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Abstract. We study rigidity questions for pairs of Lie algebras (g, n) admitting a post-Lie
algebra structure. We show that if g is semisimple and n is arbitrary, then we have rigidity in
the sense that g and n must be isomorphic. The proof uses a result on the decomposition of a
Lie algebra g = s1u s2 as the direct vector space sum of two semisimple subalgebras. We show
that g must be semisimple and hence isomorphic to the direct Lie algebra sum g ∼= s1⊕s2. This
solves some open existence questions for post-Lie algebra structures on pairs of Lie algebras
(g, n). We prove additional existence results for pairs (g, n), where g is complete, and for pairs,
where g is reductive with 1-dimensional center and n is solvable or nilpotent.

1. Introduction

Post-Lie algebra structures on pairs of Lie algebras naturally arise in several areas of mathe-
matics and physics. Some important examples of such areas are geometric structures on mani-
folds, affine actions on Lie groups, Rota-Baxter operators, étale and prehomogeneous modules
for Lie algebras, decompositions of Lie algebras, crystallographic groups, operad theory, de-
formation theory, or quantum field theory. There is a large literature on post-Lie algebra
structures, see for example the papers [15, 4, 5, 6, 7, 8, 9] and the references given therein.

In the study of post-Lie algebra structures one often has to investigate Lie algebra decomposi-
tions, i.e., writing a Lie algebra g as the vector space sum g = a + b of two subalgebras a and
b. How much does the structure of a and b determine the structure of g? Recently we have
studied semisimple decompositions of Lie algebras, where both a and b are semisimple, see [10].
In general, such a Lie algebra need not be semisimple. Semisimple decompositions are closely
related to prehomogeneous modules for semisimple Lie algebras.

In the present article we show that a Lie algebra g = s1 u s2, which is the direct vector space
sum of two semisimple subalgebras s1 and s2, is already semisimple and a direct Lie algebra
sum g = t1 ⊕ t2 with si ∼= ti for i = 1, 2. Here we use several results about decompositions of
Lie groups and Lie algebras from the papers [13, 14] of Onishchik. We prove that Onishchik’s
arguments also imply the following result. Let s be a semisimple Lie algebra which is the
sum of two semisimple subalgebras, e.g., s = s1 + s2. Then the subalgebra s1 ∩ s2 is zero or
semisimple - see Lemma 2.6. This is not explicitly stated in [13, 14], and we could not find
it in the literature. The result is also very useful to prove a strong rigidity result for post-Lie
algebra structures on pairs (g, n), where g is semisimple - see Theorem 3.3.

In section 4 we complete our “existence table” for post-Lie algebra structures on pairs (g, n)
from [9]. We only leave one case open, namely where g is reductive and n is semisimple - see
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Conjecture 3.5. We use the correspondence to Rota-Baxter operators to construct post-Lie
algebra structures on (g, n), where g is complete.

In section 5 we show that there are no post-Lie algebra structures on pairs (g, n), where g is
reductive with 1-dimensional center and n is solvable, non-nilpotent. However, if n is nilpo-
tent then we cannot show this in general. Even the case g = gln(C) then is open in general.
Here we can at least settle the case, where n is 2-step nilpotent by reducing the question to
left-symmetric structures on g = gln(C) and using decompositions of wedge products of simple
sln(C)-modules, which we had studied already in [10], section 3. The result is that there are
no post-Lie algebra structures on (gln(C), n) for all n ≥ 2, where n is 2-step nilpotent and
non-abelian - see Proposition 5.5.

2. Semisimple decompositions of Lie algebras

We first recall the definition of a post-Lie algebra structure on a pair of Lie algebras (g, n)
over a field K, see [4]:

Definition 2.1. Let g = (V, [ , ]) and n = (V, { , }) be two Lie brackets on a vector space V
over K. A post-Lie algebra structure, or PA-structure on the pair (g, n) is a K-bilinear product
x · y satisfying the identities:

x · y − y · x = [x, y]− {x, y}(1)

[x, y] · z = x · (y · z)− y · (x · z)(2)

x · {y, z} = {x · y, z}+ {y, x · z}(3)

for all x, y, z ∈ V .

Define by L(x)(y) = x · y and R(x)(y) = y · x the left respectively right multiplication
operators of the algebra A = (V, ·). By (3), all L(x) are derivations of the Lie algebra (V, {, }).
Moreover, by (2), the left multiplication

L : g→ Der(n) ⊆ End(V ), x 7→ L(x)

is a linear representation of g. The right multiplication R : V → V, x 7→ R(x) is a linear map,
but in general not a Lie algebra representation.
If n is abelian, then a post-Lie algebra structure on (g, n) corresponds to a pre-Lie algebra
structure, or left-symmetric structure on g. In other words, if {x, y} = 0 for all x, y ∈ V , then
the conditions reduce to

x · y − y · x = [x, y](4)

[x, y] · z = x · (y · z)− y · (x · z),(5)

i.e., x · y is a pre-Lie algebra structure on the Lie algebra g.

