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Abstract

A unified framework for studying the existence and stability of kinetic shock
profiles is presented. This includes small amplitude waves for the situation when
the macroscopic model is a hyperbolic system of conservation laws with genuine
nonlinearity. For the case of scalar conservation laws, also large amplitude waves can
be understood. Applications range from BGK-models for general scalar conservation
laws and for gas dynamics, to an equation for fermions in a scattering background
under the action of an electric field and to the Boltzmann equation of gas dynamics.
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1 Introduction

This work contributes to the mathematical theory establishing the connection between
kinetic transport equations and hyperbolic systems of conservation laws, occurring as their
macroscopic limits. Shock waves are basic weak solutions of nonlinear hyperbolic conser-
vation laws featuring a discontinuity. The main question considered in this work is the
existence and dynamic stability of kinetic shock profiles, i.e. smooth travelling wave so-
lutions of the kinetic equation, sharing the far-field states with the shock wave. Several
recent results are reviewed and presented in a unified way.

For systems of nonlinear conservation laws only results for small amplitude shock waves
are available. In this case, the Chapman-Enskog approximation, i.e. a diffusive regular-
ization of the conservation laws, can be expected to provide a good approximation for
solutions of the kinetic equation. Kinetic shock profiles can be constructed close to vis-
cous shock profiles. The classical result on the existence of small amplitude kinetic shock
profiles for the gas dynamics Boltzmann equation is due to Caflisch and Nicolaenko [11].
In Section 4, a modified and generalized version of their approach is presented, leading to
more accurate approximation results. Stability of small amplitude kinetic shock profiles
is the issue of Section 5. An approach based on energy (actually entropy) estimates in
the spirit of the work of Liu and Yu [28] is presented. The main idea is to start from an
approach for the system with diffusive regularization. This can actually be extended to
proving convergence to rarefaction waves [16].

For scalar conservation laws, stronger results are possible. An approach for the con-
struction of large amplitude kinetic shock profiles is presented in Section 6. The main
ideas originate from the work of Golse [22] on the Perthame-Tadmor model [35]. Finally,
dynamical stability is discussed, based on ideas from [5].

We consider a kinetic transport model for plane waves in the form

∂tf + v∂xf = Q(f) , (1.1)
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where f(t, x,v) is a particle distribution function at time t ∈ R and position x ∈ R. The
components of the ’velocity’ vector v = (v, w) ∈ V ⊂ R × [0,∞) can be interpreted as
the velocity component v in x-direction, and as an abbreviation w for (v2

2 + · · · + v2
d)

1/2,
where (v, v2, . . . , vd) ∈ Rd is the particle velocity. Thus, we assume x-axisymmetric velocity
distributions. The set V of velocities is equipped with a measure dµ(v). Discrete sets V
and, thus, hyperbolic relaxation models are permitted.

The so called collision operator Q is assumed to act on the velocity variable v only.
Equations of the form (1.1) can be derived from fully d-dimensional kinetic transport
equations, if the collision events are invariant under rotations (at least around the x-axis).

The collision operator is assumed to be nonlinear and to have the conservation property
∫

V

φ(v)Q(f)(v)dµ(v) = 0 . (1.2)

The (linearly independent) components of the vector φ(v) ∈ Rn are called collision invari-
ants. As a consequence of (1.2), the macroscopic moments of f , collected in the vector

Uf (t, x) :=

∫

V

φ(v)f(t, x,v)dµ(v) ,

are the macroscopic densities of conserved quantities:

∂tUf + ∂xJf = 0 , with Jf :=

∫

V

vφf dµ . (1.3)

As expected, the zero set of Q will be assumed to be n-dimensional and parametrizable by
the macroscopic moments:

Q(f) = 0 ⇐⇒ f(v) = M(Uf ,v) ,
(
implying UM(U) = U .

)

The generalized MaxwellianM(U) is the equilibrium distribution of the collision processes.
It is plausible that the dynamics of close-to-equilibrium solutions of (1.1) is approximated
by the system of conservation laws

∂tUf + ∂xJ(Uf ) = 0 , J(U) := JM(U) , (1.4)

obtained by replacing f by M(Uf ) in the second term of (1.3). This approximation can
only be expected to be physically relevant under a stability condition: We assume the
existence of a kinetic entropy density H(f,v), satisfying

∫

V

∂fH(f)Q(f)dµ ≤ 0 . (1.5)

where H is continuous in v and twice differentiable and convex in f . We also assume
definiteness in the sense that equality in (1.5) only holds if f = M(Uf ). This leads to the
kinetic entropy inequality

∂t

∫

V

H(f)dµ+ ∂x

∫

V

vH(f)dµ ≤ 0 . (1.6)
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The macroscopic system (1.4) will be assumed to be strictly hyperbolic meaning that
for every U , the Jacobian J ′(U) of the macroscopic flux J(U) has n distinct eigenvalues
λ1(U) < · · · < λn(U), and the corresponding left and right eigenvectors lk(U) and, respec-
tively, rk(U), k = 1, . . . , n, are assumed to be normalized such that lj(U) · rk(U) = δjk.

Piecewise constant weak solutions of (1.4) of the form

U(x, t) =

{
U− for x < st ,
U+ for x > st ,

are called shock waves. Here s is the shock speed and U± are the constant left and right
states, which are related by the Rankine-Hugoniot jump conditions

s(U+ − U−) = J(U+)− J(U−) . (1.7)

For a fixed left state U− the Hugoniot locus is defined as the set of all U+ such that (1.7)
is satisfied for an appropriate s. In a neighbourhood of U−, the Hugoniot locus consists
of n curves intersecting in U−. At U−, the k-th curve is tangent to rk(U−) and the shock
speed s takes the value λk(U−) (see, e.g., [26]). If U+ lies on the k-th curve of the Hugoniot
locus, we refer to {U±, s} as a k-shock.

