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Abstract. We continue the algebraic study of almost inner derivations of Lie algebras over a
field of characteristic zero and determine these derivations for free nilpotent Lie algebras, for
almost abelian Lie algebras, for Lie algebras whose solvable radical is abelian and for several
classes of filiform nilpotent Lie algebras. We find a family of n-dimensional characteristically
nilpotent filiform Lie algebras fn, for all n ≥ 13, all of whose derivations are almost inner.
Finally we compare the almost inner derivations of Lie algebras considered over two different
fields K ⊇ k for a finite-dimensional field extension.

1. Introduction

Almost inner automorphisms of Lie groups and almost inner derivations of Lie algebras have
been introduced by Gordon and Wilson [4] in the study of isospectral deformations of compact
solvmanifolds. They constructed isospectral but non-isometric compact Riemannian manifolds
of the form G/Γ, with a simply connected exponential solvable Lie group G, and a discrete co-
compact subgroup Γ of G. This construction relies on almost inner automorphisms and almost
inner derivations. Larsen [6] studied algebraic groups for which every two almost conjugated
homomorphisms are globally conjugated. This is closely related to the question whether or
not a compact group can be the common covering space of a pair of non-isometric isospectral
manifolds [7].
The concept of “almost inner” automorphisms and derivations, almost homomorphisms, or al-
most conjugate subgroups arises in many areas of algebra and geometry. However, a systematic
algebraic study was not done so far. So we started an investigation of almost inner derivations
of Lie algebras in [1]. The aim of this paper is to continue this study and prove further results
on almost inner derivations for certain classes of Lie algebras.

We recall the following definitions. Let g be a finite-dimensional Lie algebra over a field K
and Der(g) its derivation Lie algebra. A derivation D ∈ Der(g) is said to be almost inner,
if D(x) ∈ [g, x] for all x ∈ g. The space of all almost inner derivations of g is denoted
by AID(g). The subspace AID(g) becomes a Lie subalgebra of Der(g) by the Lie bracket
[D,D′] = DD′ − D′D. We denote the Lie subalgebra of inner derivations by Inn(g). An al-
most inner derivation D ∈ AID(g) is called central almost inner if there exists an x ∈ g such
that D − ad(x) maps g to the center Z(g). We denote the subalgebra of central almost inner
derivations of g by CAID(g).

The paper is structured as follows. In the second section we show that every almost inner
derivation of a free nilpotent Lie algebra over a field of characteristic zero is inner. Similarly, in
the third section, we show that every almost inner derivation of an almost abelian Lie algebra
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is inner. In the fourth section we compute the almost inner derivations for certain classes of
filiform nilpotent Lie algebras, e.g., for the Witt algebras Wn and for a family fn, n ≥ 13,
which is closely related to Wn. We show that the Witt algebra has 4 linearly independent
outer derivations, where 3 of them are almost inner. For fn we show that every derivation is
almost inner. This comes as a surprise and it is the first known family of nilpotent Lie algebras,
where all derivations are almost inner. In the fifth section we show that every almost inner
derivation is inner for Lie algebras whose solvable radical is abelian over an algebraically closed
field of characteristic zero. Here we use results about “distinguished” elements in semisimple
Lie algebras, whose centralizers consist entirely of nilpotent elements.
The last two sections contain results about almost inner derivations of Lie algebras considered
over two different fields K ⊇ k. In particular we show that if a Lie algebra viewed over K
admits a non-trivial almost inner derivation, then so does also the Lie algebra viewed over the
smaller field k. However, the converse does not hold in general. We can construct new almost
inner derivations using field extensions.

2. Free nilpotent Lie Algebras

In this section we will prove that a free nilpotent Lie algebra over a field of characteristic
zero does not admit any non-trivial almost inner derivations. We will use the following lemma,
which can be proved by induction on k.

Lemma 2.1. Let k be a non-negative integer and V be a vector space over a field K of charac-
teristic zero. Consider a sequence v0, v1, v2, . . . in V . Suppose that there exist a0, a1, . . . , ak ∈ V
such that

vn+1 − vn =
k∑
j=0

njaj

for all n ∈ N. Then there exist vectors b0, b1, . . . , bk+1 ∈ V such that

vn =
k+1∑
j=0

njbj ∀n ∈ N,

ak 6= 0 =⇒ bk+1 6= 0.

Consider the free Lie algebra g on two generators x1 and x2. Define g1 as the vector space
spanned by the generators x1 and x2 and gn, for n ≥ 2, as the subspace of g generated by all
Lie brackets of length n in the generators x1 and x2. Denote further gi,j for the subspace of g
generated by all Lie brackets in the generators where the first generator x1 appears i times and
the second one x2 appears j times. It is clear that

g =
∞⊕
n=1

gn and gn =
n−1⊕
i=1

gi,n−i (for n ≥ 2).

Moreover, it holds that

[gi, gj] ⊆ gi+j and [gi,j, gp,q] ⊆ gi+p,j+q.

We are interested in the equation

[x1, x] + [x2, y] = 0
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in the variables x and y, which was studied in [8]. Let

V = {(x, y) ∈ g× g | [x1, x] + [x2, y] = 0}
be the solution space of the equation. Note that V is a vector space. For each n ∈ N0, we
define Vn = V ∩ (gn × gn). Consider now the maps

ϕn : Vn → gn, (x, y) 7→ x,

ψn : Vn → gn, (x, y) 7→ y.

Denote ϕn(Vn) = V x
n and ψn(Vn) = V y

n . We assert that ϕ̃n : Vn → V x
n : (x, y) 7→ ϕn(x, y) is

an isomorphism for all n ≥ 2. It is obvious that the map ϕ̃n is linear. Surjectivity follows by
construction. Suppose that ϕ̃n is not injective, then there is a solution (0, 0) 6= (0, y) ∈ Vn,
which means that [x2, y] = 0. Therefore, y = 0 and we have a contradiction. Analogously, also

ψ̃n : Vn → V y
n : (x, y) 7→ ψn(x, y) is an isomorphism. Hence, for all n ≥ 2, there is a vector

space isomorphism σ : V x
n → V y

n such that [x1, x] + [x2, σ(x)] = 0 for all x ∈ V x
n . Note that

under this isomorphism σ(V x
n ∩ gi,n−i) = V y

n ∩ gi+1,n−i−1 for all 0 < i < n. Denote further by
g1 = g and gi = [g, gi−1], i ≥ 2 the terms of the lower central series.

Theorem 2.2. Let K be a field of characteristic zero and let fr,c be the free c–step nilpotent
Lie algebra over K on r generators. Then we have AID(fr,c) = Inn(fr,c).

Proof. We prove this theorem by induction on the nilpotency class c. The case c = 1 is clear
and the cases c = 2 and c = 3 were already treated in [1]. So let c ≥ 3 and assume that the
theorem holds for fr,c. Consider now fr,c+1 with generators x1, x2, . . . , xr. Let D ∈ AID(fr,c+1)
be an almost inner derivation of fr,c+1. We will prove that D is in fact inner. It is clear that D
induces an almost inner derivation on

fr,c+1/f
c+1
r,c+1

∼= fr,c.