We will assume from now on that all Lie algebras are finite-dimensional and defined over the
complex numbers.
Let g be a Lie algebra and s1 and s2 be two semisimple subalgebras of g. We write g = s1 + s2,
if g is the vector space sum of s1 and s2, and

g = s1 u s2,
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if g is the direct vector space sum of s1 and s2, i.e., satisfying s1 ∩ s2 = 0. We use the sum with
the dot to distinguish it from the direct sum of Lie ideals g = s1⊕ s2. In analogy to dinilpotent
groups [11], we have introduced in [10] the notion of a disemisimple Lie algebra.

Definition 2.2. A Lie algebra g is called disemisimple, if it can be written as a vector space
sum of two semisimple subalgebras s1 and s2 of g. In this case we write g = s1 + s2. If the
vector space sum is direct, we say that g is strongly disemisimple.

For a Lie algebra g denote by rad(g) the solvable radical of g and by nil(g) the nilradical of
g. In [10] we have studied the structure of disemisimple Lie algebras. An important tool is the
close relationship to prehomogeneous s-modules, where s is a Levi subalgebra. We have shown
in [10], Theorem 3.7, that the solvable radical of a disemisimple Lie algebra with a simple Levi
subalgebra is abelian. An elementary result was Lemma 2.3 in [10], which is as follows.

Lemma 2.3. Let g be a disemisimple Lie algebra. Then g is perfect and the solvable radical of
g coincides with the nilradical, i.e., rad(g) = nil(g).

For strongly disemisimple Lie algebras one can show more.

Lemma 2.4. Let g be a strongly disemisimple Lie algebra with g = s1 u s2. Then neither s1
nor s2 can be a Levi subalgebra of g.

Proof. Assume that s1 is a Levi subalgebra of g with g = s1 n rad(g). We have

dim(rad(g)) = dim(g)− dim(s1) = dim(s2).

By the Levi-Malcev theorem there exists an element z ∈ rad(g) such that ead(z) maps s2 to a
subalgebra of s1. Then M = rad(g) is an s2-module with dim(M) = dim(s2). Thus we can
apply Lemma 4.1 of [5]. It gives a nonzero x ∈ s2 such that x.z = 0. So the Lie bracket in g
is [x, z] = 0, so that ead(z)(x) = x. This implies that also x ∈ s1, and hence x ∈ s1 ∩ s2 = 0.
We obtain x = 0, which is a contradiction. Hence s1 cannot be a Levi subalgebra. The same
applies to s2. �

Lemma 2.5. Let g be a strongly disemisimple Lie algebra with g = s1 u s2, and s a Levi
subalgebra of g with s1 ⊆ s. Then there exists a semisimple subalgebra s3 of g such that
s = s1 + s3 and dim(s1 ∩ s3) = dim(rad(g)).

Proof. By the Levi-Malcev theorem there exists an element z ∈ rad(g) such that, with ϕ =
ead(z), we have s2 = ϕ(s3) for some semisimple subalgebra s3 ⊆ s. We have s3 = ϕ−1(s2) with
ϕ−1 = ead(−z). Let x ∈ g. Then there exist s1 ∈ s1 and s2 ∈ s2 such that x = s1 + s2. For all
y ∈ g we have

y − ϕ−1(y) = y − y −
∞∑
k=1

ad(−z)k

k!
(y) ∈ rad(g).

Hence we have, for y = s2,

x = s1 + s2 = s1 + ϕ−1(s2) + (s2 − ϕ−1(s2)) ∈ s1 + s3 + rad(g).

So we have

g ⊆ s1 + s3 + rad(g) ⊆ g,
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and hence equality. Now let x ∈ s. Then x = s1 + s3 + r for some s1 ∈ s1, s3 ∈ s3 and
r ∈ rad(g). It follows that r = x− s1 − s3 ∈ s, so that r = 0 because of rad(g) ∩ s = 0. Hence
we have s ⊆ s1 + s3 ⊆ s, and s = s1 + s3. For the dimensions we have

dim(s) = dim(s1) + dim(s3)− dim(s1 ∩ s3).

On the other hand we have s1 u s2 = sn rad(g) and dim(s2) = dim(s3), so that

dim(s) = dim(s1) + dim(s3)− dim(rad(g)).

So we have dim(s1 ∩ s3) = dim(rad(g)). �

The following lemma is a consequence of results and arguments from the two papers [13] and
[14] by Onishchick.

Lemma 2.6. Let s be a semisimple and disemisimple Lie algebra with s = s1 + s2. Then the
subalgebra s1 ∩ s2 is zero or semisimple.

