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Abstract. We study sympathetic (i.e., perfect and complete) Lie algebras. Among other
topics they arise in the study of adjoint Lie algebra cohomology. Here a motivation comes from
a conjecture of Pirashvili, which says that a finite-dimensional complex perfect Lie algebra is
semisimple if and only if its adjoint cohomology vanishes. We prove several general results
for sympathetic Lie algebras and for the adjoint Lie algebra cohomology of arbitrary finite-
dimensional Lie algebras in characteristic zero using a result of Hochschild and Serre. Moreover,
for certain semidirect products we obtain explicit results for the adjoint cohomology.

1. Introduction

It is well known that one can characterize finite-dimensional semisimple Lie algebras g over
a field of characteristic zero by the vanishing of certain Lie algebra cohomology groups. For
example, by Whitehead’s first lemma, we have H1(g,M) = 0 for every finite-dimensional g-
module M . The converse statement is also true - any Lie algebra whose first cohomology with
coefficients in any finite-dimensional module vanishes is semisimple, see [9], Theorem 25.1. By
Whitehead’s second lemma, for a semisimple Lie algebra g we also have H2(g,M) = 0 for every
finite-dimensional g-module M . However, the converse is no longer true, see [20].

It has also been asked, whether or not the vanishing of the adjoint cohomology groups for g
implies that g is semisimple. This is not true in general. In fact, it is well known that the
adjoint cohomology of any parabolic subalgebra p of a semisimple Lie algebra vanishes, i.e.,
Hn(p, p) = 0 for all n ≥ 0, see [19]. It is natural, however, to add the condition H1(g,C) = 0 for
the trivial module. Note that this is a strong condition on g, which is equivalent to [g, g] = g,
i.e., g is perfect.

The study of perfect Lie algebras with vanishing adjoint cohomology groups has already a long
history. In 1988 Angelopoulos stated in [1] that the question goes back to M. Flato some decades
ago, who asked whether semisimple Lie algebras g are characterized by the vanishing conditions
H1(g, K) = H1(g, g) = 0. Afterwards several authors constructed complex non-semisimple Lie
algebras g satisfying

H1(g,C) = H2(g,C) = H0(g, g) = H1(g, g) = H2(g, g) = 0,

see [2, 3, 4, 5]. Angelopoulos also introduced in [1] the notion of a sympathetic Lie algebra,
i.e., a Lie algebra which is perfect and complete, so that it satisfies H1(g,C) = H0(g, g) =
H1(g, g) = 0. In 1996, Benayadi [4] constructed a non-semisimple sympathetic Lie algebra g
of dimension 25 over the complex numbers. This Lie algebra has the lowest dimension among
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the known examples of complex non-semisimple sympathetic Lie algebras. The Lie algebra of
Angelopoulos has dimension 35, is sympathetic and satisfies H2(g, g) = 0. In this article we
will provide a basis and explicit Lie brackets for Benayadi’s Lie algebra in dimension 25, and
show that it satisfies dimH2(g, g) = 1.

In 2013 T. Pirashvili [18] studied Lie algebra and Leibniz algebra cohomology and posed the
conjecture, that a non-trivial finite-dimensional complex Lie algebra g is semisimple if and only
if it is perfect and satisfies Hn(g, g) = 0 for all n ≥ 0. He called this conjecture the “Weak
Conjecture” (see page 1624 in [18]) and also formulated a “Strong Conjecture”. He proved one
direction of the weak conjecture, namely, that a semisimple Lie algebra has vanishing adjoint
cohomology and satisfies H1(g,C) = 0.

The outline of this paper is as follows. In the second section we recall the definition and basic
properties of sympathetic Lie algebras and provide results on the adjoint cohomology of Lie
algebras. Then we discuss the conjecture by Pirashvili as stated above. Moreover we consider
a few special cases and obtain some partial results.

In the third section we study the adjoint cohomology of Lie algebras also for Lie algebras that
are not necessarily sympathetic. Here we use the Hochschild-Serre formula and other tools
from homological algebra. For semidirect products g = sn V , where s is semisimple and V is
an s-module, we obtain non-vanishing results for Hk(g, g). In particular, if s = sln(C) and V is
the natural representation of s, we obtain an explicit result for all cohomology groups Hk(g, g).

In the last section we show that Benayadi’s non-semisimple sympathetic Lie algebra g of di-
mension 25 satisfies dimH2(g, g) = 1. The crucial step here is to provide explicit Lie brackets
for g from the implicit construction in [5]. Then it is possible to compute the cohomology by
using a computer algebra system. It follows that this Lie algebra cannot be a counterexample
to the Pirashvili conjecture.