If the k-th field is genuinely nonlinear, i.e. rk ·∇λk 6= 0, then the Lax entropy condition

λk(U+) < s < λk(U−) (1.8)

is a stability condition for k-shocks (see, e.g., [26]) and we assume a normalization of rk

such that rk · ∇λk = 1.
An alternative approach to entropy conditions starts from the kinetic entropy inequality

(1.6) and uses the close-to-equilibrium approximation

∂tη(Uf ) + ∂xΨ(Uf ) ≤ 0 , (1.9)

as a side condition for weak solutions of (1.4). Here the macroscopic entropy density and
entropy flux (satisfying ∇Ψ(U) = ∇η(U) · J ′(U)) are given by

η(U) =

∫

V

H(M(U))dµ , Ψ(U) =

∫

V

vH(M(U))dµ . (1.10)

It can be shown that for small amplitude shock waves, i.e., small enough values of |U+−U−|,
the conditions (1.8) and (1.9) are equivalent.

Remark 1.1 Further properties of the kinetic entropy density will be used below. The
above implies the minimisation principle

η(U) =

∫

V

H(M(U))dµ = minR
V φfdµ=U

∫

V

H(f)dµ , (1.11)

which has the further consequence that ∂fH(M(U)) is linear in the collision invariants, i.e.
there exists a vector bU ∈ Rn such that ∂fH(M(U)) = bU ·φ. If we take the gradient of the
first relation in (1.10) it turns out that bU = ∇η(U), such that ∂fH(M(U)) = ∇η(U) · φ.
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For later reference, we collect the assumptions on the collision operator made so far.

Assumption 1 The collision operator Q has n linearly independent collision invariants
φ1(v), . . . , φn(v), and its zero set is given by {M(U,v) : U ∈ Rn}. There exists a strictly
convex kinetic entropy density H(f,v) satisfying the inequality (1.5) (with equality iff f =
M(Uf )). The macroscopic system (1.4) is strictly hyperbolic.

2 Examples

Not all collision operators can be interpreted as appropriate models for microscopic collision
processes. In many cases they are just constructed as relaxation models towards a desired
equilibrium. The so called BGK-models [7], [9] of the form Q(f) = M(Uf ) − f belong to
this class. All the examples presented below satisfy Assumption 1.

2.1 BGK-models for scalar conservation laws

A family of generalized Maxwellians for an arbitrary scalar hyperbolic conservation law
with flux J(U) is given by

M(U, v) =

∫ U

0

m(v − J ′(r))dr , v ∈ V = R ,

(see [18]), where m(v) > 0 can be any even function satisfying
∫∞
−∞m(v)dv = 1. The

conservation law is conservation of mass with φ(v) = 1 and Uf =
∫∞
−∞ f dv. Noting that

M is strictly increasing as a function of U , we define kinetic entropy densities by inverting
it:

ζ(f, v) = U :⇔ M(U, v) = f , H(f, v) :=

∫ f

0

η′(ζ(g, v))dg , (2.1)

where η is an arbitrary convex function. Then the entropy inequality
∫ ∞

−∞
∂fH(f)[M(Uf )− f ]dv =

∫ ∞

−∞
[η′(ζ(f))− η′(Uf )][M(Uf , v)− f ]dv ≤ 0

holds, since the equality follows from mass conservation and the inequality is a consequence
of the monotonicities of ζ(f, v) with respect to f and of η′. The corresponding macroscopic
entropy density is given by η(U). So all the macroscopic entropies can be recovered from
kinetic entropies.

There are of course also many other choices such as discrete velocity models, the sim-
plest with two velocities: dµ(v) = (δ(v + a) + δ(v − a))dv and

M(U,±a) =
1

2a
(aU ± J(U)) ,
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the corresponding BGK-model being equivalent to the standard relaxation model [24]

∂tU + ∂xj = 0 , ∂tj + a2∂xU = J(U)− j ,

with U = f(−a)+f(a), j = a(f(a)−f(−a)). Kinetic entropy densities can be constructed
as above, if the generalized Maxwellian is strictly monotone in U , i.e., if the subcharacter-
istic condition |J ′(U)| < a holds for all relevant values of U .

2.2 A BGK-model for isentropic and isothermal gas dynamics

The following class of generalized Maxwellians has been introcuced in [27]. Here n = 2,
U = (ρ, ρu), V = R, and

M(ρ, u, v) = α

(
2γ

γ − 1
ργ−1 − (v − u)2

)β

+

,

with 1 < γ < 3,

β =
3− γ

2(γ − 1)
, α =

1

Jβ

(
2γ

γ − 1

)−1/(γ−1)

, Jβ =

∫ 1

−1

(1− z2)βdz .

The collision invariants φ(v) = (1, v) correspond to conservation of mass and momentum
(in the x-direction), and the macroscopic flux vector is given by

J(ρ,m) =

∫ ∞

−∞
v

(
1
v

)
M(ρ,m/ρ, v)dv =

(
m

m2/ρ+ ργ

)
. (2.2)

Thus, the system (1.4) is the p-system of isentropic gas dynamics with adiabatic exponent
γ. The eigenvalues of J ′(ρ,m) are given by

λ1/2 = u∓ c(ρ) , where c(ρ) =
√
γ ρ(γ−1)/2 .

For ρ > 0 (away from vacuum) λ1 < λ2 holds everywhere and the system is strictly
hyperbolic. With the corresponding right and left eigenvectors

r′1 = (1, λ1) , r′2 = (1, λ2) , l′1 = (λ2,−1) , l′2 = (−λ1, 1) ,

one can see that the system is also genuinely nonlinear. The primes indicate that the
eigenvectors are not scaled as assumed in Section 1. Moreover one can show that the Lax
admissibility condition for a 1-shock reduces to

ρ− < ρ+ (2.3)

and for a 2-shock to ρ− > ρ+.
A kinetic entropy density is given by

H(f, v) =
v2

2
f +

f 1+1/β

2α1/β(1 + 1/β)
,
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leading to the macroscopic entropy density

η(ρ, u) =
ρu2

2
+

ργ

γ − 1
,

whose physical interpretation is, of course, energy.