Proof. Let Gs be the connected algebraic group corresponding to s and let Gs1 and Gs2 be the
connected algebraic subgroups of Gs corresponding to the subalgebras s1 and s2. In [14, pages
522-523] in the proof of Theorem 3.1 in the case of reductive algebraic decompositions over C
it is shown that Gs = Gs1Gs2 (and so also Gs = Gs2Gs1).
From [14, Corollary 3.1] we then get that there exists a real compact form k of s and real
compact forms k1 and k2 of the Lie algebras Ad(x)(s1) and Ad(y)(s2) corresponding to some
conjugates xGs1x

−1 and yGs2y
−1 of Gs1 and Gs2 such that k = k1 + k2. In [13], page 18, after

Corollary 2 it is shown that for the decomposition k = k1 + k2 of compact forms we have that
k1 ∩ k2 is zero or semisimple (Onishchik writes U0 = G′0 ∩ G′′0 for this intersection). From this
it follows that the complexification (k1 ∩ k2)C = kC1 ∩ kC2 = Ad(x)(s1) ∩Ad(y)(s2) is also zero or
semisimple.
We now claim that s1∩s2 is isomorphic to Ad(x)(s1)∩Ad(y)(s2). To see this, first write x = ba
with b ∈ Gs2 and a ∈ Gs1 (recall that Gs = Gs2Gs1). Then

Ad(x)(s1) ∩ Ad(y)s2 = Ad(b)(Ad(a)(s1) ∩ Ad(b−1y)(s2))

= Ad(b)(s1 ∩ Ad(b−1y)(s2))
∼= s1 ∩ Ad(b−1y)(s2).

Now write b−1y = a′b′ with a′ ∈ Gs1 and b′ ∈ Gs2 , then

s1 ∩ Ad(b−1y)(s2) = s1 ∩ Ad(a′) Ad(b′)(s2)

= s1 ∩ Ad(a′)(s2)

= Ad(a′)(s1 ∩ s2)
∼= s1 ∩ s2,

from which we indeed deduce that s1 ∩ s2 ∼= Ad(x)(s1) ∩ Ad(y)s2 and so is semisimple. �

Now we can prove the main decomposition theorem.

Theorem 2.7. Let g be a strongly disemisimple Lie algebra with g = s1 u s2. Then g is
semisimple and isomorphic to the direct Lie algebra sum s1 ⊕ s2.

Proof. Assume that g is not semisimple. Then we have dim(rad(g)) ≥ 1. Let s be a Levi
subalgebra of g such that s1 ⊆ s. By Lemma 2.5 there exists a semisimple subalgebra s3 such
that s = s1 + s3 and dim(s1 ∩ s3) = dim(rad(g)) ≥ 1. It follows that s1 ∩ s3 ⊆ s is a semisimple
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subalgebra by Lemma 2.6. Hence s1∩s3 is a Levi subalgebra of the Lie algebra (s1∩s3)nrad(g).
Let ϕ = ead(z) be the special automorphism with ϕ(s3) = s2 from the proof of Lemma 2.5. We
claim that

(s1 ∩ s3) n rad(g) = (s1 ∩ s3)u ϕ(s1 ∩ s3).

Hence s1 ∩ s3 cannot be a Levi subalgebra of (s1 ∩ s3) n rad(g) by Lemma 2.4. This is a
contradiction and it follows that g is semisimple. We need to show the claimed equality. Let
y ∈ rad(g). Then

y = s1 + s2 = s1 + ϕ(s3) = (s1 + s3) + (ϕ(s3)− s3)
for some si ∈ si. Here ϕ(s3)−s3 ∈ rad(g) and s1+s3 ∈ s, so that s1+s3 = 0 and y = ϕ(s3)−s3.
Note that s3 = −s1 ∈ s1 ∩ s3. Now let x ∈ s1 ∩ s3 and y ∈ rad(g). Then

x+ y = x+ ϕ(s3)− s3 = (x− s3) + ϕ(s3) ∈ (s1 ∩ s3)u ϕ(s1 ∩ s3).

Conversely let y, z ∈ s1 ∩ s3. Then

y + ϕ(z) = (y + z) + (ϕ− id)(z) ∈ (s1 ∩ s3) n rad(g).

Finally, since s1 and s2 are semisimple subalgebras, they are reductive in the semisimple Lie
algebra g. Hence we can apply Koszul’s Theorem [12] to conclude that g is isomorphic to the
direct Lie algebra ideal sum of s1 and s2. �

Remark 2.8. The theorem cannot be generalized to disemisimple Lie algebras. Indeed, we have
shown in Example 4.10 of [8], that for n ≥ 2,

sln(C) n V (n) = sln(C) + ϕ(sln(C)) = s1 + s2

is the vector space sum of two simple subalgebras s1 and s2. The Lie algebra sln(C) n V (n) is
perfect, but not semisimple. We have ϕ = ead(z) for a certain z in the radical V (n), which is
abelian. Note that the intersection satisfies

dim(s1 ∩ s2) = n2 − n− 1.

3. Rigidity results

Let (g, n) be a pair of finite-dimensional complex Lie algebras admitting a post-Lie algebra
structure. The rigidity question is the following.

For which algebraic properties of g and n can we conclude that g and n are necessarily isomor-
phic?