By the induction hypothesis, this is an inner derivation. Hence, by changing D up to an
inner derivation, we may assume that D(fr,c+1) ⊆ fc+1

r,c+1 = Z(fr,c+1), which means that D ∈
CAID(fr,c+1). Hence, there exists v ∈ fcr,c+1 such that D(x1) = [x1, v]. By replacing D by
D + ad(v), we can assume that D is an almost inner derivation of fr,c+1 with D(x1) = 0.
Further, for all x ∈ fr,c+1, we have D(x) = [x,w(x)], with w(x) ∈ fcr,c+1. It suffices to prove that
D(xi) = 0 for all i ∈ {2, . . . , r}. We first look at x2. For each n ∈ N, there exists a wn ∈ fcr,c+1

such that

(1) D(nx1 + x2) = [nx1 + x2, wn],

because D is almost inner. We can assume without loss of generality that wn is a linear
combination of Lie brackets of length c in the generators (and does not contain a component
using Lie brackets of length c+ 1). By linearity, we also have that

D(nx1 + x2) = nD(x1) +D(x2) = D(x2).

The two observations above imply that the equation

(2) [nx1 + x2, wn] = [mx1 + x2, wm] = [x2, w0]

holds for all n,m ∈ N. We consider [nx1 + x2, wn] + [x2,−w0] = 0 as an equation in the free
Lie algebra fr on r generators. For n 6= 0, define x′1 := nx1 + x2. It is clear that x′1, x2, . . . , xr
is also a free generating set for the free Lie algebra fr.
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It follows from [8, section 5] that wn, w0 ∈ 〈x′1, x2〉 = 〈x1, x2〉 for all n ∈ N0, where 〈x1, x2〉
denotes the Lie algebra generated by x1 and x2. This means that wn can be written as wn =∑c−1

i=1 vi(n), where vi(n) is a linear combination of Lie brackets where x2 and x1 appear i
respectively c− i times. We can assume without loss of generality that we work in g, the free
Lie algebra on two generators x1 and x2 (and so vi(n) ∈ gc−i,i, using the notations introduced
above this theorem). To prove that D(x2) = 0, it suffices by equation (1) to show that w0 = 0.
Suppose on the contrary that w0 6= 0. Define

k = max{i ∈ N | ∃n ∈ N with vi(n) 6= 0},

then wn =
∑k

i=1 vi(n) and there exists an n ∈ N such that vk(n) 6= 0. It follows from equation
(2) that [(n+ 1)x1 + x2, wn+1] = [nx1 + x2, wn], which implies that

(3) [x1, (n+ 1)wn+1 − nwn] + [x2, wn+1 − wn] = 0,

with n ∈ N. Note that this consists in fact of several equations (one per bi-degree (i, j) with
i+ j = c).

We will now prove by induction on p that for all p ∈ {0, . . . , k − 1} and all 0 ≤ i ≤ p, there
exist bp,i ∈ gc−k+p,k−p, with bp,p 6= 0 such that

vk−p(n) = npbp,p + np−1bp,p−1 + . . .+ nbp,1 + bp,0.

Basis step p = 0: we first consider the component of equation (3) with in total k + 1
appearances of x2, i.e. the bi-degree (c− k, k)–part. This gives

[x1, 0] + [x2, vk(n+ 1)− vk(n)] = 0.

Hence, vk(n + 1) − vk(n) = 0, which means that vk(n) is a constant b0,0 6= 0 and belongs to

gc−k,k. Therefore, we have that wn =
(∑k−1

i=1 vi(n)
)

+ b0,0.

Induction step: we assume that the assertion holds for a given p < k − 1. Hence, there exist
bp,p, bp,p−1, . . . , bp,0 ∈ gc−k+p,k−p with bp,p 6= 0 such that

vk−p(n) = npbp,p + np−1bp,p−1 + . . .+ bp,0.

From the component of equation (3) with k − p appearances of x2, it follows that

[x1, (n+ 1)vk−p(n+ 1)− nvk−p(n)] + [x2, vk−p−1(n+ 1)− vk−p−1(n)] = 0.

Hence,

vk−p−1(n+ 1)− vk−p−1(n)

= σ
(
(n+ 1)vk−p(n+ 1)− nvk−p(n)

)
= σ

(
(n+ 1)p+1bp,p + (n+ 1)pbp,p−1 + . . .+ (n+ 1)bp,0

−np+1bp,p − npbp,p−1 − . . .− nbp,0
)

= (n+ 1)p+1σ(bp,p) + (n+ 1)pσ(bp,p−1) + . . .+ (n+ 1)σ(bp,0)

−np+1σ(bp,p)− npσ(bp,p−1)− . . .− nσ(bp,0),

which can be written as the sum of np(p + 1)σ(bp,p) and terms of lower degree. Since bp,p 6= 0,
also (p + 1)σ(bp,p) 6= 0 holds. Note that all σ(bp,i) belong to gc−k+p+1,k−p−1. Hence, it follows
from Lemma 2.1 that there exist bp+1,p+1, . . . , bp+1,0 ∈ gc−k+p+1,k−p−1 with bp+1,p+1 6= 0 such
that

vk−p−1(n) = np+1bp+1,p+1 + npbp+1,p + . . .+ bp+1,0,
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which concludes the proof of our claim on the form of the vk−p(n).

The above assertion implies that for all n ∈ N, the equation v1(n) = nk−1bk−1,k−1 + . . .+ bk−1,0
holds, where bk−1,i ∈ gc−1,1 and bk−1,k−1 6= 0.

We now look at the term of equation (3) with exactly one factor of x2. We then have

[x1, (n+ 1)v1(n+ 1)− nv1(n)] + [x2, 0] = 0

and thus
(n+ 1)v1(n+ 1)− nv1(n) = 0.

This implies that

0 = (n+ 1)
(
(n+ 1)k−1bk−1,k−1 + . . .+ bk−1,0

)
− n

(
nk−1bk−1,k−1 + . . .+ bk−1,0

)
= (n+ 1)kbk−1,k−1 + . . .+ (n+ 1)bk−1,0 − nkbk−1,k−1 − . . .− nbk−1,0

= knk−1bk−1,k−1 +
k∑
i=2

(
k

i

)
nk−ibk−1,k−1 +

k−1∑
i=1

(
k − 1

i

)
nk−1−ibk−1,k−2 + . . .+ bk−1,0.

Hence, we can write 0 as a sum of knk−1bk−1,k−1 and some terms of lower degree. This equation
has to hold for all n ∈ N, which implies that kbk−1,k−1 = 0. Since we work in a field of
characteristic zero, this gives a contradiction, because bk−1,k−1 6= 0. Hence, w0 = 0. It now
follows from equation (1) that D(x2) = 0. By a similar reasoning, we find that D(xi) = 0 for
all i ∈ {3, . . . , r}. This finishes the proof. �

3. Almost abelian Lie algebras

The aim of this section is to show the following result.

Theorem 3.1. Let g be a finite-dimensional Lie algebra over a field K containing an abelian
ideal of codimension one. Then AID(g) = Inn(g).