2. Sympathetic Lie algebras and a conjecture by Pirashvili

We always assume that all Lie algebras are finite-dimensional and defined over the complex
numbers. Many results also hold for arbitrary fields of characteristic zero, but it is enough
to consider complex numbers for our main results. For a given Lie algebra g we denote by
Der(g) the Lie algebra of derivations of g, and by ad(g) the ideal of inner derivations in Der(g).
Furthermore Z(g) denotes the center of g. Let us recall the notion of a sympathetic Lie algebra,
see [5].

Definition 2.1. A Lie algebra g is called sympathetic, if it is perfect and complete, i.e., if it
satisfies [g, g] = g and Z(g) = 0, Der(g) = ad(g).

Note that every sympathetic Lie algebra g is unimodular, i.e., it satisfies tr(ad(x)) = 0 for
all x ∈ g.

One may characterize sympathetic Lie algebras in terms of their cohomology. The result is as
follows, see Proposition 1 in [4].

Proposition 2.2. A Lie algebra g is sympathetic if and only if H1(g,C) = H0(g, g) =
H1(g, g) = 0.

Definition 2.3. Let g be a Lie algebra. Denote by rad(g) the solvable radical of g and by
nil(g) the nilradical of g.
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We begin by proving that the solvable radical of every sympathetic Lie algebra is nilpotent.

Lemma 2.4. Let g be a sympathetic Lie algebra. Then we have rad(g) = nil(g).

Proof. It is enough to assume that g is perfect. Let us write r for rad(g) and n for nil(g), and
let g = sn r be a Levi decomposition of g. Then we have a direct vector space sum g = su r.
Since g is perfect, we have

su r = g = [g, g] = [su r, su r] = su ([s, r] + [r, r]).

Because the sum is direct it follows that

r = [s, r] + [r, r] ⊆ ad(g)(r) ⊆ n.

The last inclusion follows from the fact that D(r) ⊆ n holds for all derivations D ∈ Der(g),
hence in particular for inner derivations D = ad(x). For a reference see Theorem 7 in chapter
III in [14]. It follows that r = n is nilpotent. �

Sympathetic Lie algebras have been studied by many authors, see for example [1, 2, 3, 4, 5].
Several examples of sympathetic non-semisimple Lie algebras were constructed. This is of
particular interest in connection with a conjecture by Pirashvili, the so-called Weak Conjecture
from [18].

Pirashvili Conjecture 2.5. A finite-dimensional complex Lie algebra is semisimple if and
only if it satisfies H1(g,C) = 0 and Hn(g, g) = 0 for all n ≥ 0.

Remark 2.6. The conjecture can also be formulated in terms of vanishing Leibniz homology
with trivial coefficients, i.e., that HLn(g,C) = 0 for all n ≥ 1. For the equivalence of these
cohomological conditions see Lemma 4.2 of [18]. See [11] for results on the cohomology of
Leibniz algebras and Lie algebras.

Let us call these cohomological vanishing conditions the Pirashvili conditions for g. It is
known that every semisimple Lie algebra satisfies these conditions, see [17]. In fact, this follows
from the first Whitehead Lemma and the following result of Carles, see Lemma 2.2 in [8]:

Proposition 2.7. Let g be a complete Lie algebra whose solvable radical is abelian. Then we
have Hn(g, g) = 0 for all n ≥ 0.

The converse direction of Pirashvili’s conjecture is still open. A Lie algebra satisfying the
Pirashvili conditions is sympathetic, but we don’t know, whether or not it is necessarily semisim-
ple.

It is also interesting to note that the conjecture need not be true if we omit the condition
H1(g,C) = 0 from the Pirashvili conditions. Let us give another explicit example (we have
already mentioned that the adjoint cohomology of any parabolic subalgebra of a semisimple
Lie algebra vanishes).

Example 2.8. Let g = aff(Cm) ∼= glm(C)nCm be the affine Lie algebra with m ≥ 1. Then we
have Hn(g, g) = 0 for all n ≥ 0, but g is not semisimple.

Indeed, it is easy to see that g is complete, i.e., that H0(g, g) = H1(g, g) = 0, see Theorem
4.2 in [15]. Therefore it follows from Proposition 2.7 that Hn(g, g) = 0 for all n ≥ 0.

The following result shows that the Pirashvili conjecture is true for sympathetic Lie algebras,
whose solvable radical is abelian.
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Lemma 2.9. Let g be a sympathetic Lie algebra whose solvable radical r is abelian. Then g is
semisimple.