The properties we are mostly interested in here are that g and n are simple, semisimple or
reductive.
If both Lie algebras are solvable, it is obvious that g and n need not be isomorphic in general.
Indeed, consider the Lie algebra g = r3,1(C) with basis (e1, e2, e3) and Lie brackets [e1, e2] = e2,
[e1, e3] = e3, and let n = r3(C), given by the Lie brackets {e1, e2} = e2, {e1, e3} = e2 + e3.
The Lie algebras are solvable, but not isomorphic. Nevertheless there exists a post-Lie algebra
structure on (g, n):

Example 3.1. There exists a post-Lie algebra structure on the pair (g, n) = (r3,1(C), r3(C)),
given by e1 · e3 = −e2 and all other products ei · ej equal to zero.

If g and n are both simple, then we know that rigidity holds. This is Proposition 4.6 in [4].
However, an even stronger result holds if just g is simple, see Theorem 3.1 of [6].
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Proposition 3.2. Let (g, n) be a pair of Lie algebras, where g is simple and n is arbitrary.
Suppose that (g, n) admits a post-Lie algebra structure. Then n is isomorphic to g.

We can now generalize this result to the case where g is semisimple.

Theorem 3.3. Let (g, n) be a pair of Lie algebras, where g is semisimple and n is arbitrary.
Suppose that (g, n) admits a post-Lie algebra structure. Then n is isomorphic to g.

Proof. By Proposition 2.11 of [4] there is an embedding

ϕ : g ↪→ no Der(n)

such that p ◦ ϕ : g → n is a vector space isomorphism, where p : n o Der(n) → n denotes
the projection on n. If q : n o Der(n) → Der(n) denotes the projection on the second factor,
then q ◦ ϕ : g → Der(n) is a Lie algebra homomorphism. Hence h = (q ◦ ϕ)(g) ⊆ Der(n) is a
semisimple Lie algebra, because g is semisimple. Note that if h = 0 we obtain g ∼= n and we
are done. We may view the embedding now as ϕ : g ↪→ no h. We claim that

no h = ϕ(g)u h

as a direct vector space sum of subalgebras of no h. Indeed, for a given element (x, y) ∈ no h
there is a unique v ∈ g with ϕ(v) = (x, z) for some z ∈ h, and there is a unique w ∈ h with
(x, y) = ϕ(v) + w. Hence n o h is the direct vector space sum of two semisimple subalgebras
ϕ(g) and h. By Theorem 2.7 it follows that n o h is semisimple, and hence also the ideal n is
semisimple. Hence we have no h ∼= n⊕ h, and also no h ∼= ϕ(g)⊕ h. Writing

ϕ(g) ∼= a1 ⊕ · · · ⊕ ai

n ∼= b1 ⊕ · · · ⊕ bj

h ∼= c1 ⊕ · · · ⊕ ck

as direct sum of simple ideals, ϕ(g)⊕ h ∼= n⊕ h implies that

(a1 ⊕ · · · ⊕ ai)⊕ (c1 ⊕ · · · ⊕ ck) ∼= (b1 ⊕ · · · ⊕ bj)⊕ (c1 ⊕ · · · ⊕ ck).

Since the decomposition of a semisimple Lie algebra into simple ideals is unique up to permu-
tation, we obtain i = j and g ∼= ϕ(g) ∼= n. �

Remark 3.4. A corresponding strong rigidity result for the case that n is semisimple does not
hold. For example, we know that there are post-Lie algebra structures on pairs (g, n), where n
is semisimple and g is solvable, see Proposition 3.1 in [5]. Furthermore, even if (g, n) is a pair
of reductive Lie algebras admitting a post-Lie algebra structure, g need not be isomorphic to
n in general. Indeed, for g = sln(C) ⊕ gln(C) and n = sln(C) ⊕ Cn2

the pair (g, n) admits a
post-Lie algebra structure, by taking the direct sum of a non-trivial post-Lie algebra structure
on (gln(C),Cn2

), coming from a pre-Lie algebra structure on gln(C), and the zero structure on
(sln(C), sln(C)).

On the other hand, we still believe that there holds the following rigidity result.

Conjecture 3.5. Let (g, n) be a pair of Lie algebras, where g is reductive and n is semisimple.
Suppose that (g, n) admits a post-Lie algebra structure. Then n is isomorphic to g.
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4. The existence table

For the existence question of post-Lie algebra structures on pairs of Lie algebras (g, n) we
have introduced a “table” in [9], where g and n belong to one of the following seven classes,
defined by the following properties: abelian, nilpotent, solvable, simple, semisimple, reductive,
complete. Here we want to avoid an unnecessary overlap, so we assume that nilpotent means
non-abelian, solvable means non-nilpotent, semisimple means non-simple, and reductive (re-
spectively complete) means non-semisimple. Of course, a complete Lie algebra in the table
may also be solvable and non-nilpotent. It cannot be nilpotent, since nilpotent Lie algebras
have a non-trivial center. Similarly, a reductive, non-semisimple Lie algebra may be abelian,
but has a non-trivial center and hence cannot be complete. The existence table in [9] still has
six open cases:

(g, n) n abe n nil n sol n sim n sem n red n com

g abelian X X X − − − X
g nilpotent X X X − − − X
g solvable X X X X X X X
g simple − − − X − − −
g semisimple − − − − X (1) −
g reductive X (3) (4) − (2) X X
g complete X X X (5) (6) X X

We can now solve all open cases with one exception and obtain the following table.

