 2, then L is irreducible
and dimL 6= dimGal(L) = n2−1. In this situation, in Theorem 4.7, we can take

{v1, . . . ,vm}= {u1, . . . ,∂
n−1u1, . . . ,un−1, . . . ,∂

n−1un−1,un, . . . ,∂
n−2un} .

Proof (Proof of Theorem 4.7) Let L (respectively, U ) be the ∂ -module associated
to L (respectively, to (∂ −∂ (b)/b)L). Since the ∆ -field KU generated by u1, . . . ,un,z
in F is a PPV extension for U over K, the differential transcendence degree of KU

over K equals the differential dimension of Galδ (U ). Since L corresponds to the
differential system ∂Y = ALY , Proposition 2.52 together with Theorem 2.25(3) imply
that the first hypothesis is equivalent to Galδ (L ) = Gal(L ).

Since L is irreducible, there is no non-zero trivial ∂ -submodule N of L such
that the representation of Galδ (L ) on ω(N ) is conjugate to constants, that is,
L is purely non-constant. By Theorem 3.19, Ru(Galδ (U )) = ω(L̃0), where L̃0

is the smallest ∂ -submodule of L such that Galδ (U /L̃0) is reductive. Since L

is irreducible, either L̃0 is zero or L̃0 = L . The module L̃0 is zero if and only
if Ru(Galδ (U )) = {e}. Moreover, Ru(Galδ (U )) = {e} if and only if ω(U ) is a
Galδ (L )-module. Since dimk ω(L ) = n, the Galδ (L )-module ω(L ) is not adjoint.
Since Gal(L) is a quasi-simple linear algebraic group, Lie(Gal(L)) is simple (see [25,
Section 14.2]), and therefore its adjoint representation is irreducible. This implies that

HomGal(L)(Lie(Gal(L)),ω(L )) = 0.
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Therefore, by the above and Theorem 4.6, we find that L̃0 is zero if and only if the
sequence of Galδ (L )-modules

0→ ω(L )→ ω(U )→ k→ 0

splits, which, by [13, Theorem 3.5], is equivalent to the existence of a solution in
K of the equation L(y) = b, in contradiction with the second hypothesis. There-
fore, we find that the second hypothesis is equivalent to Ru(Gal(U )) = (kn,+), that
is, the vector group Gn

a and Galδ (U ) = Gn
a oGal(L ). The latter is equivalent to

v1, . . . ,vm,z, . . . ,∂ n−1z being a differential transcendence basis of KU over K. ut

Remark 4.9 The condition in the statement of Theorem 4.7 to have no solutions B ∈
Kn×n is equivalent to the fact that Galδ (L ) is not conjugate to constants. For K a
computable field, this condition can be tested through various algorithms that find
rational solutions (see, for instance, [3]). However, one can sometimes easily prove
the non-integrability of the system by taking a close look at the topological generators
of the parameterized differential Galois group such as the monodromy or the Stokes
matrices. This is the strategy employed in Lemma 4.10.

4.3 Application to the Lommel equation

We apply Theorem 4.7 to the differential Lommel equation, which is a non-
homogeneous Bessel equation

d2y
dx2 +

1
x

dy
dx

+

(
1− α2

x2

)
y = xµ−1, (4.9)

depending on two parameters, α,µ ∈ C.
We will study the differential dependence of the solutions of (4.9) with respect

to the parameter α . To this purpose, we consider α as a new variable, transcenden-
tal over C, and suppose that µ ∈ Z. We endow the field C(α,x) with the derivations
δ = ∂

∂α
and ∂ = ∂

∂x , ∆ = {δ ,∂}. Let k be a δ -closure of C(α). We extend ∂ to k as
the zero derivation. We extend ∆ to K = k(x), the field of rational functions in x with
coefficients in k, so that C(α,x) is a ∆ -subfield of K. Indeed, let A = k⊗C(α)C(α,x),
which is a ∆ -algebra over C(α,x), and A ∂ = k. Since C(α,x)∂ =C(α), the multipli-
cation homomorphism ϕ : A →K, is injective (see [29, Corollary 1, page 87]). There-
fore, there is an extension of ∆ onto K making ϕ a ∆ -homorphism so that C(α,x)⊂K
is a ∆ -field extension via ϕ .