Proof. Assume that r is abelian. Then V = r is an m-dimensional vector space. We have the
Levi decomposition g = s n V with a Levi subalgebra s and an s-module V . Denote by D
the linear map on g which is zero on s and the identity on V . It can be represented by a
block-diagonal matrix with a zero matrix in the left-upper block and an identity matrix in the
right-lower block which shows that tr(D) = m. We claim that D is a derivation of g. The Lie
bracket on su V is given by

[(x, v), (y, u)] = ([x, y], x · u− y · v)

for all x, y ∈ s and u, v ∈ V . Then D([(x, v), (y, u)]) = (0, x · u− y · v) and

[D((x, v)), (y, u)] = [(0, v), (y, u)] = (0,−y · v),

[(x, v), D((y, u))] = [(x, v), (0, u)] = (0, x · u).

Since g is complete, D is an inner derivation. However, since g is perfect, all adjoint operators
ad(x) have zero trace. Hence tr(D) = m = 0, so that V = 0 and therefore g is semisimple. �

It follows that a potential counterexample to Pirashvili’s conjecture must have a nilpotent,
non-abelian radical.

Corollary 2.10. Let g be a non-semisimple Lie algebra that satisfies the Pirashvili conditions.
Then the solvable radical of g is nilpotent and non-abelian.

Proof. The solvable radical is nilpotent by Lemma 2.4 and non-abelian by Lemma 2.9. �

Similarly, we can also obtain the following result.

Proposition 2.11. Let g be a sympathetic Lie algebra with solvable radical n. Suppose that we
have a split short exact sequence

0→ Z(n)→ n→ n/Z(n)→ 0.

Then g is semisimple.

Proof. Let g ∼= sn n be a Levi decomposition. The Lie bracket on the vector space g = su n
is given by

[(s, n), (t,m)] = ([s, t], [n,m] + s ·m− t · n)

for s, t ∈ s and n,m ∈ n. Since n is a central extension of n/Z(n) by Z(n), the Lie bracket on
the vector space n = (n/Z(n))u Z(n) is given by

[n,m] = [(x, a), (y, b)] = ([x, y], ω(x, y))

for x, y ∈ n/Z(n), a, b ∈ Z(n) and [ω] ∈ H2(n/Z(n), Z(n)). Since the extension is central and
split we may assume that ω = 0. Writing s ·m = s · (y, b) = (s · y, s · b) and t · n = t · (x, a) =
(t · x, t · a), the Lie bracket on g = su (n/Z(n))u Z(n) becomes

[(s, x, a), (t, y, b)] = ([s, t], [x, y] + s · y − t · x, s · b− t · a)

for s, t ∈ s, x, y ∈ n/Z(n) and a, b ∈ Z(n).
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Now define a linear map D : g → g by (s, x, a) 7→ (0, 0, a). It is a derivation of g, because we
have

D([(s, x, a), (t, y, b)]) = (0, 0, s · b− t · a),

[D(s, x, a), (t, y, b)] = [(0, 0, a), (t, y, b)] = (0, 0,−t · a),

[(s, x, a), D(t, y, b)] = [(s, x, a), (0, 0, b)] = (0, 0, s · b).
Since g is complete, D is an inner derivation. Let D = ad(z) and m = dimZ(n). Now g is also
perfect so that the adjoint operators have trace zero. Hence tr(D) = 0 and thus m = 0 and
Z(n) = 0. By Lemma 2.4, n is nilpotent. Hence Z(n) = 0 implies that n = 0. It follows that g
is semisimple. �

Corollary 2.12. Let g be a non-semisimple sympathetic Lie algebra with solvable radical n.
Then n is nilpotent, non-abelian, and the extension 0 → Z(n) → n → n/Z(n) → 0 does not
split.

3. Adjoint Lie algebra cohomology

A well-known construction for perfect but non-semisimple Lie algebras is the semidirect
product g = snV of a semisimple Lie algebra with a non-trivial simple s-module V , where the
latter is considered as an abelian Lie algebra, i.e., rad(g) is abelian. Suppose that g is complete.
Then g is sympathetic and hence semisimple by Lemma 2.9. This is a contradiction. Thus g
cannot be complete. In fact, this is true more generally, even if g is not perfect.

Proposition 3.1. Let g = sn V , where s is semisimple and V is an s-module. Then we have

H1(g, g) ∼= H1(V, V )s ∼= Homs(V, V ).

In particular, dimH1(g, g) ≥ 1 and g is not complete.