Theorem 4.1. The existence table for post-Lie algebra structures on pairs (g, n) is given as
follows:

(g, n) n abe n nil n sol n sim n sem n red n com

g abelian X X X − − − X
g nilpotent X X X − − − X
g solvable X X X X X X X
g simple − − − X − − −
g semisimple − − − − X − −
g reductive X X X − ? X X
g complete X X X X X X X

A checkmark only means that there is some non-trivial pair (g, n) of Lie algebras with the given
algebraic properties admitting a post-Lie algebra structure. A dash means that there does not
exist any post-Lie algebra structure on such a pair.

Proof. By Theorem 3.3 there is no post-Lie algebra structure on a pair (g, n), where g is
semisimple, and n is not semisimple. This solves case (1). Case (2) is still open, see Conjecture
3.5. For the remaining cases, there exist non-trivial examples admitting a post-Lie algebra
structure. The cases (3), (4) follow from Proposition 4.2, the case (5) from Proposition 4.3 and
the case (6) from Proposition 4.4 below. �
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Denote by n3(C) the Heisenberg Lie algebra and by r2(C) the 2-dimensional non-abelian Lie
algebra. Note that r2(C) is a complete Lie algebra.

Proposition 4.2. There exists a post-Lie algebra structure on the pairs

(g, n) = (sl2(C)⊕ C4,C4 ⊕ n3(C)),

(g, n) = (sl2(C)⊕ C3,C4 ⊕ r2(C)).

Proof. Let x · y be a LSA, or pre-Lie algebra structure on sl2(C) ⊕ C. Such structures exist
and have been classified in [2], Theorem 3. By definition this structure is a post-Lie algebra
structure on the pair (sl2(C) ⊕ C,C4). Let x ◦ y be an LR-structure, i.e., a special case of a
post-Lie algebra structure, on n3(C). For the definition of an LR-structure see [3]. There exist
several LR-structures on n3(C) see [3], Proposition 3.1. By definition this structure is a post-Lie
algebra structure on the pair (C3, n3(C)). Now equip the pair (g, n) = (sl2(C)⊕C4,C4⊕n3(C))
with the post-Lie algebra structure

(x1, y1) • (x2, y2) = (x1 · x2, y1 ◦ y2)

induced by the post-Lie algebra structures on (sl2(C)⊕ C,C4) and (C3, n3(C)). This defines a
post-Lie algebra structure on (sl2(C)⊕ C4,C4 ⊕ n3(C)).

The same construction works by choosing an LR-structure x ◦ y on r2(C), which is a post-Lie
algebra structure on the pair (C2, r2(C)). The post-Lie algebra structures on (sl2(C) ⊕ C,C4)
and (C2, r2(C)) induce a post-Lie algebra structure on the direct sum of these pairs, e.g., on
(sl2(C)⊕ C3,C4 ⊕ r2(C)). �

Denote by Eij the matrix with entry 1 at position (i, j), and all other entries equal to 0. Let
n = sl3(C) and consider the following basis for it:

e1 = E12, e2 = E13, e3 = E21, e4 = E23, e5 = E31,

e6 = E32, e7 = E11 − E22, e8 = E22 − E33.

Then the Lie brackets are defined by

{e1, e3} = e7, {e2, e6} = e1, {e4, e6} = e8,

{e1, e4} = e2, {e2, e7} = −e2, {e4, e7} = e4,

{e1, e5} = −e6, {e2, e8} = −e2, {e4, e8} = −2e4,

{e1, e7} = −2e1, {e3, e6} = −e5, {e5, e7} = e5,

{e1, e8} = e1, {e3, e7} = 2e3, {e5, e8} = e5,

{e2, e3} = −e4, {e3, e8} = −e3, {e6, e7} = −e6,
{e2, e5} = e7 + e8, {e4, e5} = e3, {e6, e8} = 2e6.

Let affn(C) = gln(C)nCn be the affine Lie algebra of dimension n2+n. It is simply complete,
i.e., it is complete and has no nontrivial complete ideal. We can choose a basis (f1, . . . , f8) for
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aff2(C)⊕ aff1(C) with Lie brackets

[f1, f2] = f2, [f2, f4] = f2, [f4, f6] = f6,

[f1, f3] = −f3 [f2, f6] = f5, [f7, f8] = f7,

[f1, f5] = f5, [f3, f4] = −f3,
[f2, f3] = f1 − f4, [f3, f5] = f6,

where (f1, . . . f6) = (E11, E12, E21, E22, E13, E23) is a basis of aff2(C) and (f7, f8) is a basis of
aff1(C) = r2(C).