Proof. As g has a codimension one abelian ideal, it holds that g ∼= Kn oϕ K for some Lie
algebra morphism ϕ : K → gln(K). We use t to denote a basis vector of K. With respect to a
suitable basis of Kn, we may assume that ϕ(t) is in rational canonical form. This means that
there is a basis ei,j (1 ≤ i ≤ r, 1 ≤ j ≤ ki) of Kn such that

ϕ(t) =


C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Cr


is a blocked diagonal matrix where each block Ci is a companion matrix

Ci =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2
...

... . . .
...

...
0 0 · · · 1 −αki−1


of a polynomial q(x)m = α0 +α1x+ · · ·+αki−1x

ki−1 +xki , where q(x) is irreducible. Since q(x)
is irreducible, it holds that either q(x)m = xki and hence α0 = α1 = · · · = αki−1 = 0 or α0 6= 0.
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Now, let D ∈ AID(Kn oϕ K). There exists an element v ∈ Kn oϕ K such that D(t) = [t, v].
By replacing D with D + ad(v), we may assume that D(t) = 0.

For any vector e ∈ Kn, there exists a scalar α(e) ∈ K, for which it holds that

D(e) = [e, α(e)t].

Our aim is to show now that if both ei,j, ep,q 6∈ Cg(t), then

α(ei,j) = α(ep,q).

Since we assume that ei,j, ep,q 6∈ Cg(t), it holds that

[t, ei,j] = Ciei,j 6= 0 and [t, ep,q] = Cpep,q 6= 0.

Moreover by considering several cases we can see that Ciei,j and Cpep,q are linearly independent
when (i, j) 6= (p, q):

Case 1, i 6= p: then Ciei,j belongs to the span of ei,1, ei,2, . . . , ei,ki , while Cpep,q belongs to the
span of ep,1, ep,2, . . . , ep,kp , which shows that these vectors are linearly independent.

Case 2, i = p: we may assume that 1 ≤ j < q ≤ ki.
In case q < ki we have that Ciei,j = ei,j+1 and Ciei,q = ei,q+1 which are clearly linearly
independent.
In case q = ki we have that Ciei,ki = −α0ei,1 − α1ei,2 − · · · − αki−1ei,ki with α0 6= 0 (if α0 = 0,
then also α1 = · · · = αki−1 = 0 and ei,ki ∈ Cg(t)). Hence we obtain again that Ciei,j and Cieq,ki
are linearly independent.

We find that

(4) D(ei,j + ep,q) = [ei,j + ep,q, α(ei,j + ep,q)t] = −α(ei,j + ep,q)Ciei,j − α(ei,j + ep,q)Cpep,q,

while on the other hand we also have

(5) D(ei,j) +D(ep,q) = [ei,j, α(ei,j)t] + [ep,q, α(ep,q)t] = −α(ei,j)Ciei,j − α(ep,q)Cpep,q.

Since (4) and (5) must coincide and using the fact that Ciei,j and Cpep,q are linearly independent,
we finally find that

α(ei,j) = α(ei,j + ep,q) = α(ep,q).

Now, let α ∈ K be the fixed value such that α(ei,j) = α when ei,j 6∈ Cg(t), then we have that

D(ei,j) = [ei,j, αt] for all 1 ≤ i ≤ r, 1 ≤ j ≤ ki and also 0 = D(t) = [t, αt].

It follows that D coincides with ad(−αt) on all basis vectors and hence D = ad(−αt) ∈
Inn(g). �

This result cannot be extended to Lie algebras g of the form g ∼= Kn oK2.

Example 3.2. Let n ≥ 3 and consider the Lie algebra g over K with basis e1, e2, . . . , en, s, t
and non-vanishing Lie brackets

[s, ei] = ei+1, 1 ≤ i ≤ n− 1,

[t, ei] = ei+2, 1 ≤ i ≤ n− 2.
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Then we have g = Kn oK2. Let D : g→ g be defined by α1e1 + · · · + αnen + βs + γt 7→ γen.
Then D is a derivation. Define the map ϕD : g→ g by

α1e1 + · · ·+ αnen + βs+ γt 7→
{ γ

β
en−1 if β 6= 0

en−2 if β = 0.

Then we have that for all v ∈ g, D(v) = [v, ϕD(v)] showing that D ∈ AID(g). It is easy to see
that D 6∈ Inn(g). Hence we have AID(g) 6= Inn(g).

This result can also not be generalized to Lie algebras of the form g ∼= fr,c oK where fr,c is
a free nilpotent Lie algebra on r generators and of class c > 1.

Example 3.3. Let f3,2 be the free 2-step nilpotent Lie algebra on 3 generators, then f3,2 has a
basis x1, x2, x3, y1, y2, y3 with non-trivial brackets

[x1, x2] = y1, [x1, x3] = y2, [x2, x3] = y3.

Now, add one more generator t and one extra non trivial bracket

[t, x1] = y3,

to obtain a 7-dimensional Lie algebra g = f3,2 oK. Define D : g→ g by

a1x1 + a2x2 + a3x3 + b1y1 + b2y2 + b3y3 + ct 7→ a1(y1 + y2).

Again, it is obvious that D is a derivation of g. Define ϕD : g→ g by

a1x1 + a2x2 + a3x3 + b1y1 + b2y2 + b3y3 + ct 7→
{
x2 + x3 + a2−a3

a1
t if a1 6= 0

0 if a1 = 0.

Then D(v) = [v, ϕD(v)] for all v ∈ g, showing that D ∈ AID(g). It is easy to see that
D 6∈ Inn(g), and so also in this case we have that AID(g) 6= Inn(g).

4. Filiform nilpotent Lie algebras

In this section we determine the almost inner derivations for the classes Ln, Qn, Rn,Wn of
filiform nilpotent Lie algebras discussed in [5, Chapter 4] and for a family of characteristi-
cally nilpotent, filiform Lie algebras fn for n ≥ 13 introduced in [2]. We always assume that
(e1, . . . , en) is an adapted basis, which satisfies [e1, ei] = ei+1 for all 2 ≤ i ≤ n− 1.

Definition 4.1. The Lie algebra Ln for n ≥ 3 is defined by the Lie brackets

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1.

The Lie algebra Qn for n ≥ 6 even is defined by the Lie brackets

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1,

[ei, en−i+1] = (−1)i+1en, 2 ≤ i ≤ n

2
.

The Lie algebra Rn for n ≥ 5 is defined by the Lie brackets

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1,

[e2, ei] = ei+2, 3 ≤ i ≤ n− 2.
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The Witt Lie algebra Wn for n ≥ 5 is defined by the Lie brackets

[e1, ej] = ej+1, 2 ≤ j ≤ n− 1,

[ei, ej] =
6(j − i)

j(j − 1)
(
j+i−2
i−2

)ei+j, 2 ≤ i ≤ n− 1

2
, i+ 1 ≤ j ≤ n− i.