Proof. By Proposition 5.11 in [6] we have H1(g, g) ∼= Homs(V, V ). Since V is an abelian Lie
algebra and a trivial V -module, H1(V, V ) ∼= Hom(V, V ), so that H1(V, V )s ∼= Homs(V, V ). Now
we always have the identity in Homs(V, V ). Hence this space is at least 1-dimensional. �

Corollary 3.2. Let g = s n V , where s is semisimple and V is a simple s-module. Then we
have dimH1(g, g) = 1.

Proof. By Schur’s Lemma we have Homs(V, V ) ∼= C · id. Hence the space is 1-dimensional. �

Proposition 3.3. Let g = sn V , where s is semisimple and V is an s-module. Then we have
an exact sequence

0→ H1(V, V )s → H1(V, g)s → H1(V, g/V )s.

Proof. Consider the short exact sequence of g-modules

0→ V → g→ g/V → 0,

which is also a short exact sequence of V -modules by restriction to V ⊂ g. Here V and g/V
are trivial V -modules. Applying the long exact sequence in cohomology we obtain

· · · → H0(V, g/V )→ H1(V, V )→ H1(V, g)→ H1(V, g/V )→ · · ·
Applying the functor of s-invariants, which is exact on the subcategory of finite-dimensional
s-modules we obtain

· · · → H0(V, g/V )s → H1(V, V )s → H1(V, g)s → H1(V, g/V )s → · · ·
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SinceH0(V, g/V ) is the space of V -invariants of the trivial module g/V , we obtainH0(V, g/V ) ∼=
g/V . But we have (g/V )s = 0, because the quotient module g/V ∼= s does not contain non-zero
s-invariants. Hence we have H0(V, g/V )s = 0. This yields the claimed exact sequence. �

By the Hochschild-Serre formula, see Theorem 13 of [13] and the paragraph before on page
603, we obtain

H1(g, g) ∼=
⊕
i+j=1

H i(s,C)⊗Hj(V, g)s ∼= H1(V, g)s.

Thus the morphism H1(V, V )s → H1(V, g)s in the exact sequence of Proposition 3.3 is in fact
an isomorphism. The Hochschild-Serre formula also implies H2(g, g) ∼= H2(V, g)s.

Proposition 3.4. Let g = s n V , where s is semisimple and V is an s-module. Assume that
V does not contain any factor isomorphic to an ideal of s in its decomposition as an s-module.
Then we have an exact sequence

0→ H2(V, V )s → H2(V, g)s.

If we assume in addition that the s-module Λ2(V ) contains a factor isomorphic to V , then we
obtain

H2(V, g)s ∼= H2(g, g) 6= 0.

Proof. We have H1(V, g/V )s ∼= Homs(V, g/V ), because the Lie algebra V is abelian and the V -
module g/V is trivial. Both g/V ∼= s and V decompose into direct factors, and by assumption
they do not share an isomorphic factor. Hence we have Homs(V, g/V ) = 0 and H1(V, g/V )s = 0.
So the continuation to degree two of the exact sequence in Proposition 3.3 yields

0 = H1(V, g/V )s → H2(V, V )s → H2(V, g)s.

Here we have noted above that H2(V, g)s ∼= H2(g, g). By the additional assumption we have
H2(V, V )s ∼= Homs(Λ

2(V ), V ) 6= 0. �

The results on H1(g, g) and H2(g, g) can be generalized to higher cohomology groups as
follows. Note that we have for all k,

Hk(V, g/V )s ∼= Homs(Λ
k(V ), s),

Hk(V, V )s ∼= Homs(Λ
k(V ), V ).

Proposition 3.5. Let g = sn V , where s is semisimple and V is an s-module. Let k ≥ 1 and
suppose that the s-module Λk−1(V ) does not contain a submodule isomorphic to s. Then we
have an exact sequence

0→ Hk(V, V )s → Hk(V, g)s → Hk(V, g/V )s.

Suppose that in addition the s-module Λk(V ) does contain a submodule isomorphic to V . Then
we have dimHk(g, g) ≥ 1.

Proof. As in the proof of Proposition 3.3 we have a long exact sequence

· · · → Hk−1(V, g/V )s → Hk(V, V )s → Hk(V, g)s → Hk(V, g/V )s → · · ·
Here we have by the first assumption that

Hk−1(V, g/V )s ∼= Homs(Λ
k−1(V ), s) = 0.

So the first assertion follows.
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By the second assumption we have that Hk(V, V )s ∼= Homs(Λ
k(V ), V ) is nonzero. Thus the

exact sequence implies that also Hk(V, g)s is nonzero. Using again the Hochschild-Serre formula
for M = g, L = V and K = s, we have

Hk(g, g) ∼=
⊕
i+j=k

H i(s,C)⊗Hj(V, g)s

For i = 0 and j = k this direct sum contains the summand

H0(s,C)⊗Hk(V, g)s ∼= C⊗Hk(V, g)s ∼= Hk(V, g)s,

which is nonzero. Hence Hk(g, g) is nonzero. �

In some cases we can explicitly compute all cohomology groups Hk(g, g) by using the above
arguments.