Proposition 4.3. Let n = sl3(C). Then there exists a post-Lie algebra structure on the pair
(g, n) with g ∼= aff2(C)⊕ aff1(C). More precisely, x · y = {ϕ(x), y} with

ϕ(e3) = −e3 − e7,
ϕ(e4) = −e4 − e5,
ϕ(ei) = 0 for i = 1, 2, 5, 6, 7, 8

defines an inner post-Lie algebra structure on the pair (g, n) with Lie brackets for g given by

[e1, e3] = 2e1, [e2, e5] = e7 + e8, [e4, e7] = −e5,
[e1, e4] = e6, [e2, e6] = e1, [e4, e8] = −e5,
[e1, e5] = −e6, [e2, e7] = −e2, [e5, e7] = e5,

[e1, e7] = −2e1, [e2, e8] = −e2, [e5, e8] = e5,

[e1, e8] = e1, [e3, e4] = e4, [e6, e7] = −e6,
[e2, e3] = e2, [e3, e5] = e5, [e6, e8] = 2e6,

[e2, e4] = −e7 − e8, [e3, e6] = −e6,

and the post-Lie algebra structure given by

e3 · e1 = −2e1 + e7, e3 · e6 = e5 − e6, e4 · e4 = e3,

e3 · e2 = −e2 − e4, e3 · e7 = −2e3, e4 · e5 = −e3,
e3 · e3 = 2e3, e3 · e8 = e3, e4 · e6 = −e8,
e3 · e4 = e4, e4 · e1 = e2 − e6, e4 · e7 = −e4 − e5,
e3 · e5 = e5, e4 · e2 = e7 + e8, e4 · e8 = 2e4 − e5.

Proof. By Corollary 2.15 in [7], post-Lie algebra structures on (g, n) are in bijection to Rota-
Baxter operators of weight λ = 1 on n, since n is complete. For x · y = {ϕ(x), y} we can choose
ϕ(ei) = 0 for i = 1, 2, 5, 6, 7, 8. Then a short computation shows that the above homomorphism
ϕ is a possible solution. We have a Lie algebra isomorphism

f : g→ aff2(C)⊕ aff1(C)
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given by

f =



0 0 −2 0 0 0 2 −1
0 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 0 1 −2
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0


where det(f) = −3. Note that we also can use that R(n) ∼= r2(C), and that ker(n) is a
6-dimensional complete Lie subalgebra of n = sl3(C). Since it is known that the only 6-
dimensional subalgebra of sl3(C) is the parabolic one, it follows that it is complete and isomor-
phic to aff2(C). �

For the next result let

e1 = E12, e2 = E21, e3 = E11 − E22, e4 = E45, e5 = E54, e6 = E44 − E55

be a basis for the Lie algebra n = sl2(C)⊕ sl2(C).

Proposition 4.4. Let n = sl2(C) ⊕ sl2(C). Then there exists a post-Lie algebra structure on
the pair (g, n) with g ∼= r2(C)⊕ r2(C)⊕ r2(C). It is given by x · y = {ϕ(x), y} with

ϕ =


0 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0


where the Lie brackets for g given by

[e1, e3] = −2e1, [e2, e5] = −2e2, [e4, e6] = −2e4,

[e1, e5] = 2e1,

and the post-Lie algebra structure is given explicitly by

e2 · e1 = e3, e5 · e1 = −2e1, e5 · e4 = e6,

e2 · e3 = −2e2, e5 · e2 = 2e2, e5 · e6 = −2e5.

Proof. By Corollary 2.15 in [7], post-Lie algebra structures on (g, n) are in bijection to Rota-
Baxter operators of weight λ = 1 on n, since n is complete. We can write n = n1 u n2 as the
direct vector space sum of the two subalgebras

n1 = 〈e1, e3, e4, e6〉, n2 = 〈e2, e3 + e5〉.
By Proposition 2.7 in [7] we know that R(n1 + n2) = −n2 for all n1 ∈ n1, n2 ∈ n2 defines
a Rota-Baxter operator of weight 1 on n with associated post-Lie algebra structure given by
x · y = {R(x), y}. So we have R(e1) = R(e3) = R(e4) = R(e6) = 0 and R(e2) = −e2,
R(e3 + e5) = −e3 − e5. This gives the above matrix ϕ for the operator R. One verifies the
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Lie brackets for g coming from [x, y] = x · y − y · x + {x, y} and the explicit post-Lie algebra
structure with respect to the basis of n. We have the decomposition of g into ideals

g = n1 ⊕ n2

= 〈e1, e3, e4, e6〉 ⊕ 〈e2, e3 + e5〉
∼= r2(C)⊕ r2(C)⊕ r2(C).

�

5. Reductive Lie algebras with one-dimensional center

In this section we study the existence of post-Lie algebra structures on pairs (g, n), where
g is reductive with 1-dimensional center with dim(g) ≥ 2. It is well known that there are no
post-Lie algebra structures on pairs (g, n) where g is semisimple and n is abelian. Hence it is
natural to consider the case, where g is reductive with a 1-dimensional center and n is solvable,
nilpotent or abelian. For an abelian Lie algebra n, post-Lie algebra structures on (g, n) are
pre-Lie algebra structures on g. For the case g = gln(C) there exist pre-Lie algebra structures,
and one can even classify them, see [2]. So the question is, what we can say when n is solvable
or nilpotent. We have the following result.

Theorem 5.1. Let (g, n) be a pair of Lie algebras, where g is reductive with 1-dimensional
center, and n is solvable non-nilpotent. Then there is no post-Lie algebra structure on (g, n).