From the Maxwellians

M(ρ, u, v) =
ρ√
2π
e−

(v−u)2

2 , where v ∈ R,

we recover the isothermal gas dynamics, where the flux is given by (2.2) with γ = 1. Then
the eigenvalues are as above with c ≡ 1. Here the kinetic entropy

H(f, v) =
v2

2
f + f ln f

leads to the macroscopic one

η(ρ, u) =
ρu2

2
+ (ρ ln ρ− ρ ln

√
2π),

see e.g. also [9].

2.3 The gas dynamics BGK-model

In the general d-dimensional Maxwellian

ρ

(2πT )d/2
exp

(
−(v − u)2 + (v2 − u2)

2 + · · ·+ (vd − ud)
2

2T

)

with density ρ, mean velocity (u, u2, . . . , ud), and temperature T , the axisymmetry assump-
tion is equivalent to vanishing transversal mean velocities, u2 = · · · = ud = 0, and leads
to

M(ρ, u, T ; v, w) =
ρ

(2πT )d/2
exp

(
−(v − u)2 + w2

2T

)
.

The integration measure is defined as dµ(v, w) := wd−2|Sd−1| dv dw = d(v, v2, . . . , vd),
where |Sd−1| is the surface of the (d − 1)-dimensional unit sphere. Conservation of mass,
momentum in the x-direction, and energy is required, i.e., φ(v, w) = (1, v, (v2 +w2)/2) and

Uf =




ρf

ρfuf

ρfu
2
f/2 + d

2
ρfTf


 =

∫

V




1
v

(v2 + w2)/2


 f dµ .

The macroscopic flux is given by

J(ρ, u, T ) =




ρu
ρu2 + ρT

u(ρu2/2 + d
2
ρT + ρT )


 .

7



The macroscopic system (1.4) are the compressible Euler equations for a d-dimensional
ideal gas, reduced to one dimension by assuming plane wave solutions with vanishing
transversal velocity components.

The Jacobian

J ′(U) =




0 1 0
γ−3

2
u2 (3− γ)u γ − 1

(γ − 1)u3 − γE u
ρ

γE
ρ
− 3

2
(γ − 1)u2 γu


 , γ =

d+ 2

d
,

has the eigenvalues

λ1 = u− c , λ2 = u , λ3 = u+ c ,

with the sound speed c =
√
γT . The corresponding right and left eigenvectors are given

by

rk =

(
1, λk,

1

γ − 1

(
3− γ

2
u2 − (3− γ)uλk + λ2

k

))
,

lk =
1

c2d

(
1

λk

(
γ − 3

2(γ − 1)
(λk − γu)u2 + (γ − 1)u3 − γE

u

ρ

)
,

1

γ − 1
(λk − γu), 1

)
,

satisfying (lk · rk)
3
k=1 = (1,−2, 1). In view of further calculations we give r1 explicitly:

r1 = (1, u − c, 1
2
(u − c)2 + 3−γ

2(γ−1)
c2). The first and third field are genuinely nonlinear,

whereas the second field is linearly degenerate, i.e, r2 · ∇λ2 ≡ 0.
The kinetic entropy density is the classical H(f) = f ln f , and

∫

V

∂fH(f)[M(Uf )− f ]dµ =

∫

V

[ln f − lnM(Uf )][M(Uf )− f ]dµ ≤ 0 ,

the equality being a consequence of the fact that the logarithm of the Maxwellian is a
linear combination of the collision invariants. The macroscopic entropy density is given by

η(ρ, T ) =
ρd

2
ln

(
ρ

(2πT )d/2

)
.

Subtracting a multiple of the conserved quantity ρ and dividing by a constant factor gives
the classical η̂ = −ρ ln(ρT/ργ) with γ = (d+ 2)/d.

2.4 Fermions in a background medium and a constant electric
field

Semiclassical modelling of the scattering of fermions with an equilibrium background
medium leads to collision operators of the form [30]

Qs(f)(v) =

∫

R
σ(v, v′)[f(v′)(1− f(v))M(v)− f(v)(1− f(v′))M(v′)]dv′ ,
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where the collision cross section σ(v, v′) ≥ σ > 0 is symmetric, M(v) = (2π)−1/2e−v2/2

is a normalized Gaussian, and the occurrence of the factors (1 − f) is a consequence of
the quantum mechanical Pauli exclusion principle. The zero set of Qs is one-dimensional
(corresponding to the conservation of mass) and consists of the Fermi-Dirac distributions
(1 + c/M)−1, c > 0. The action of a constant electric field with the x-component E is
included in the total collision operator

Q(f) = Qs(f)− E∂vf .

The only conserved quantity is mass (φ(v) = 1), and it has been proven in [3] that the zero
set of Q can be parametrized by the density:

Q(f) = 0 ⇐⇒ f(v) = M(ρf , v) ,

where the generalized Maxwellian is a strictly increasing function of ρf =
∫
R f dv. With-

out the lower bound on the collision cross section the existence of nontrivial equilibrium
distributions is not guaranteed (see [37]).

The somewhat surprising result that the definition (2.1) yields a kinetic entropy density
for the operator Q (including an acceleration term) has been proven in [5].