Proposition 3.6. Let g = s n V with s = sln(C), n ≥ 2, and V = L(ω1) be the natural
s-module of dimension n. Then we have for all k ≥ 1

Hk(g, g) ∼= Hk−1(sln(C),C)

Here H∗(sln(C),C) is isomorphic to the exterior algebra Λ∗(c3, c5, . . . , c2n−1) generated by co-
cycles c2i+1 for i = 1, . . . , n− 1.

Proof. The s-module Λk(V ) has dimension
(
n
k

)
. It is irreducible for every 1 ≤ k ≤ n, and

it is not isomorphic to the adjoint s-module s. Indeed, their dimensions are always different.
Namely, suppose that

(
n
k

)
= n2 − 1. It is well known that

n

(n, k)
|
(
n

k

)
, 1 ≤ k ≤ n,

where (n, k) = gcd(n, k). If k < n, then d = n
(n,k)

is a divisor d > 1 of n and hence does not

divide n2 − 1. Hence
(
n
k

)
= n2 − 1 is impossible. For k = n this is also impossible. Hence by

Schur’s Lemma we have
Hk(V, g/V )s ∼= Homs(Λ

k(V ), s) = 0

for all k ≥ 1. Then the long exact sequence from the proof of Proposition 3.5 yields

Hk(V, g)s ∼= Hk(V, V )s ∼= Homs(Λ
k(V ), V ) ∼=

{
C for k = 1

0 otherwise.

Indeed, for n = 2, the modules V and Λk(V ) have the same dimension only for k = 1. For
n > 2, also the sln(C)-module Λn−1(V ) has the same dimension as V , but it is not isomorphic
to V . It is isomorphic as an sln(C)-module to V ∗, because sln(C) is unimodular, and V is
self-dual if and only if n = 2. Thus the Hochschild-Serre formula yields,

Hk(g, g) ∼=
⊕
i+j=k

H i(s,C)⊗Hj(V, g)s

∼= Hk−1(s,C)⊗ C.

It is well known that the cohomology H`(sln(C),C) is isomorphic to the `-th component of

Λ∗(c3, c5, . . . , c2n−1)

with generators c2i+1, see table 4 in [16]. �
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This yields, for example, with the n-dimensional natural sln(C)-module V = L(ω1),

Hk(sl2(C) n V, sl2(C) n V ) ∼= Hk−1(sl2(C),C) =

{
C, if k = 1, 4

0, otherwise

and

Hk(sl3(C) n V, sl3(C) n V ) ∼= Hk−1(sl3(C),C) =

{
C, if k = 1, 4, 6, 9

0, otherwise.

Remark 3.7. One can also consider Proposition 3.6 for g = s n V with other classical Lie
algebras s and their natural representation V . We have used in the proof two facts that must
be satisfied for s, namely that the exterior powers Λk(V ) are again irreducible, and that Λk(V )
and s are non-isomorphic as s-modules for all k ≥ 1. Unfortunately, this need not be true in
general for simple Lie algebras s of type Bn, Cn, Dn. For example, for type Cn, the exterior
powers Λk(V ) of dimension

(
2n
k

)
are no longer irreducible for 2 ≤ k ≤ 2n − 1, see [12], §17.2.

And for types Bn and Dn, the s-modules Λ2(V ) and s are isomorphic. So one would need
additional arguments for the computation of the adjoint cohomology.

Remark 3.8. Using the Hochschild-Serre formula as in the proof of Proposition 3.6, one may
also compute the cohomology with trivial coefficients of a semi-direct product g = sn V for a
general complex semisimple Lie algebra s and a general irreducible s-module V . In particular,
if the s-module Λk(V ) is non-trivial and irreducible for all 0 < k < m, where m := dim(V ),
then Hk(V,C)s = Λk(V ∗)s = 0 for all 0 < k < m, and we obtain

Hn(g,C) = Hn(s,C)⊕Hn−m(s,C).

This can also be used to compute the low degree Leibniz cohomology HLn(g, g) with adjoint
coefficients in some cases. Consider the 5-dimensional Lie algebra g = sl2(C) n V from above.
It satisfies Z(g) = 0. Hence by Proposition 2.2 and Theorem 2.6 in [11] in conjunction with
Proposition 3.6 and the formula right after its proof, we obtain that

dimHLn(g, g) ∼=

{
0, for n = 0, 2,

1, for n = 1.