The Witt algebra also has a basis (f1, . . . , fn) with [fi, fj] = (j−i)fi+j for 1 ≤ i+j ≤ n, which
is not adapted. The derivation algebras of Ln, Qn, Rn,Wn have been determined in [5]. Since
the algebras are filiform nilpotent, we have dim Inn(g) = n− 1 for all classes. The dimensions
of Der(g) are given as follows:

dim Der(Ln) = 2n− 1,

dim Der(Qn) =
3n

2
,

dim Der(Rn) = 2n− 3,

dim Der(Wn) = n+ 3.

We have shown that AID(Ln) = Inn(Ln) in [1, Proposition 7.2] and that

AID(Rn) = Inn(Rn)⊕ 〈En,2〉

in [1, Proposition 7.4]. Here Eij denotes the linear map which maps ej to ei and ek to 0
for k 6= j. As a matrix, it has an entry 1 at position (i, j) and zero entries otherwise. Let
x =

∑n
i=1 xiei ∈ Qn. Define linear maps in End(Qn) by

t0(x) = x2en,

t1(x) = x1e1 + x1e2 +
n−1∑
i=3

(i− 2)xiei + (n− 3)xnen,

t2(x) = −x1e2 +
n−1∑
i=2

xiei + 2xnen,

hs(x) =
n+1−2s∑
i=2

xiei−1+2s, 2 ≤ s ≤ n

2
− 1.

A computation shows that these linear maps are derivations of Qn. We have the following
result, see [5].

Proposition 4.2. Let n ≥ 6 even. Then {ad(e1), . . . , ad(en−1), t0, t1, t2, h2, h3, . . . , hn
2
−1} is a

basis of Der(Qn).

Note that there is a mistake in the formulation and proof in [5], since the map t0 is not taken
into account although it is a derivation. It corresponds with the map dn−2 of the proof, which
is not zero as is claimed there. It is easy to see then that every almost inner derivation of Qn

is inner.

Proposition 4.3. Let n ≥ 6 even. Then AID(Qn) = Inn(Qn).
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Proof. Take an arbitrary ϕ ∈ 〈t0, t1, t2, hs | 2 ≤ s ≤ n
2
− 1〉, then there exist values α0, α1, α2, βs

(with 2 ≤ s ≤ n
2
− 1) such that

ϕ = α0t0 + α1t1 + α2t2 +

n
2
−1∑
s=2

βshs.

Suppose that ϕ ∈ AID(Qn). For x =
∑n

i=1 xiei ∈ Qn we have

[e1 + e2, x] = (x2 − x1)e3 +
n−1∑
i=4

xi−1ei.

Since ϕ(e1 + e2) = α0en + α1(e1 + e2) +
∑n

2
−1

s=2 βse2s+1, we must have that α0 = α1 = 0.

Moreover, ϕ(e2) = α2e2 +
∑n

2
−1

s=2 βse2s+1, but [e2, Qn] = 〈e3, en〉, which means that α2 = βs = 0
(for all 2 ≤ s ≤ n

2
− 1). Hence, the only almost inner derivation in 〈t0, t1, t2, hs | 2 ≤ s ≤ n

2
− 1〉

is ϕ = 0. �

For the Witt algebra Wn define linear maps by

t1(x) = x2en,

t2(x) = x2en−1 + x3en,

t3(x) = x2en−2 + x3en−1 + x4en,

h(x) =
n∑
i=1

ixiei.

We have the following result, see [5].

Proposition 4.4. Let n ≥ 5. Then {ad(e1), . . . , ad(en−1), t1, t2, t3, h} is a basis of Der(Wn).

From this we obtain the following result.

Proposition 4.5. Let n ≥ 9. Then AID(Wn) = Inn(Wn)⊕ 〈t1, t2, t3〉.

Proof. The derivation h is not almost inner, because h(e1) = e1 6∈ [e1,Wn]. We need to show
that t1, t2, t3 are almost inner for all n ≥ 9. Then the claim follows by Proposition 4.4. Let us
write [ei, ej] = ci,jei+j, 2 ≤ i < j ≤ n − i for the coefficients appearing in the Lie brackets of
Wn. Let x =

∑n
i=1 xiei ∈ Wn. Define a map ϕt1 ∈ End(Wn) by

ϕt1(x) =

{
x2
x1
en−1, for x1 6= 0,
1

c2,n−2
en−2, for x1 = 0.

Here n− 2 ≥ 3 in c2,n−2 since n ≥ 5. We claim that t1(x) = [x, ϕt1(x)] for all x ∈ Wn, so that
t1 is almost inner. Indeed, for x1 6= 0 we have [x, x2

x1
en−1] = x2[e1, en−1] = x2en = t1(x). For

x1 = 0 we also have [x, 1
c2,n−2

en−2] = x2
1

c2,n−2
[e2, en−2] = x2en.

For n ≥ 7 we define a map ϕt2 ∈ End(Wn) by

ϕt2(x) =


x2
x1
en−2 + (x3

x1
− c2,n−2x22

x21
)en−1, for x1 6= 0,

1
c2,n−3

en−3 + (c2,n−3−c3,n−3)x3
c2,n−2c2,n−3x2

en−2, for x1 = 0, x2 6= 0,
1

c3,n−3
en−3, for x1 = 0, x2 = 0.
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This is well-defined for the ci,j since n ≥ 7. We claim that t2(x) = [x, ϕt2(x)] for all x ∈ Wn, so
that t2 is almost inner for all n ≥ 7. Indeed, for x1 6= 0 we have

[x,
x2
x1
en−2 +

(
x3
x1
− c2,n−2x

2
2

x21

)
en−1] = x2[e1, en−2] +

(
x3 − c2,n−2

x22
x1

)
[e1, en−1] +

x22
x1

[e2, en−2]

= x2en−1 + x3en − c2,n−2
x22
x1
en + c2,n−2

x22
x1
en

= t2(x).

For x1 = 0 and x2 6= 0 we have

[x,
1

c2,n−3
en−3 +

(c2,n−3 − c3,n−3)x3
c2,n−2c2,n−3x2

en−2] = x2
1

c2,n−3
[e2, en−3] +

c2,n−3 − c3,n−3
c2,n−2c2,n−3

x3[e2, en−2]

+
x3

c2,n−3
[e3, en−3]

= x2en−1 + x3

(
c2,n−3 − c3,n−3

c2,n−3
+
c3,n−3
c2,n−3

)
en

= t2(x).

Finally, for x1 = x2 = 0 we have

[x,
1

c3,n−3
en−3] =

x3
c3,n−3

[e3, en−3] = x3en = t2(x).

For n ≥ 9 we define a map ϕt3 ∈ End(Wn) by

ϕt3(x) =


ρ1(x), for x1 6= 0,

ρ2(x), for x1 = 0, x2 6= 0,

ρ3(x), for x1 = x2 = 0, x3 6= 0,

ρ4(x), for x1 = x2 = x3 = 0,

with

ρ1(x) =
x2
x1
en−3 +

(
x3
x1
− c2,n−3x

2
2

x21

)
en−2 +

(
x4
x1
− (c2,n−2 + c3,n−3)x2x3

x21
+
c2,n−2c2,n−3x

3
2

x31

)
en−1,

ρ2(x) =
1

c2,n−4
en−4 +

(c2,n−4 − c3,n−4)x3
c2,n−3c2,n−4x2

en−3

+

(
(c2,n−4 − c4,n−4)x4
c2,n−2c2,n−4x2

− (c2,n−4 − c3,n−4)c3,n−3x23
c2,n−2c2,n−3c2,n−4x22

)
en−2,

ρ3(x) =
1

c3,n−4
en−4 +

(c3,n−4 − c4,n−4)x4
c3,n−3c3,n−4x3

en−3,

ρ4(x) =
1

c4,n−4
en−4.