3 Macroscopic and small wave approximations

3.1 The hydrodynamic limit

The macroscopic approximation (1.4) for the kinetic equation (1.1) can be formally derived
by rescaling position and time by x→ x/ε, t→ t/ε, and passing to the limit ε→ 0 in

ε∂tf
ε + εv∂xf

ε = Q(f ε) . (3.1)

Assuming a strong enough convergence f ε → f as ε → 0, passing to the limit yields
Q(f) = 0 and, thus, f(t, x,v) = M(U(t, x),v) with U = limε→0 Ufε . Passing to the limit
in the conservation laws

∂tUfε + ∂xJfε = 0 (3.2)

leads to the macroscopic system (1.4). This limit can be justified for all examples of
Section 2 in the following sense: If the initial data fI(x,v) = f ε(0, x,v) are smooth and
possess smooth moments UfI

(x), then a unique smooth solution of (1.4) taking these initial
data exists for a short enough open time interval. The unique solution of the initial value
problem for (3.1) converges to M(U), where U is the solution of (1.4), on any compact
subinterval of the existence interval of the latter (see, e.g., [10] for the case of the Boltzmann
equation of gas dynamics).

The harder question of global convergence to weak entropy solutions has also been
answered for all the examples except for the gas dynamics BGK-model (Section 2.3).
Proofs working for all cases in Section 2.1 can be found in [33], [34]. For the isentropic
gas dynamics model (Section 2.2) it has been carried out in [6], and for the fermion model
(Section 2.4) in [5].
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3.2 The linearised collision operator

The properties of linearizations of the collision operator at equilibrium distributions will
be needed throughout the rest of this work and, in particular, in the following section for
the construction of a more accurate macroscopic approximation. For a fixed vector Û , the
linearisation of the collision operator around M̂ := M(Û) is denoted by

Lf := Q′(M̂)f.

The motivation for introducing a suitable functional analytic framework for the operator
L comes from the entropy inequality

1

ε2

∫

V

Q(M̂+ εf)∂fH(M̂+ εf)dµ ≤ 0

Since ∂fH(M̂) is a linear combination of the collision invariants (see Remark 1.1), the
limit as ε→ 0 of the left hand side is equal to 〈Lf, f〉v with the weighted scalar product

〈f, g〉v :=

∫

V

f g ∂2
fH(M̂)dµ . (3.3)

The induced Hilbert space and its norm are denoted by (L2
v, ‖.‖v). The operator L is

assumed to be bounded and symmetric and, by passing to the limit in the above entropy
inequality, it is negative semidefinite in L2

v. By the symmetry assumption, the functions
φj/∂

2
fH(M̂), 1 ≤ j ≤ n, (where φj is the j-th collision invariant) lie in the null space N of

L. We assume that they span N , but use the alternative basis ∂Uj
M(Û ,v), j = 1, . . . , n,

having the useful property

(U∂Uj
M(Û))i = ∂Uj

∫

V

φiM(Û)dµ = δij , 1 ≤ i, j ≤ n .

Since

〈f, φ/∂2
fH(M̂)〉v = Uf ,

N⊥ = {f ∈ L2
v : Uf = 0} holds, where N⊥ is the orthogonal complement of N in L2

v.
We assume that L : N⊥ → N⊥ is invertible. In other words, Ug = 0 is the solvability
condition for the equation Lf = g, which has a unique solution f ∈ N⊥. Finally, the
orthogonal projection from L2

v to N is given by f 7→ Uf · ∇UM(Û).
In this section, we have posed further assumptions on the collision operator:

Assumption 2 The linearized collsion operator Q′(M̂) is symmetric with respect to the
scalar product (3.3). Its kernel N is n-dimensional, and its restriction to N⊥ is invertible.

For BGK-models the linearized collision operator is given by Lf = Uf · ∇UM̂ − f ,
immediately showing dim(N ) = n, L|N⊥ = −id, and implying

〈Lf, g〉v − 〈Lg, f〉v =

∫

V

(gUf − fUg) · ∇UM̂ ∂2
fH(M̂)dµ .
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Symmetry of L is now a consequence of the identity

∇UM(U) ∂2
fH(M(U)) = ∇2η(U)φ , (3.4)

derived by computing the gradient of ∂fH(M(U)) = ∇η(U) · φ (see Remark 1.1). The
identity (3.4) has other useful consequences. Taking its tensor product with v∇UM(U)
and integrating it with respect to v shows that the matrix ∇2η(U)J ′(U) is symmetric.
This in turn implies that ∇2η(U)rk(U) is a left eigenvector of J ′(U) corresponding to the
eigenvalue λk. Thus,

∇2η(U)rk(U) = κk(U)lk(U) , with κk(U) = ∇2η(U)(rk(U), rk(U)) > 0 ,

implying the following relation between elements of N :

rk(Û) · ∇UM̂ = κk(Û)lk(Û) · φ

∂2
fH(M̂)

. (3.5)

3.3 The Chapman-Enskog approximation

There are two basic strategies for improving the approximation quality of the macroscopic
limit M(U) as an approximation for f ε. The idea of the Hilbert expansion [23] is rather
straightforward and amounts to constructing an asymptotic expansion for f ε in terms of
powers of ε:

f ε(t, x,v) = M(U(t, x),v) +
n∑

j=1

εnfn(t, x,v) +O(εn+1) .

Substitution of this ansatz in (3.1), (3.2), and in the initial conditions, and comparing
coefficients of ε leads to equations determining the sequence {fn} recursively.