Thus the Lie algebra g is rigid as a Leibniz algebra. Note that we used H•(g, g) ∼= H•(g, g∗)
for this computation. The latter follows from the existence of an invariant, non-degenerate,
symmetric bilinear form on g.

Finally, we can also use the Hochschild-Serre formula to compute the adjoint cohomology
Hn(g, g) of certain semidirect products g = sn n for the top degree n, i.e., for n = dim(g).

Proposition 3.9. Let g be an n-dimensional Lie algebra with Levi decomposition g = snrad(g),
where n = rad(g) is nilpotent. Assume that the s-module n/[n, n] does not contain the trivial
s-module C. Then we have

Hn(g, g) = 0.

Proof. Let dim(n) = m and dim(s) = n−m. By the Hochschild-Serre formula we have

Hn(g, g) =
⊕

p+q=n

Hp(s,C)⊗Hq(n, g)s

= Hn−m(s,C)⊗Hm(n, g)s,
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because dimHk(n, g) = 0 for all k > m, and dimHk(s,C) = 0 for all k > m− n. To compute
Hm(n, g)s we use the long exact sequence as in the proof of Proposition 3.5 to obtain

· · · → Hm(n, n)s → Hm(n, g)s → Hm(n, g/n)s → 0.

Here g/n is a trivial n-module. Since n is nilpotent, we have dimHm(n,C) ≥ 1 by Théorème 2
of [10]. On the other hand, dim Hom(Λm(n),C) = 1, so that dimHm(n,C) = 1. Therefore we
have

Hm(n, g/n) ∼= Hm(n,C)⊗ g/n ∼= g/n ∼= s

as s-modules. Hence Hm(n, g/n)s ∼= ss = 0.

To compute Hm(n, n)s, we use Poincaré duality. Since n is unimodular, the duality is s-
equivariant, and we obtain

Hm(n, n) ∼= H0(n, n) ∼= n/[n, n].

By assumption, the s-module n/[n, n] does not contain the trivial module. Hence we have
Hm(n, n)s = 0. Hence Hm(n, g)s = 0, so that Hn(g, g) = 0 by the Hochschild-Serre formula. �

4. Cohomology of Benayadi’s Lie algebra

Benayadi constructed in [5] non-semisimple sympathetic Lie algebras of dimension 25 by
taking the vector space

g = sl2(C) n (V (7)⊕ V (5)⊕ V (7)⊕ V (3)),

where V (n) denotes the n-dimensional irreducible sl2(C)-module. He equipped g with a Lie
bracket such that the Lie brackets of sl2(C) with g1 = V (7), g2 = V (5), g3 = V (7) and
g4 = V (3) are given by the action of sl2(C) on gi, and such that

[g1, g1] = g3, [g1, g2] = g4, [g2, g2] = g4, [g1, g3] = g4.

In order to obtain explicit Lie brackets, we want to introduce a basis {e1, . . . , e25} of g. Then
the cohomology can be computed by a computer algebra system, e.g., GAP. So fix a basis of g,
such that {e1, e2, e3} is a basis of sl2(C), {e4, . . . , e10} is a basis of g1, {e11, . . . , e15} is a basis
of g2, {e16, . . . , e22} is a basis of g3 and {e23, e24, e25} is a basis of g4.

The action of sl2(C) on V (n) may be given by

ρ(e1) =


0 1 0 · · · 0

0 0 2
. . .

...
...

. . . . . . . . . 0
...

. . . . . . . . . n− 1
0 0 · · · 0 0

 , ρ(e2) =


0 0 · · · 0 0

n− 1 0
. . . 0 0

0
. . . . . . . . .

...
...

. . . 2 0 0
0 · · · 0 1 0


and

ρ(e3) =


n− 1 0 · · · 0 0

0 n− 3 · · · 0 0
...

. . . . . . . . .
...

0 0
. . . 3− n 0

0 0 · · · 0 1− n


So the nonzero brackets are determined as follows:
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1. The brackets for sl2(C) :

[e1, e2] = e3, [e1, e3] = −2e1, [e2, e3] = 2e2.

2. The brackets between sl2(C) and g4 :

[e1, e24] = e23, [e2, e23] = 2e24, [e3, e23] = 2e23,

[e1, e25] = 2e24, [e2, e24] = e25, [e3, e25] = −2e25,

3. The brackets between sl2(C) and g2 :

[e1, e12] = e11, [e2, e11] = 4e12, [e3, e11] = 4e11,

[e1, e13] = 2e12, [e2, e12] = 3e13, [e3, e12] = 2e12,

[e1, e14] = 3e13, [e2, e13] = 2e14, [e3, e14] = −2e14,

[e1, e15] = 4e14, [e2, e14] = e15, [e3, e15] = −4e15.