This is well-defined since n ≥ 9. It is straightforward to see that t3(x) = [x, ϕt3(x)] for all
x ∈ Wn, so that t3 is almost inner for all n ≥ 9. This finishes the proof. �

Remark 4.6. For k = 5, 6 we have AID(Wk) = Inn(Wk) ⊕ 〈t1〉 and for k = 7, 8 we have
AID(Wk) = Inn(Wk)⊕ 〈t1, t2〉.
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In [2] we have introduced a family of filiform nilpotent Lie algebras fn for n ≥ 13. They are
closely related to the Witt algebras Wn. The Lie brackets are defined as follows:

[e1, ei] = ei+1, i = 2, . . . , n− 1

[ei, ej] =
n∑
r=1

( b j−i−1
2
c∑

`=0

(−1)`
(
j − i− `− 1

`

)
αi+`, r−j+i+2`+1

)
er, 2 ≤ i < j ≤ n,

with parameters αk,s for 1 ≤ k, s ≤ n, which are zero except for

α`,2`+1 =
3(

`
2

)(
2`−1
`−1

) , ` = 2, 3, . . . , bn−1
2
c,

α3,n−4 = 1,

α4,n−2 =
1

7
+

10

21

(n− 7)(n− 8)

(n− 4)(n− 5)
,

α4,n =

{
22105
15246

, if n = 13,

0 if n ≥ 14,

and

α5,n =
1

42
− 70(n− 8)

11(n− 2)(n− 3)(n− 4)(n− 5)
+

25

99

(n− 6)(n− 7)(n− 8)

(n− 2)(n− 3)(n− 4)

+
5

66

(n− 5)(n− 6)

(n− 2)(n− 3)
− 65

1386

(n− 7)(n− 8)

(n− 4)(n− 5)
.

For convenience consider the case n = 13 separately. For n ≥ 14 it is easy to see that the Lie
brackets of fn are given by

[e1, ej] = ej+1, 2 ≤ j ≤ n− 1,

[ei, ej] = ci,jei+j + dni,jei+j+n−11, 2 ≤ i < j, i+ j ≤ 11

where the coefficients

ci,j =
6(j − i)

j(j − 1)
(
j+i−2
i−2

)
are the same as for Wn. This follows from the Pfaff-Saalschütz formula, see [2]. It is also easy
to see that dn2,5 = −1 for all n ≥ 13. Define linear maps t1, t2, t3, h ∈ End(fn) exactly like in the
case of Wn. Note that h with h(ei) = iei is not a derivation of fn, because

[e2, e5] = c2,5e7 + dn2,5en−4 =
9

10
e7 − en−4,
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so that

h([e2, e5]) =
63

10
e7 − (n− 4)en−4,

[h(e2), e5] + [e2, h(e5)] = 7[e2, e5] =
63

10
e7 − 7en−4

are different for all n ≥ 13.

Proposition 4.7. Let n ≥ 13. Then {ad(e1), . . . , ad(en−1), t1, t2, t3} is a basis of Der(fn). In
particular, all derivations of fn are nilpotent.

Proof. For n ≥ 14 the proof goes exactly like the proof for the Witt algebra Wn, except that
only t1, t2, t3 are derivations, but not h. For n = 13 the claim can be verified explicitly. �

We obtain the remarkable result that all derivations of fn for n ≥ 13 are almost inner. In
particular, t1, t2, t3 are almost inner, but not inner.

Proposition 4.8. We have Der(fn) = AID(fn) for all n ≥ 13.

Proof. Indeed, the derivations t1, t2, t3 are almost inner. For n ≥ 14 this follows in the same
way as in the proof of Proposition 4.5, using the functions ϕt1 , ϕt2 , ϕt3 . These depend only on
the structure constants ci,j, and all computations are also valid here. For n = 13 the result can
be verified directly. �

5. Lie algebras whose solvable radical is abelian

The aim of this section is to show that AID(g) = Inn(g) for any Lie algebra g whose solvable
radical is abelian, over an algebraically closed field K of characteristic zero. Fix such a Lie
algebra g and let a denote the solvable radical of g, which is abelian. Then we have g = ao s,
where s is a semisimple Lie algebra. Let s ∈ s and a ∈ a. Denote by s · a = [s, a] the s-module
structure of a. Then the Lie bracket in g is given by

[(a1, s1), (a2, s2)] = (s1 · a2 − s2 · a1, [s1, s2]), ∀a1, a2 ∈ a, ∀s1, s2 ∈ s.

In the sequel we will use

Ends(a) = {ϕ : a→ a | ϕ is linear and ϕ(s · a) = s · ϕ(a), ∀s ∈ s, ∀a ∈ a}
to denote the space of s-endomorphisms of a. For any ϕ ∈ Ends(a) we define

Dϕ : ao s→ ao s : (a, s) 7→ (ϕ(a), 0).

Remark 5.1. Note that we have Dϕ ∈ Der(ao s).

Indeed, let a1, a2 ∈ a and s1, s2 ∈ s. On the one hand, we have that

Dϕ([(a1, s1), (a2, s2)]) = Dϕ(s1 · a2 − s2 · a1, [s1, s2]) = (ϕ(s1 · a2 − s2 · a1), 0),

while on the other hand

[Dϕ(a1, s1), (a2, s2)] + [(a1, s1), Dϕ(a2, s2)] = (−s2 · ϕ(a1) + s1 · ϕ(a2), 0).

Since ϕ ∈ Ends(a), both sides coincide, which shows that Dϕ ∈ Der(ao s).

Proposition 5.2. Let D = {Dϕ | ϕ ∈ Ends(a)}. Then as vector spaces we have that

Der(ao s) = Inn(ao s)⊕D.
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Proof. It is easy to see that Inn(a o s) ∩ D = 0, so we have to show that Der(a o s) =
Inn(a o s) + D. Now, consider any D ∈ Der(a o s). The derivation D induces a derivation
on s, which is an inner derivation, since s is semisimple. So, after changing D up to an inner
derivation, we may assume that D induces the zero map on s. It follows that there exists a
linear map f : s → a such that D(0, s) = (f(s), 0) for all s ∈ s. As D is a derivation we have
that

D(0, [s1, s2]) = D[(0, s1), (0, s2)] = [D(0, s1), (0, s2)] + [(0, s1), D(0, s2)].

And so

(f([s1, s2]), 0) = [(f(s1), 0), (0, s2)] + [(0, s1), (f(s2), 0)],

which gives

f([s1, s2]) = s1 · f(s2)− s2 · f(s1).