The second approach does not concentrate on solving arbitrary initial value problems for
(3.1), but to approximate a solution manifold parametrized by the macroscopic moments
U ε = Ufε . It starts with the micro-macro decomposition

f ε = M(U ε) + εf⊥ ,

and tries to compute f⊥ in terms of U ε and the dynamics of U ε, such that f ε solves (3.1).
When, in this program, O(ε2)-errors are accepted in the equation for Uε, an approximation
up to O(ε)-errors is needed for f⊥. From (3.1) we obtain

Q′(M(U ε))f⊥ = ∇UM(U ε) · (∂tU
ε + v∂xU

ε) = ∇UM(U ε) · (v − J ′(U ε))∂xU
ε ,

where O(ε)-terms have been neglected. Computing the gradient with respect to U of the
relation J(U) =

∫
V
vφM(U)dµ shows that the right hand side satisfies the solvability

condition mentioned at the end of the previous section such that f⊥ can be computed
uniquely in terms of the approximation U of U ε:

f⊥[U ] = Q′(M(U))−1[∇UM(U) · (v − J ′(U))]∂xU . (3.6)
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Using this in (3.2) gives the Chapman-Enskog approximation [12]

∂tU + ∂xJ(U) = ε∂x(D(U)∂xU) , (3.7)

with the diffusivity matrix

D(U) = −
∫

V

vφ⊗Q′(M(U))−1[∇UM(U) · (v − J ′(U))]dµ ,

where the symbol ⊗ denotes the tensor product. For BGK-models, Q′|N⊥ = −id and a
more explicit representation can be found:

D(U) =

∫

V

v2φ⊗∇UM(U)dµ− J ′(U)2 .

The diffusion dissipates the macroscopic entropy, which is reflected by the fact that

∇2η(U)D(U) = −〈Q′(M(U))χ⊗ χ〉v ≥ 0

holds, where the identity (3.4) and the notation χ = ∇UM(U) · (v − J ′(U)) have been
used.

Remark 3.1 For the BGK-models for scalar macroscopic equations (φ = 1) in Section
2.1, ∂UM > 0 holds, implying

J ′(U)2 =

(∫

V

v∂UM(U)dµ

)2

<

∫

V

v2∂UM(U)dµ ,

since
∫

V
∂UM(U)dµ = 1. Thus, the diffusivity D(U) is strictly positive.

For the BGK-model for isentropic gas dynamics in Section 2.2,

D(ρ, u) = (3− γ)ργ−1

(
0 0
−u 1

)

holds, leading to the Navier-Stokes model

D(ρ, u)∂x

(
ρ
ρu

)
=

(
0

µ(ρ)∂xu

)
,

with the viscosity µ(ρ) = (3 − γ)ργ. This example shows that the diffusivity is in general
not regular, such that diffusion does not act on all components of U .

The gas dynamics BGK-model in Section 2.3 gives

D(ρ, u, T ) = T




0 0 0

−2(d−1)
d

u 2(d−1)
d

0

− (d+2)
2
T − 3(d−2)

2d
u2 (d−4)

d
u d+2

d


 ,
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leading to

D(ρ, u, T )∂x




ρ
ρu

ρ(u2 + dT )/2


 =




0
µ(ρ, T )∂xu

uµ(ρ, T )∂xu+ κ(ρ, T )∂xT


 ,

with viscosity µ(ρ, T ) = 2(d−1)
d

ρT and heat conductivity κ(ρ, T ) = d+2
2
ρT . Note that with

γ = d+2
d

and with the isentropic relation ρT = ργ, the viscosity of the previous example is
recovered.

Remark 3.2 Similar results as those described in Section 3.1 are also available for the
vanishing diffusion limit ε→ 0 in (3.7) (see, e.g., [20], or [8] for a recent result).

3.4 Weakly nonlinear approximation for small waves

In this section we consider the slow modulation of travelling wave solutions of the lineariza-
tion of the hydrodynamic system (1.4) at a constant state U−. Modulations are caused by
nonlinearity and by the dissipative terms in the Chapman-Enskog system (3.7).

We choose k such that the k-th field is strictly nonlinear (rk · ∇λk = 1) and introduce
a moving reference frame and a long time scale by x = η + λk(U−)t and t = τ/ε in (3.7):

ε∂τU + (J ′(U)− λk(U−))∂ηU = ε∂η(D(U)∂ηU) . (3.8)

This motivates the ansatz

U(τ, η) = U− + εy(τ, η)rk(U−) + ε2U2(τ, η) +O(ε3) ,

which annihilates the O(1)- and O(ε)-terms in (3.8). At O(ε2), we obtain

∂τy rk + y∂ηyJ
′′(rk, rk) + (J ′ − λk)∂ηU2 = Drk∂

2
ηy ,

where all functions of U are evaluated at U−. A solvability condition for this equation for
U2 is obtained by taking the scalar product with the left eigenvector lk of J ′ (satisfying
lk · rk = 1):

∂τy + y∂ηy = Dk(U−)∂2
ηy , (3.9)

with Dk(U) = lk(U) ·D(U)rk(U), where the relation

1 = rk · ∇λk = rk · ∇(lk · J ′rk) = lk · J ′′(rk, rk) + rk · (λkrk · ∇lk + λklk · ∇rk)

= lk · J ′′(rk, rk) + λkrk · ∇(lk · rk) = lk · J ′′(rk, rk) (3.10)

has been used.
Approximately, the modulation of travelling wave solutions is described by the viscous

Burgers equation (3.9). Positivity of the scalar diffusivity Dk will be assumed. It has to
be checked example by example.

Remark 3.3 For scalar conservation laws we obviously have D1(U) = D(U). For the
isentropic gas dynamics model we obtain Dk = (3 − γ)ργ−1/2 for both k = 1 and k = 2,
and for the full gas dynamics BGK-model Dk = T for the genuinely nonlinear fields k = 1
and k = 3.
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3.5 Viscous shock profiles for weak shocks

Let the k-th field of (1.4) be genuinely nonlinear and let {U±, s} denote a k-shock, where
the shock speed can be written as

s = λ− + εσ ,

with σ < 0 and a small perturbation parameter 0 < ε ¿ 1. The sign conditions are
due to the Lax entropy condition (1.8). Then the difference of the far field states has an
asymptotic expansion

U+ − U− = 2εσr− +O(ε2) ,

where r− := rk(U−) and λ− := λk(U−). A travelling wave solution U = Uvsp(ξ), ξ = x− st
of the Chapman-Enskog equations (3.7), satisfying the far-field conditions Uvsp → U± for
ξ → ±∞, will be called a viscous shock profile. It can be seen as an heteroclinic orbit of
the ODE system

εD(U)∂ξU = J(U)− J(U−)− s(U − U−) . (3.11)

General results on the existence of viscous shock profiles are not available (even for artificial
viscosity of the formD(U) = I). For small shocks, i.e. ε small enough, Uvsp can be expected
to stay close to the constant state U−, and therefore the asymptotics of the previous section
can be used for an approximation. This leads to a travelling wave problem for the viscous
Burgers equation (3.9) with wave speed σ and with the far-field values y− = 0 and y+ = 2σ.
A travelling wave solution yvsp(η − στ) = yvsp(ξ) can be computed explicitly.