4. The brackets between sl2(C) and g3 :

[e1, e17] = e16, [e2, e16] = 6e17, [e3, e16] = 6e16,

[e1, e18] = 2e17, [e2, e17] = 5e18, [e3, e17] = 4e17,

[e1, e19] = 3e18, [e2, e18] = 4e19, [e3, e18] = 2e18,

[e1, e20] = 4e19, [e2, e19] = 3e20, [e3, e20] = −2e20,

[e1, e21] = 5e20, [e2, e20] = 2e21, [e3, e21] = −4e21,

[e1, e22] = 6e21, [e2, e21] = e22, [e3, e22] = −6e22.

5. The brackets between sl2(C) and g1 :

[e1, e5] = e4, [e2, e4] = 6e5, [e3, e4] = 6e4,

[e1, e6] = 2e5, [e2, e5] = 5e6, [e3, e5] = 4e5,

[e1, e7] = 3e6, [e2, e6] = 4e7, [e3, e6] = 2e6,

[e1, e8] = 4e7, [e2, e7] = 3e8, [e3, e8] = −2e8,

[e1, e9] = 5e8, [e2, e8] = 2e9, [e3, e9] = −4e9,

[e1, e10] = 6e9, [e2, e9] = e10, [e3, e10] = −6e10.

6. The brackets [g1, g1] = g3 :

[e4, e5] = a1e16 + · · ·+ a7e22,

[e4, e6] = a8e16 + · · ·+ a14e22,

· · · = · · ·
[e9, e10] = a141e16 + · · ·+ a147e22.
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7. The brackets [g1, g2] = g4 :

[e4, e11] = b1e23 + b2e24 + b3e25,

[e4, e12] = b4e23 + b5e24 + b6e25,

· · · = · · ·
[e10, e15] = b103e23 + b104e24 + b105e25.

8. The brackets [g2, g2] = g4 :

[e11, e12] = c1e23 + c2e24 + c3e25,

[e11, e13] = c4e23 + c5e24 + c6e25,

· · · = · · ·
[e14, e15] = c28e23 + c29e24 + c30e25.

9. The brackets [g1, g3] = g4 :

[e4, e16] = d1e23 + d2e24 + d3e25,

[e4, e17] = d4e23 + d5e24 + d6e25,

· · · = · · ·
[e10, e22] = d145e23 + d146e24 + d147e25.

The Jacobi identity is equivalent to some polynomial equations in the variables ai, bi, ci, di.
Here these equations reduce to some easy linear equations. It turns out that there are solutions.
The solution space only depends on the four nonzero parameters a15, b13, c7, d16. We obtain a
family of Lie algebras L(a, b, c, d) with

(a15, b13, c7, d16) = (3a, 60b, 2c, 15d).

The rewriting in terms of nonzero complex parameters a, b, c, d is only for our convenience,
to avoid fractions.

Proposition 4.1. The family of Lie algebras L(a, b, c, d) has the following explicit Lie brackets
with respect to the basis (e1, . . . , e25).

[e1, e2] = e3, [e2, e23] = 2e24, [e6, e8] = −4ae19,

[e1, e3] = −2e1, [e2, e24] = e25, [e6, e10] = 12ae21,

[e1, e5] = e4, [e3, e4] = 6e4, [e6, e13] = 4be25,

[e1, e6] = 2e5, [e3, e5] = 4e5, [e6, e14] = −8be24,

[e1, e7] = 3e6, [e3, e6] = 2e6, [e6, e15] = 4be25,

[e1, e8] = 4e7, [e3, e8] = −2e8, [e6, e19] = 3de23,

[e1, e9] = 5e8, [e3, e9] = −4e9, [e6, e20] = 2de24,

[e1, e10] = 6e9, [e3, e10] = −6e10, [e6, e21] = −5de25,
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[e1, e12] = e11, [e3, e11] = 4e11, [e7, e8] = −3ae20,