Let L be a ∂ -module over K associated to the Bessel differential equation

L(y) =
d2y
dx2 +

1
x

dy
dx

+

(
1− α2

x2

)
y = 0 (4.10)

and let U be a ∂ -module over K associated to the Lommel differential equation. We
have:

0→L →U → 1→ 0 . (4.11)
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Lemma 4.10 The parameterized differential Galois group of L over K is SL2.

Proof The differential Galois group of L over K is known to be SL2 (see [28]). By
[11], we know that either Galδ (M ) = SL2 or Galδ (L ) is conjugate to constants in
SL2. Suppose that we are in the second situation, that is, there exists P ∈ SL2 such
that

PGalδ (L )P−1 ⊂ {M ∈ SL2 |δ (M) = 0}.
The coefficients of (4.10) lie in C(α,x). Moreover, for a fixed value of α in C, the
point zero is a parameterized regular singular point of (4.10) (see [37, Definition 2.3]).
If we fix a fundamental solution Z0 of (4.10) and follow [37, page 922], we are able to
compute the parameterized monodromy matrices of (4.10) around zero. For a suitable
choice of Z0, we find the following parameterized monodromy matrix,

M0 =

(
ζ 0
0 ζ ,

)
where ζ = e2iπα and ζ = e−2iπα (see [38, page 35]). By [37, Theorem 3.5], M0 be-
longs to some conjugate of Galδ (L ). This means that there exists Q ∈GL2 such that
δ (QM0Q−1) = 0. Since conjugate matrices have the same spectrum and the spectrum
of M0 is not δ -constant, we find a contradiction. ut

Let Jα(x) be the Bessel function of the first kind and let Yα(x) be the Bessel function
of the second kind. A solution of the Lommel differential equation is the Lommel
function sµ,α(x), which is defined as follows

sµ,α(x) =
1
2

π

[
Yα(x)

∫ x

0
xµ Jα(x)dx− Jα(x)

∫ x

0
xµYα(x)dx

]
.

Proposition 4.11 The functions, Jα(x),Yα(x), d
dx (Yα)(x),sµ,α(x) and d

dx sµ,α(x) and
all their derivatives of all order with respect to ∂

∂α
are algebraically independent over

C(α,x). Moreover, the parameterized differential Galois group of U is isomorphic to
a semi-direct product G2

a oSL2.

Proof Since Galδ (L ) = SL2, we just need to prove that L(y) = xµ−1 has no solution
g in K in order to apply Theorem 4.7 to the Lommel differential equation. Thus,
suppose on the contrary that L(y) = xµ−1 has a rational solution g ∈ k(x). Using
partial-fraction decomposition, one can show that the only possible pole of g is zero.
If we write

g =
n

∑
j=m

a jx j, m,n ∈ Z, m≤ n, a j ∈ k, aman 6= 0,

then the highest and lowest order terms of L(g) ∈ k[x,1/x] are

anxn 6= 0 and (m2−α
2)amxm−2 6= 0,

respectively. Since different powers of x are linearly independent over k and n 6=
m−2, L(g)− xµ−1 contains at least one non-zero term. Contradiction. ut
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12. Cassidy, P., Singer, M.: A Jordan–Hölder theorem for differential algebraic groups. Journal of Algebra
328(1), 190–217 (2011). URL http://dx.doi.org/10.1016/j.jalgebra.2010.08.019

13. Cassidy, P., Singer, M.F.: Galois theory of parametrized differential equations and linear differential
algebraic group. IRMA Lectures in Mathematics and Theoretical Physics 9, 113–157 (2007). URL
http://dx.doi.org/10.4171/020-1/7

14. Deligne, P.: Catégories tannakiennes. In: The Grothendieck Festschrift, Volume II, Modern Birkhäuser
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