To make this approximation rigorous is a nontrivial problem of the theory of singularly
perturbed ODEs. The details of the justification depend on the properties of the diffusivity
matrix D(U). A general rigorous treatment is, thus, impossible and we state the result as
an assumption.

Assumption 3 Let the k-th field of the macroscopic flux J(U) be genuinely nonlinear, and
let Dk(U−) = lk(U−) · D(U−)rk(U−) > 0. Let, for ε small enough, (3.11) have a solution
Uvsp(ξ) = U− + εyvsp(ξ)rk(U−) + ε2U ε

2 (ξ), satisfying limξ→±∞ Uvsp(ξ) = U±, such that U ε
2

and all its derivatives are uniformly bounded with respect to ε.

We verify the assumption for the BGK-models of Section 2. For the case of a scalar
conservation law (Section 2.1), genuine nonlinearity, w.l.o.g. J ′′ > 0, has to be assumed.
In this case, by D(U) > 0, viscous shock profiles obviously exist, iff the entropy condition
U+ < U− is satisfied. Smallness of the shock is not needed.

For the case of isentropic gas dynamics (Section 2.2), both fields are genuinely nonlinear.
By the form of D(ρ,m) the first equation in the system (3.11) is algebraic, and the system
can be reduced to the scalar ODE

εµ(ρ)

ρ
∂ξρ = (ρ− ρ−)(u− − s) +

ργ+1 − ρργ
−

ρ−(s− u−)
.
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It is easily seen that s−u− is negative for a 1-shock and positive for a 2-shock. Obviously,
this sign determines the convexity of the right hand side, and a viscous shock profile exists,
whenever the entropy condition (ρ+ > ρ− for a 1-shock, ρ+ < ρ− for a 2-shock) is satisfied.
Again smallness of the shock is not needed.

For the full gas dynamics BGK-model (Section 2.3) again one equation in (3.11) is
algebraic. However, after elimination of one unknown, a singularly perturbed second order
system remains. Existence of viscous profiles for small shocks (in the genuinely nonlinear
fields k = 1, 3) has been shown for various applications.

4 Existence of kinetic profiles for weak shocks

In this section we shall present an approach for the construction of small amplitude travel-
ling wave solutions of the kinetic equation (1.1). The macroscopic moments of their far field
limits are connected by genuinely nonlinear entropic shock waves of the hyperbolic system
(1.4). The main ideas are generalizations of the work of Caflisch and Nicolaenko [11] on the
gas dynamics Boltzmann equation. Our approach is slightly different in several details. In
particular, starting from a formal asymptotic approximation, a perturbation equation for
the correction term is considered. This leads to a sharper error bound in the final result.
Also the problem is in general not linearized around the far-field state. This is necessary
for treating problems with equilibrium velocity distributions with compact support (like
the BGK-model for isentropic gas dynamics in Section 2.2), in order to guarantee that the
support of the state we linearize around contains the support of the travelling wave.

In the following two subsections, the general procedure is outlined. Applications to
several examples are contained in the last subsection.

A kinetic shock profile is a solution f = f(ξ,v) of

ε(v − s)∂ξf = Q(f) , lim
ξ→±∞

f(ξ,v) = M±(v) := M(U±,v) . (4.1)

Considering (3.11) as an approximation for (4.1), an approximative kinetic profile for a
small k-shock is given by

fas := M(Uvsp) + εf⊥[Uvsp] , (4.2)

where the microscopic correction term is defined in (3.6).

4.1 The micro-macro decomposition of the correction term

We start by analyzing the formal approximation properties of (4.2). The residual is given
by

ε3h := ε(v − s)∂ξfas −Q(fas)

= ε(v − s)∂ξM(Uvsp) + ε2(v − s)∂ξf
⊥[Uvsp]−Q(M(Uvsp) + εf⊥[Uvsp]) . (4.3)
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Using the asymptotic expansion of Uvsp given in Assumption 3, it is straightforward to
show that the scaling of the residual is justified in the sense that, as a function of ξ, h and
its derivatives are bounded uniformly with respect to ε.

Also the system (3.11) implies that the macroscopic moments of the residual vanish:
Uh = 0. Finally, fas satisfies the far-field conditions in (4.1) exactly.

The problem (4.1) rewritten in terms of the correction term ε2g = f − fas reads

ε(v − s)∂ξg − Lasg = ε2R(g)− εh , (4.4)

with Las = Q′(fas) and R(g) = ε−4(Q(fas + ε2g)−Q(fas)− ε2Lasg), subject to

g(±∞,v) = 0 for all v ∈ V . (4.5)

By computing the moments and integration with respect to ξ, we derive the property
∫

V

(v − s)φ g dµ = 0 . (4.6)

The collision operator has been linearized around the approximation fas. This has the in-
convenience to depend on the spatial variable ξ. Therefore we shall also use the linearization
L := Q′(M(Û)) around the constant-in-ξ state M̂, chosen such that Û = U− + εŨ (with
Ũ bounded uniformly in ε) and, consequently, fas = M̂+O(ε) and Las = L+O(ε). Here
and in the following, we use the abbreviations

M̂ = M(Û) , λ̂ = λk(Û) , r̂ = rk(Û) , l̂ = lk(Û) .