This means that f ∈ Z1(s, a) is a 1–cocycle. As s is semisimple, we have that H1(s, a) = 0 and
so there exists an element a0 ∈ a such that f(s) = s · a0 for all s ∈ s. Now

∀s ∈ s : (D + ad((a0, 0))(0, s) = (f(s), 0) + [(a0, 0), (0, s)] = (0, 0).

This means that after changing D again with an inner derivation we will assume that D(s) = 0
and hence there is a linear map ϕ : a→ a such that

∀a ∈ a, ∀s ∈ s : D(a, s) = (ϕ(a), 0).

Now, using the fact that D is a derivation, we must have that

D[(a, 0), (0, s)] = [D(a, 0), (0, s)] + [(a, 0), D(0, s)]

which implies that

D(−s · a, 0) = [(ϕ(a), 0), (0, s)]⇒ ϕ(s · a) = s · ϕ(a).

This shows that after changing D up to an inner derivation we have that D = Dϕ ∈ D which
finishes the proof. �

We are now ready to prove the main result of this section.

Theorem 5.3. Let g be a Lie algebra over an algebraically closed field K of characteristic zero
whose solvable radical is abelian. Then AID(g) = Inn(g).

Proof. As before, we can write g = a o s, with a abelian and s semisimple. We have shown
that Der(g) = Inn(g) ⊕D. In order to prove the result, we have to show that if a derivation
D ∈ D is not the zero map, then D is not an almost inner derivation. So consider a nonzero
D ∈ D, then D = Dϕ for some nonzero ϕ ∈ Ends(a). Let V = ϕ(a) be the image of ϕ. Then
V is a nonzero s–submodule of a. The Lie algebra s contains a nilpotent element s0 such that
Cs(s0) consists entirely of nilpotent elements, see for example [9, section 35]. In particular
Cs(s0) is also nilpotent as a Lie algebra. Consider the map ψ : s → End(V ) : s 7→ ψ(s),
where ψ(s)(v) = s · v. Then ψ is a representation of Lie algebras and since s is semisimple ψ
maps nilpotent elements to nilpotent elements. It follows that ψ(Cs(s0)) consists of nilpotent
endomorphisms and in particular, it follows that ψ(Cs(s0))(V ) = Cs(s0) ·V is strictly contained
in V . Let v0 ∈ V \(Cs(s0) · V ) and pick an a0 ∈ a with ϕ(a0) = v0. Note that since s is
semisimple, we can find a complementary s–submodule W of V in a such that a decomposes
as a direct sum a = V ⊕W of s–modules. In particular, we also find that v0 ∈ a \ Cs(s0) · a.
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We claim that Dϕ(a0, s0) 6∈ [(a0, s0), g], which shows that Dϕ is not an almost inner derivation.
Indeed, assume that

Dϕ(a0, s0) = [(a0, s0), (a, s)] for some a ∈ a and some s ∈ s.

Then we have that

(ϕ(a0), 0) = [(a0, s0), (a, s)] = (s0 · a− s · a0, [s0, s]).
This shows that [s0, s] = 0 and so s ∈ Cs(s0). However, this now implies that ϕ(a0) = v0 =
s0 · a − s · a0 ∈ Cs(s0) · a which is a contradiction with the fact that we have chosen v0 such
that v0 ∈ a \ Cs(s0) · a. �

6. Change of base field

Consider a field extension K of k. Let gk be a Lie algebra over k and denote by gK = K⊗k gk
the corresponding Lie algebra over K. This is an extension of scalars. We will assume that k
has characteristic zero and that the field extension is of finite degree [K : k] = n. The primitive
element theorem ensures that K = k(s) for some s ∈ K. Then B = {1, s, s2, . . . , sn−1} is a
vector space basis of K over k. It follows that

(6) gK = gk ⊕ sgk ⊕ . . .⊕ sn−1gk
holds as vector spaces over k. The typical example is K = C and k = R, where {1, s} = {1, i}
and gC = gR ⊕ igR. We can also consider gK as a Lie algebra over k. We will denote this Lie
algebra with g′k. Note that, as sets, we have g′k = gK . Finally, g′K := K ⊗k g′k is again a Lie
algebra over K.
Let us for the moment consider the special situation when [K : k] = 2. In that case we have

that K = k(α) for some α ∈ K \ k with d := α2 ∈ k. Hence, we can write K = k(
√
d). Now

let gk be a Lie algebra over k of dimension r with basis {e1, e2, . . . , er} and structure constants
cpij, so [ei, ej] =

∑r
p=1 c

p
ijep. Then gK = K⊗k gk has the same structure constants and the same

basis. Further, g′k has basis {e1, e2, . . . , er, αe1, αe2, . . . , αer}. Denote fi := αei for all 1 ≤ i ≤ r,
then the structure constants are

[ei, ej] =
r∑
p=1

cpijep, [ei, fj] =
r∑
p=1

cpijfp, [fi, fj] = d
r∑
p=1

cpijep = d[ei, ej].

The Lie algebra g′K has the same basis and structure constants as g′k.

Lemma 6.1. For [K : k] = 2 we have g′K
∼= gK ⊕ gK.

Proof. The Lie algebra g′K has basis {e1, e2, . . . , er, f1, f2, . . . , fr} and structure constants as
above. We take for gK ⊕ gK a basis {a1, a2, . . . , ar, b1, b2, . . . , br} with

[ai, aj] =
r∑
p=1

cpijap, [bi, bj] =
r∑
p=1

cpijbp, [ai, bj] = 0.

Let ϕ : g′K → gK ⊕ gK be the linear map with ϕ(ei) = ai + bi and ϕ(fi) = αai − αbi for all
1 ≤ i ≤ r. Then ϕ is an isomorphism of vector spaces. Moreover, ϕ is a Lie algebra morphism.
Indeed, take 1 ≤ i, j ≤ r arbitrarily, then we have that

[ϕ(ei), ϕ(ej)] = [ai + bi, aj + bj] = [ai, aj] + [bi, bj] =
r∑
p=1

cpij(ap + bp) = ϕ([ei, ej]).
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Furthermore, also

[ϕ(ei), ϕ(fj)] = [ai + bi, αaj − αbj] = α

r∑
p=1

cpij(ap − bp) = ϕ

(
r∑
p=1

cpijfp

)
= ϕ([ei, fj])

is satisfied. Finally, we find that

[ϕ(fi), ϕ(fj)] = [α(ai − bi), α(aj − bj)] = α2[ai, aj] + α2[bi, bj]

= d ([ai, aj] + [bi, bj]) = ϕ(d[ei, ej])

= ϕ([fi, fj]).

�

Remark 6.2. Let k ⊆ K be a Galois extension and gK be a Lie algebra over K with underlying
Lie algebra g′k. A more general result about the structure of g′K can be found in [3].

Now, we return again to the general situation where [K : k] = n ≥ 2. Suppose that
D ∈ Der(gk), then we can consider DK = 1K ⊗k D where DK : gK → gK is the K-linear
map such that DK |gk = D. This means that DK ∈ Der(gK). Conversely, if D ∈ Der(gK) and
D(gk) ⊆ gk, then D|gk ∈ Der(gk).