Proof. Assume that x · y is a post-Lie algebra structure on (g, n). Denote by V the underlying
vector space of g and n with dim(V ) = n. All left multiplications L(x) are derivations of n and
hence map n into the nilradical nil(n). Indeed, for any Lie algebra h we have D(rad(h)) ⊆ nil(h)
for all D ∈ Der(h), and for solvable h we clearly have h = rad(h). So we have

n · n = L(n)(n) ⊆ nil(n).

Since n is solvable, {n, n} is a nilpotent ideal in n, so that {n, n} ⊆ nil(n). Hence for x, y ∈ V
the Lie bracket of [x, y] in g satisfies

[x, y] = x · y − y · x+ {x, y} ∈ nil(n).

So we have [g, g] ⊆ nil(n). However, we have dim([g, g]) = n− 1, because g = [g, g]⊕ Z(g). It
follows that dim nil(n) ≥ n−1. Since n is not nilpotent, dim nil(n) ≤ n−1. Together we obtain
that dim nil(n) = n− 1 and [g, g] = nil(n) as vector spaces. But this implies that the post-Lie
algebra structure on (g, n) restricts to a post-Lie algebra structure on the pair ([g, g], nil(n)),
which is impossible by Theorem 4.2 of [5], because [g, g] is semisimple. �

In particular, there are no post-Lie algebra structures on (gln(C), n) for solvable non-nilpotent
Lie algebras n. However, this is no longer true if we replace gln(C) by gln(C) ⊕ C, i.e., if we
consider a reductive Lie algebra with dim(Z(g)) ≥ 2. Indeed, we have the following result.

Proposition 5.2. For any n ≥ 2 there is a post-Lie algebra structure on the pair (g, n), where
g = gln(C)⊕C with basis (y1, . . . , yn2 , x), where x spans C, and let n be the 2-step solvable Lie
algebra with Lie brackets {x, yi} = yi for 1 ≤ i ≤ n2.

Proof. By definition, a = 〈y1, y2, . . . , yn2〉 is an abelian ideal in n with n = ao 〈x〉, where x acts
on a by the derivation ida, i.e., with ad(x)|a = ida. Choose a pre-Lie algebra product yi · yj on
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gln(C), see [2]. This is a post-Lie algebra structure on the pair (gln(C), a). Now extend this
product to the pair (gln(C)⊕ C, n) by

x · x = 0,

yi · x = 0

x · yi = −yi = −{x, yi}

for all 1 ≤ i ≤ n2. The axioms for a post-Lie algebra structure are satisfied. First, consider the
identity

u · v − v · u = [u, v]− {u, v}.
We have to check it for all basis vectors yi, x. It holds for all u = yi, v = yj, because yi · yj is
a pre-Lie algebra structure on gln(C) with {yi, yj} = 0. So we only need to consider the case
that u or v is equal to x. By symmetry we may assume that u = x. Then for v = x it trivially
is true, and for v = yi we have

x · yi − yi · x = −yi = [x, yi]− {x, yi}.

The third identity is equivalent to the fact that all L(v) are derivations of n for all v. We have
to check this for v = yi and v = x. In these cases, the last row and last column of L(v) are
zero. Let us consider the remaining matrices of size n2. For v = yi, this matrix is a derivation
of a, since the product is a post-Lie algebra structure on (gln(C), a). For v = x, this matrix is
−I. In both cases it follows that L(v) ∈ Der(n).

The second identity is equivalent to the fact that L : x→ L(x) is a Lie algebra representation of
g. This is again obvious from the form of the operators L(yi) and L(x). Indeed, L(x) commutes
with all operators L(yi). �

We would like to prove a similar result as Theorem 5.1 with n nilpotent, non-abelian. We
start with the case of g = gl2(C).

Proposition 5.3. Let (g, n) be a pair of Lie algebras with g = gl2(C) and n nilpotent, non-
abelian. Then there is no post-Lie algebra structure on (g, n).

Proof. There are two non-abelian nilpotent Lie algebras of dimension 4 up to isomorphism,
namely n = n4(C) and n = n3(C)⊕ C. Here n4(C) is the standard graded filiform Lie algebra,
and n3(C) is the Heisenberg Lie algebra. For n = n4(C), the Lie algebra Der(n) is a strictly
upper triangular Lie algebra (by an easy computation), and hence solvable. Therefore also the
semidirect product noDer(n) is solvable. Suppose that there exists a post-Lie algebra structure
on (g, n). Then by Proposition 2.11 in [4] there is an injective homomorphism g ↪→ no Der(n)
given by x 7→ (x, L(x)). It follows that g is solvable. However, g = gl2(C) is not solvable, a
contradiction.