[e1, e13] = 2e12, [e3, e12] = 2e12, [e7, e9] = −3ae21,

[e1, e14] = 3e13, [e3, e14] = −2e14, [e7, e10] = 3ae22,

[e1, e15] = 4e14, [e3, e15] = −4e15, [e7, e12] = −3be23,

[e1, e17] = e16, [e3, e16] = 6e16, [e7, e13] = 6be24,

[e1, e18] = 2e17, [e3, e17] = 4e17, [e7, e14] = −3be25,

[e1, e19] = 3e18, [e3, e18] = 2e18, [e7, e18] = −3de23,

[e1, e20] = 4e19, [e3, e20] = −2e20, [e7, e20] = 3de25,

[e1, e21] = 5e20, [e3, e21] = −4e21, [e8, e9] = −2ae22,

[e1, e22] = 6e21, [e3, e22] = −6e22, [e8, e11] = 4be23,

[e1, e24] = e23, [e3, e23] = 2e23, [e8, e12] = −8be24,

[e1, e25] = 2e24, [e3, e25] = −2e25, [e8, e13] = 4be25,

[e2, e3] = 2e2, [e4, e7] = 3ae16, [e8, e17] = 5de23,

[e2, e4] = 6e5, [e4, e8] = 12ae17, [e8, e18] = −2de24,

[e2, e5] = 5e6, [e4, e9] = 30ae18, [e8, e19] = −3de25,

[e2, e6] = 4e7, [e4, e10] = 60ae19, [e9, e11] = 20be24,

[e2, e7] = 3e8, [e4, e15] = 60be23, [e9, e12] = −10be25,

[e2, e8] = 2e9, [e4, e21] = 15de23, [e9, e16] = −15de23,

[e2, e9] = e10, [e4, e22] = 90de24, [e9, e17] = 10de24,

[e2, e11] = 4e12, [e5, e6] = −2ae16, [e9, e18] = 5de25,

[e2, e12] = 3e13, [e5, e7] = −3ae17, [e10, e11] = 60be25,

[e2, e13] = 2e14, [e5, e9] = 10ae19, [e10, e16] = −90de24,

[e2, e14] = e15, [e5, e10] = 30ae20, [e10, e17] = −15de25,

[e2, e16] = 6e17, [e5, e14] = −10be23, [e11, e14] = 2ce23,

[e2, e17] = 5e18, [e5, e15] = 20be24, [e11, e15] = 8ce24,

[e2, e18] = 4e19, [e5, e20] = −5de23, [e12, e13] = −ce23,
[e2, e19] = 3e20, [e5, e21] = −10de24, [e12, e14] = −ce24,
[e2, e20] = 2e21, [e5, e22] = 15de25, [e12, e15] = 2ce25,

[e2, e21] = e22, [e6, e7] = −3ae18, [e13, e14] = −ce25.

It turns out that all Lie algebras L(a, b, c, d) are isomorphic.
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Proposition 4.2. We have an isomorphism L(a1, b1, c1, d1) ∼= L(a2, b2, c2, d2) for all nonzero
complex numbers a1, a2, b1, b2, c1, c2, d1, d2.

Proof. Let ϕ : L(a1, b1, c1, d1)→ L(a2, b2, c2, d2) be the map given by ϕ(ei) = ξiei for all i with
1 ≤ i ≤ 25. A direct computation shows that ϕ is a Lie algebra homomorphism if and only if

ξ1 = ξ2 = ξ3 = 1

ξ4 = · · · = ξ10 =
a1b

2
2c1d1

a2b21c2d2
,

ξ11 = · · · = ξ15 =
a1b

3
2c

2
1d1

a2b31c
2
2d2

,

ξ16 = · · · = ξ22 =
a1b

4
2c

2
1d

2
1

a2b41c
2
2d

2
2

,

ξ23 = ξ24 = ξ25 =
a21b

6
2c

3
1d

2
1

a22b
6
1c

3
2d

2
2

.

Obviously the determinant of the diagonal matrix associated to ϕ is nonzero. So the map is a
Lie algebra isomorphism. �

Hence we may choose the parameters as (a15, b13, c7, d16) = (3, 60, 2, 15), namely by taking

(a, b, c, d) = (1, 1, 1, 1).

Note that then all structure constants are integers. We call the Lie algebra

L25 := L(1, 1, 1, 1)

Benayadi’s Lie algebra. It is uniquely determined up to isomorphism. Since we have explicit
Lie brackets, the cohomology can be easily computed by using a computer algebra system like
GAP. We already know that

H1(L25,C) = H0(L25, L25) = H1(L25, L25) = 0.

Our result is the following.

Theorem 4.3. Benayadi’s Lie algebra L25 satisfies dimH2(L25, L25) = 1.

We also can determine the highest degree adjoint cohomology of g without a computation.

Proposition 4.4. Benayadi’s Lie algebra L25 satisfies H25(L25, L25) = 0.

Proof. Since L25 is perfect, it is unimodular. Hence we obtain

H25(L25, L25) ∼= H0(L25, L25) ∼= L25/[L25, L25] = 0

by Poincaré duality. �

Note that the result also follows from Proposition 3.9.
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