Remark 6.3. These two “procedures” are inverses of each other. Indeed, for D ∈ Der(gk), we
have that DK |gk = D. Moreover, for D ∈ Der(gK) with D(gk) ⊆ gk we have

(
D|gk

)
K

= D.

Lemma 6.4. We have Der(gK) = K ⊗k Der(gk).

Proof. We already mentioned that any derivation D ∈ Der(gk) can be viewed as a derivation
DK ∈ Der(gK). From this, the conclusion K ⊗k Der(gk) ⊆ Der(gK) is clear. We now show the
other inclusion. Let D ∈ Der(gK). We can write

D|gk = D1 + sD2 + . . .+ sn−1Dn,

where Di : gk → gk is a derivation for all 1 ≤ i ≤ n. Take

D′ = 1K ⊗k D1 + s⊗k D2 + . . .+ sn−1 ⊗k Dn,

then we find that D′ ∈ K⊗k Der(gk). Since also D|gk = D′|gk holds, this implies that D = D′ ∈
K ⊗k Der(gk). �

Hence, there is a nice correspondence between the derivations of gk and gK .

Lemma 6.5. Let D ∈ Der(gk). If DK ∈ AID(gK), then also D ∈ AID(gk).

Proof. Let B = {1, s, . . . , sn−1} be a basis of K over k and D : gk → gk be a derivation. Assume
that DK ∈ AID(gK), then there exists a map ϕ : gK → gK such that DK(x) = [x, ϕ(x)] holds
for all x ∈ gK . We can write

ϕ(x) := ϕ1(x) + sϕ2(x) + . . .+ sn−1ϕn(x),

where ϕi : gK → gk for all 1 ≤ i ≤ n. Now take an arbitrary x ∈ gk. Then we obtain

D(x) = [x, ϕ1(x)] + s[x, ϕ2(x)] + . . .+ sn−1[x, ϕn(x)].

Since D(x) ∈ gk, it follows from equation (6) that for all x ∈ gk,

D(x) = [x, ϕ1(x)] ∈ gk

and [x, ϕi(x)] = 0 for all 2 ≤ i ≤ n. Hence, this means that D ∈ AID(gk). �
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Note that the converse of this result does not hold in general since there exist examples for
which D ∈ AID(gk), but DK /∈ AID(gK), see Example 7.4.

Proposition 6.6. If AID(gK) 6= Inn(gK), then also AID(gk) 6= Inn(gk).

Proof. Denote as before B = {1, s, . . . , sn−1} for a basis of K over k. Let D ∈ AID(gK),
D /∈ Inn(gK), then there exists a map ϕ : gK → gK such that D(x) = [x, ϕ(x)] for all x ∈ gK .
Furthermore, there are maps ϕi : gK → gk (for all 1 ≤ i ≤ n) such that

ϕ = ϕ1 + sϕ2 + . . .+ sn−1ϕn.

Now define for each 1 ≤ i ≤ n the map

Di : gk → gk : x 7→ [x, ϕi(x)].

We claim that each Di is a derivation (and thus an almost inner derivation).
Let x, y ∈ gk, then

D([x, y]) =
[
[x, y], ϕ1([x, y]) + sϕ2([x, y]) + . . .+ sn−1ϕn([x, y])

]
= D1([x, y]) + sD2([x, y]) + . . .+ sn−1Dn([x, y]).

On the other hand, we have

[D(x), y] + [x,D(y)]

=
[
[x, ϕ1(x) + sϕ2(x) + . . .+ sn−1ϕn(x)], y

]
+
[
x, [y, ϕ1(y) + sϕ2(y) + . . .+ sn−1ϕn(y)]

]
= [D1(x) + sD2(x) + . . .+ sn−1Dn(x), y] + [x,D1(y) + sD2(y) + . . .+ sn−1Dn(y)]

= [D1(x), y] + [x,D1(y)] + s
(
[D2(x), y] + [x,D2(y)]

)
+ . . .+ sn−1

(
[Dn(x), y] + [x,Dn(y)]

)
.

Since D is a derivation the above equations imply that Di([x, y]) = [Di(x), y]+[x,Di(y)], hence
Di ∈ Der(gk) for all 1 ≤ i ≤ n.
Moreover, we claim that there exists at least one 1 ≤ i ≤ n for which Di /∈ Inn(gk). Suppose
on the contrary that Di ∈ Inn(gk) for all 1 ≤ i ≤ n. Then there exist αi ∈ gk such that
Di(x) = [x, αi] for all x ∈ gk. Denote α := α1 + sα2 + . . .+ sn−1αn ∈ K. This means that

D(x) = [x, α1] + s[x, α2] + . . .+ sn−1[x, αn]

= [x, α1 + sα2 + . . .+ sn−1αn]

= [x, α]

for all x ∈ gk. Now consider−ad(α) ∈ Der(gK), then D|gk = −ad(α)|gk . Since two derivations of
gK are equal when they agree on gk, this implies that D = −ad(α) is inner. This contradiction
shows that for at least one 1 ≤ i ≤ n, we have Di ∈ AID(gk) \ Inn(gk). �

This proposition means that if the Lie algebra over the bigger field gK admits a non-trivial
almost inner derivation, then also the Lie algebra over the smaller field gk. The converse does
not hold in general, see again Example 7.4.

7. Constructing new almost inner derivations

We keep using the same notations as in the previous section. In this section, we will show how
to find new almost inner derivations of the Lie algebra g′k, determined by AID(gK). Remember
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that g′k = gK as a set, but now viewed as a Lie algebra over k.
Define the set

C(gK) := {D ∈ AID(gK) | D(gK) is one-dimensional and D(gK) ⊆ Z(gK)}.
We will show how to construct, starting from a fixed element D ∈ C(gK) a collection of almost
inner derivations of g′k which are not inner, even when D itself is an inner derivation of gK .
So fix some D ∈ C(gK). Since D(gK) is one-dimensional, ker(D) is of codimension 1. Hence,
gK = 〈y〉 + ker(D) for some y ∈ gK \ ker(D). We also fix a choice of y and let 0 6= z = D(y).
Any element of gK can be written as ay + c, where a ∈ K and c ∈ ker(D). Denote again
B = {1, s, . . . , sn−1} for a basis of K over k, then any element a ∈ K can be uniquely written
as a = a1 + a2s + . . . ans

n−1 with ai ∈ k for all 1 ≤ i ≤ n. We use the notation ci(a) := ai to
denote the i-th coordinate of a with respect to the basis B. We now have that D : gK → gK :
ay + c 7→ az. Since D ∈ AID(gK), there exists a map ϕD : gK → gK such that

D(ay + c) = [ay + c, ϕD(ay + c)].

Associated to D we introduce n new k-linear maps of g′k, namely

Di : g′k → g′k : ay + c 7→ ci(a)si−1z,

where 1 ≤ i ≤ n. Note that D = D1 + D2 + · · · + Dn. We remark here that the maps Di do
depend on the choice of y, so in what follows we always assume that for a given D, a fixed y
outside of ker(D) has been chosen. We can now multiply the above maps with powers of s to
get a total of n2 k-linear maps sj−1Di : g′k → g′k, with 1 ≤ i, j ≤ n.