The correction term is split into a macroscopic and a microscopic part:

g(ξ,v) = z(ξ)Φ(v) + εw(ξ,v) , (4.7)

where the macroscopic variable is scalar and corresponds only to contributions from the
k-th field. The choice of the profile function Φ is motivated by the work of Caflisch and
Nicolaenko for the Boltzmann equation [11]. It is chosen such that it approximately solves
a generalized eigenvalue problem:

LΦ = ετ(v − s)Φ +O(ε2) ,

for a constant τ and, additionally has the moment property of g:
∫

V

(v − s)φΦ dµ = 0 =⇒
∫

V

(v − s)φw dµ = 0 . (4.8)

Hence expanding Φ = Φ0 + εΦ1 and decomposing the wave speed as s = λ̂ + εσ̂ with
σ̂ = σ− Ũ ·∇λ̂+O(ε), we determine the components Φ0 and Φ1 and the eigenvalue τ such
that

LΦ0 = 0 and

∫

V

(v − λ̂)φΦ0 dµ = 0, (4.9)

LΦ1 = τ(v − λ̂)Φ0 and

∫

V

(v − s)φΦ1 dµ = σ̂

∫

V

φΦ0 dµ . (4.10)
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Considering that the null space of L is spanned by the components of ∇UM̂, the problem
(4.9) is solved by Φ0 = r̂ · ∇UM̂. Note that the second equation in (4.9) is the solvability
condition for the first equation in (4.10). We choose a solution of the form

Φ1 = τL−1[(v − λ̂)Φ0] +
∑

j 6=k

βjrj(Û) · ∇UM̂ .

The second equation in (4.10) then becomes

−τD(Û)r̂ +
∑

j 6=k

βj(λj(Û)− s)rj(Û) = σ̂r̂ ,

which can be solved for τ and the βj by

τ = − σ̂

Dk(Û)
, βj =

τ

λj(Û)− s
lj(Û) ·D(Û)r̂ , j 6= k .

As a consequence of (3.5) and of (4.9)

ψ = L−1

(
(v − λ̂)

l̂ · φ
∂2

fH(M̂)

)
∈ N⊥

is well defined. In order to make the decomposition (4.7) unique, we pose the orthogonality
condition

〈(v − s)ψ,w〉v = 0 . (4.11)

The computation

−D̃ = 〈(v − s)ψ,Φ〉v = 〈vψ,Φ0〉v +O(ε)

= l̂ ·
∫

V

vφL−1[(v − λ̂)r̂ · ∇UM̂]dµ+O(ε) = −Dk(Û) +O(ε)

shows that, for ε small enough, D̃ > 0 and the decomposition (4.7) is well defined.
We now write the perturbation equation (4.4) in terms of the decomposition (4.7) and

divide by ε:

(v − s)Φ∂ξz − z
1

ε
LasΦ + ε(v − s)∂ξw − Lasw = εR(zΦ + εw)− h, (4.12)

It is part of the method of Caflisch and Nicolaenko that for projecting the equation to its
macroscopic and microscopic parts, the alternative decomposition

g = Pg − (v − s)Φ

D̃
Πg , with Πg = 〈ψ, g〉v ,

is used. This definition and the property (4.8) of Φ imply UPg = Ug. Application of Π to
(4.12) gives the macroscopic equation

−D̃∂ξz + Ψ(ξ)z = εΓw + εΠR− Πh, (4.13)
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where

Ψ = −1

ε
ΠLasΦ and Γw =

1

ε
ΠLasw .

These terms are (formally) O(1). This might not be obvious for the last one: The con-
struction of ψ, the symmetry of L and (4.8) imply

ΠLasw = 〈Lψ,w〉v +O(ε) = l̂ ·
∫

V

(v − s)φw dµ+O(ε) = O(ε) .

In the limit ε→ 0, z satisfies a linear equation independent from the microscopic solution
component w. The following result shows that it is a small perturbation of the linearization
of the travelling wave version of the viscous Burgers equation (3.9).

Lemma 4.1 Let Assumption 3 hold. Then, formally, Ψ(ξ) = yvsp(ξ)− σ +O(ε).

Proof. We shall use the formula

Q′′(M(U))(∇UM(U),∇UM(U)) = −Q′(M(U))∇2
UM(U) , (4.14)

which can be derived by computing the Hessian with respect to U of Q(M(U)) = 0. Since
Φ0 is in the null space of L,

1

ε
LasΦ =

Las − L
ε

Φ0 + LasΦ1 (4.15)

holds. By the definition of Φ1,

ΠLasΦ1 = 〈ψ,LΦ1〉v +O(ε) = τ〈ψ, (v − s)Φ〉v +O(ε) = σ̂ +O(ε) . (4.16)

The definition of fas and the expansion of the viscous shock profile Uvsp imply fas =
U− + εyvsprk(U−) +O(ε2) and, thus,

Las − L
ε

=
Q′(M(U− + εyvsprk(U−)))−Q′(M̂)

ε
+O(ε)

= Q′′(M̂)(yvspr̂ − Ũ) · ∇UM̂+O(ε) .

With (4.14) we therefore obtain

Las − L
ε

Φ0 = −L∇2
UM̂(yvspr̂ − Ũ , r̂) +O(ε) ,

implying, with the symmetry of L,

Π
Las − L

ε
Φ0 = −l̂ ·

∫

V

(v − λ̂)φ∇2
UM̂dµ (yvspr̂ − Ũ , r̂) +O(ε)

= −l̂ · J ′′(Û)(yvspr̂ − Ũ , r̂) +O(ε) = −yvsp + Ũ · ∇λ̂+O(ε) ,
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where the last equality requires a computation analogous to (3.10). Combining this with
(4.15) and (4.16) and recalling σ̂ = σ − Ũ · ∇λ̂+O(ε) completes the proof. ¤

The microscopic projection P is used to derive from (4.12) an equation for w. The
linearized collison operator is now approximated by L:

ε(v − s)∂ξw − Lw = z
1

ε
PLasΦ + εΓ̃w + εPR− Ph , (4.17)

where

Γ̃w = −1

ε

(v − s)Φ

D̃
ΠLw +

1

ε
P (Las − L)w .