Secondly, let us assume that n = n3(C)⊕ C. Suppose that x · y is a post-Lie algebra structure
on (g, n) and let s = sl2(C). Then s acts on n by the restriction of the homomorphism L : g→
Der(n) to s. We claim that s acts trivially on Z(n). Indeed, let {n, n} = 〈z〉 ⊂ Z(n) = 〈z, t〉.
By Weyl’s Theorem, there is an s-invariant complement W of {n, n} in Z(n). So we have
Z(n) = {n, n}⊕W as s-modules with dim({n, n}) = dim(W ) = 1. Since s is semisimple, it acts
trivially on W and {n, n}, so that s · Z(n) = 0. Again by Weyl’s theorem we have

n = Z(n)⊕ U
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as s-modules with a complement U = 〈u, v〉. Suppose that {U,U} = 0. Then {n, n} =
{U ⊕ Z(n), U ⊕ Z(n)} = 0, which is a contradiction. It follows that {u, v} = w is nonzero and
h = 〈u, v, w〉 is a subalgebra of n isomorphic to n3(C). By construction, s · h ⊆ h. So by the
first axiom for a post-Lie structure we have

[x, y] = x · y − y · x+ {x, y} ∈ h

for all x, y ∈ g. It follows that s = [s, s] ⊆ h, so that both vector spaces for s and h coincide.
Hence x·y induces a post-Lie algebra structure on (s, h), where s is semisimple and h is nilpotent.
This is a contradiction to Theorem 4.2 of [5]. �

We can generalize this result for pairs (gln(C), n) where n is 2-step nilpotent and non-abelian.
For this we need the following lemma.

Lemma 5.4. Let x · y be a PA-structure on a pair (g, n), where n is 2-step nilpotent with Lie
bracket {x, y}. Then

x ◦ y =
1

2
{x, y}+ x · y

defines a pre-Lie algebra structure on g.

Proof. This follows from Lemma 4.1 and Proposition 4.2 of [4]. But the axioms (4) and (5) for
a pre-Lie algebra structure on g can also be easily verified directly. �

Defining the linear operators `(x), L(x), ad(x) by L(x)(y) = x · y, `(x)(y) = x ◦ y and
ad(x)(y) = {x, y} we can rewrite the pre-Lie algebra product as

`(x) =
1

2
ad(x) + L(x).

Proposition 5.5. Let (g, n) be a pair of Lie algebras where g = gln(C) and n is 2-nilpotent
and non-abelian. Then there is no post-Lie algebra structure on (g, n).

Proof. By Proposition 5.3 we may assume that n ≥ 3. Assume that x · y = L(x)(y) is a
post-Lie algebra structure on (g, n) and let L : gln(C) → Der(n) be the representation given
by x 7→ L(x). Then the restriction to s = sln(C) defines an s-module ML. By Lemma 5.4 we
obtain a g-module, and then an s-module M`, by `(x) = 1

2
ad(x) +L(x). This defines a pre-Lie

algebra structure (or left-symmetric structure) on g.
Now we can apply Theorem 4.5 of [1] for all n ≥ 3. It implies that the s-module M` is special in
the sense of [1], and equivalent to Mn(C). The module action here is given by left multiplication
of matrices, and Mn(C) is equivalent to L(ω1)

⊕n and as well to (L(ω1)
∗)⊕n, where L(ω1) denotes

the n-dimensional natural s-module and L(ω1)
∗ denotes its dual module. We may assume that

the only irreducible s-submodule of M` is of type L(ω1). Since n is 2-step nilpotent and {n, n}
is a characteristic subspace of n, the formula `(x) = 1

2
ad(x)+L(x) shows that ML and M` have

the same irreducible s-submodules. So also ML has only irreducible submodules of type L(ω1).
On the other hand, {n, n} is an s-invariant submodule of ML. By Weyl’s theorem there exists
an s-invariant complement V = V1 ⊕ · · · ⊕ Vk, where Vi is irreducible, with n = V ⊕ {n, n}. So
V is a generating space for n. Thus the s-submodule {n, n} is an s-submodule of

V ∧ V = (V1 ⊕ · · · ⊕ Vk) ∧ (V1 ⊕ · · · ⊕ Vk).
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Recall that L(ωi) denotes the irreducible heighest weight module with fundamental weight ωi.
By Lemma 3.4 in [10] we have

Vi ∧ Vj =

{
L(ω1)⊗ L(ω1) ∼= L(ω2)⊕ L(2ω1) if i 6= j,

Sym2(L(ω1)) ∼= L(2ω1) if i = j.

So V ∧ V contains an irreducible s-submodule L(2ω1), which is not of type L(ω1). It follows
that either {n, n} = 0, which is a contradiction, or that the s-submodule {n, n} doesn’t contain
an irreducible s-submodule of type L(ω1) and hence cannot be an s-submodule of ML. This is
also a contradiction. �

The method of this proof can also be applied to other pairs (g, n), where g is reductive with
1-dimensional center and n is 2-step nilpotent and non-abelian. However, for n being nilpotent
of class c ≥ 3 we do not know whether or not there exists a post-Lie algebra structure on (g, n).
So we formulate an open question as follows:

Question 5.6. Let (g, n) be a pair of Lie algebras, where g is reductive non-abelian with 1-
dimensional center, and n is nilpotent non-abelian. Is it true that there are no post-Lie algebra
structures on the pair (g, n)?
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