Lemma 7.1. For any D ∈ C(gK) we have sj−1Di ∈ AID(g′k) for all 1 ≤ i, j ≤ n.

Proof. First note that [gK , gK ] ⊆ ker(D). Indeed, let x, y ∈ gK . Because D(gK) ⊆ Z(gK) by
definition, we have that [D(x), y] + [x,D(y)] = 0 and

D([x, y]) = [D(x), y] + [x,D(y)] = 0.

This last equation implies that Di([x, y]) = 0 and hence, Di is a derivation. Since D is almost
inner, it is determined by a map ϕD : gK → gK . Define

ϕDi
: g′k → g′k : ay + c 7→

{
ci(a)s

i−1

a
ϕD(ay + c) if a 6= 0;

0 if a = 0.

For a = 0, we have that

Di(ay + c) = 0 = [ay + c, ϕDi
(ay + c)].

When a 6= 0, it follows that

[ay + c, ϕDi
(ay + c)] =

[
ay + c,

ci(a)si−1

a
ϕD(ay + c)

]
=
ci(a)si−1

a
D(ay + c)

= ci(a)si−1z

= Di(ay + c).

This shows that Di ∈ AID(g′k) for all 1 ≤ i ≤ n. Moreover, for each j ∈ {1, 2, . . . , n}, the map
sj−1Di : g′k → g′k is an almost inner derivation, determined by the map ϕsj−1Di

:= sj−1ϕDi
. �
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In this way, each D ∈ C(gK) gives rise to n2 almost inner derivations sj−1Di of g′k, where
1 ≤ i, j ≤ n.

Proposition 7.2. Suppose that D ∈ C(gK) and let A = spank〈sj−1Di : g′k → g′k | 1 ≤ i, j ≤ n〉.
Then dimA = n2 and

A ∩ Inn(g′k) =

{
〈sj−1D : g′k → g′k | 1 ≤ j ≤ n〉 if D ∈ Inn(gK),

{0} if D /∈ Inn(gK).

Hence we have dim(A ∩ Inn(g′k)) = n or dim(A ∩ Inn(g′k)) = 0.

Proof. We will first show that the maps sj−iDi are k–linearly independent. So assume that
αi,j ∈ k and that

n∑
i=1

n∑
j=1

αi,js
j−1Di = 0.

Applying the above to sk−1y for some k ∈ {1, . . . , n} gives

(
n∑
j=1

αk,js
j−1

)
sk−1z = 0. As

sk−1z 6= 0, it follows that
n∑
j=1

αk,js
j−1 = 0 and since B = {1, s, s2, . . . , sn−1} is a basis of K

over k, it follows that all coefficients αk,j = 0, showing that the maps sj−iDi are k–linearly
independent.

Now assume that E ∈ A∩ Inn(g′k). Let E =
∑n

i=1

∑n
j=1 αi,js

j−1Di and assume that E = ad(x)
for some x ∈ g′k. Note that E is also K-linear, since E can also be seen as an inner derivation
of gK . As above we have

E(sk−1y) =

(
n∑
j=1

αk,js
j−1

)
sk−1z

for every k = 1, 2, . . . , n. On the other hand, since E is also K–linear, it must hold that
E(sk−1y) = sk−1E(y) and therefore we get the equality

n∑
j=1

αk,js
j−1 =

n∑
j=1

α1,js
j−1.

It follows that for all j we have that α1,j = α2,j = · · · = αk,j and we let βj = α1,j be this
common value. Hence E =

∑n
i=1(
∑n

j=1 βjs
j−1)Di = β(D1 + D2 + · · · + Dn) = βD, where

β =
∑n

j=1 βjs
j−1 ∈ K. So E = βD for some β ∈ K and therefore E ∈ Inn(gK) if and only

if D ∈ Inn(gK) and if this is the case, the above shows that E ∈ 〈sj−1D | 1 ≤ j ≤ n〉 which
finishes the proof, since as sets Inn(gK) = Inn(g′k). �

In many cases, the above proposition allows us to construct Lie algebras over a non alge-
braically closed field k with many almost inner derivations which are not inner. As an example
of this we have the following result.

Corollary 7.3. Let K be a field extension of a field k, with [K : k] = n ≥ 2. Using the notation
from above, assume that gk is a c-step nilpotent Lie algebra for c ≥ 2 with dim(gck) = 1, then
dim(AID(g′k))− dim(Inn(g′k)) ≥ n2 − n > 0.
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Proof. Let v ∈ gc−1k be an element with [v, gk] 6= 0. Such a v exists, since we assume that gk
is c–step nilpotent. Moreover gck = Im(ad(v)) ⊆ Z(gk). It follows that D = ad(v) ∈ C(gK).
By Proposition 7.2 we know that A = 〈sj−1Di | 1 ≤ i, j ≤ n〉 is an n2-dimensional subspace of
AID(g′k) intersecting Inn(g′k) in a n-dimensional space, which proves the corollary. �

Note that the above corollary can for example be applied when gk is a filiform Lie algebra.
We finish this paper with an example where k = R and K = C, i.e., with n = 2. Then we can
take s = i with i2 = −1.

Example 7.4. Consider the real Heisenberg Lie algebra gR, then gC is the complex Heisenberg
Lie algebra and both of these algebras can be described via a basis {e1, e2, e3}, where the non-zero
Lie brackets are given by [e1, e2] = e3. Then we have

AID(gR) = Inn(gR),

AID(gC) = Inn(gC).

It follows from Lemma 6.1 that

AID(g′C) ∼= AID(gC ⊕ gC) = AID(gC)⊕ AID(gC) = Inn(gC)⊕ Inn(gC) ∼= Inn(g′C).

Let D = ad(e1) and E = ad(e2) be inner derivations of gC, then both D,E ∈ C(gC).
The Lie algebra g′R has a basis {e1, e2, e3, f1 = ie1, f2 = ie2, f3 = ie3} and non-zero brackets

[e1, e2] = e3, [e1, f2] = f3, [f1, e2] = f3, [f1, f2] = −e3.

We can now consider the R–linear maps D1, iD1, E1, iE1 as defined above and these satisfy:

D1(e2) = e3, D1(e1) = D1(f1) = D1(f2) = D1(e3) = D1(f3) = 0,

iD1(e2) = f3, D1(e1) = D1(f1) = D1(f2) = D1(e3) = D1(f3) = 0,

E1(e1) = −e3, E1(f1) = E1(e2) = E1(f2) = E1(e3) = E1(f3) = 0,

iE1(e1) = −f3, E1(f1) = E1(e2) = E1(f2) = E1(e3) = E1(f3) = 0.

We have D1, iD1, E1, iE1 ∈ AID(g′R) and it is easy to see that 〈D1, iD1, E1, iE1〉 ∩ Inn(g′R) = 0,
so that we obtain

dim(AID(g′R)) ≥ 4 + dim(Inn(g′R)) = 8,

dim(AID(g′C)) = dim(Inn(g′C)) = dim(Inn(gC ⊕ gC)) = 4.

The maps D1, iD1, E1, iE1 do, like any other derivation, extend to derivations of g′C, but these
will no longer be almost inner derivations.
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