The operator Γ is formally O(1). Like g, its micro- and macro-components z and, respec-
tively, w have to satisfy homogeneous far-field conditions

z(±∞) = w(±∞,v) = 0 . (4.18)

The problem (4.4), (4.5) for g is equivalent to the (z, w)-problem (4.13), (4.17), (4.18).
The basic idea for the solution is to produce a fixed point problem by considering the

right hand sides of (4.13) and of (4.17) as given. This is made difficult by the nondefiniteness
of L. The following procedure of removal of the null space is again based on ideas from
Caflisch and Nicolaenko [11].

We introduce a negative definite perturbation of L, which coincides with L on the set of
functions w satisfying the moment conditions (4.8) and the orthogonality condition (4.11):

Kw = Lw − (v − s)ψ〈(v − s)ψ,w〉v − (v − s)
φ

∂2
fH(M̂)

·
∫

V

(v − s)φw dµ . (4.19)

We already know that L is negative definite on N⊥. Writing the general element of the
null space of L as w =

∑n
j=1 αjrj(Û) · ∇UM̂ ∈ N , we compute

−〈Kw,w〉v =

(
n∑

j=1

αj l̂ ·D(Û)rj(Û)

)2

+

∣∣∣∣∣
n∑

j=1

αj(λj(Û)− s)rj(Û)

∣∣∣∣∣

2

.

The limits (λj(U−)−λk(U−))rj(U−), j 6= k, as ε→ 0 of the vectors (λj(Û)−s)rj(Û), j 6= k,
in the last term are linearly independent. Therefore this term controls the coefficients αj,

j 6= k. The coefficent of αk in the first term on the right hand side is equal to Dk(Û), whose
limit Dk(U−) as ε → 0 is positive. So this term controls αk, showing that K is negative
definite.

We now replace the operator L in (4.17) by K:

ε(v − s)∂ξw −Kw = z
1

ε
PLasΦ + εΓ̃w + εPR− Ph , (4.20)

and look for a solution of (4.13), (4.18), (4.20) in the following. The equivalence of the
problems is not obvious:

Lemma 4.2 For given z(ξ), the problems (4.17), (4.18) and (4.20), (4.18) for w are
equivalent.
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Proof. Since any solution of (4.17), (4.18) satisfies (4.8) and (4.11), it also solves (4.20),
(4.18).

Let on the other hand w be a solution of (4.20), (4.18). Multiplication of (4.20) by
the components of φ and integration with respect to velocity as well as taking the scalar
product of (4.20) with ψ results in a system of n+ 1 linear homogeneous first order ODEs
for the quantitites

∫

V

(v − s)φw dµ and 〈(v − s)ψ,w〉v .

Due to the homogeneous far-field conditions, these quantities vanish for all ξ, implying
(4.8) and (4.11) and, thus, (4.17). ¤

4.2 The existence result

The solvability of the nonlinear problem (4.13), (4.18), (4.20) is deduced by using a fix-
point argument. Hence we first consider the leading linear system, where we regard the
right hand sides of (4.13) and (4.20) as given inhomogenities:

ε(v − s)∂ξw −Kw = hw , subject to w(±∞,v) = 0 , (4.21)

D̃∂ξz −Ψ(ξ)z = hz , subject to z(±∞) = 0 . (4.22)

Taking the scalar product of (4.21) with w and integrating with respect to ξ gives

−
∫ ∞

−∞
〈Kw,w〉v dξ =

∫ ∞

−∞
〈hw, w〉v dξ . (4.23)

This shows that the definiteness of K implies uniqueness of the solution of (4.21), whereas
equation (4.22) has a one parameter set of solutions, which reflects the translational in-
variance of the travelling wave problem. Therefore we pose the initial condition

z(0) = z0 , (4.24)

with an arbitrary z0 ∈ R. Lemma 4.1 and the far-field behaviour of yvsp imply Ψ(∞) < 0
and Ψ(−∞) > 0. Therefore the fundamental solution Z satisfying

D̃∂ξZ −Ψ(ξ)Z = 0 , Z(0) = 1 ,

decays exponentially for ξ → ±∞, and the solution

z(ξ) = Z(ξ)z0 +
1

D̃

∫ ξ

0

Z(ξ)

Z(η)
hz(η)dη

of (4.22), (4.24) is bounded for bounded hz.
At this point it is necessary to choose a functional analytic framework for the further

development. Different choices are possible and have been made in different situations in
the past. In this general treatment, we stay abstract and assume that two norms ‖ · ‖∗ξ and
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‖ · ‖∗∗ξ for functions of the spatial variable ξ have been chosen, where the first one is used
for solutions of (4.22) and the second one for the right hand sides. Similarly, the norms
‖ · ‖∗ξ,v and ‖ · ‖∗∗ξ,v for functions of (ξ,v) are used for solutions of (4.21) and, respectively,
right hand sides. In the following, C denotes (possibly different) ε-independent constants.

Assumption 4 A solution of (4.21) exists and the solutions of (4.22), (4.24) and of (4.21)
satisfy estimates of the form

‖z‖∗ξ ≤ C(|z0|+ ‖hz‖∗∗ξ ) , ‖w‖∗ξ,v ≤ C‖hw‖∗∗ξ,v .

Caflisch and Nicolaenko use weighted L∞-norms for the Boltzmann equation [11], whereas
for BGK-models, as we will see later, L2-based norms turn out to be convenient. In view
of (4.23), an L2-approach seems natural. However, for the control of the nonlinearities
regularity with respect to ξ is needed. Control of nonlinearities is straightforward in a
L∞-approach. Estimating the solution of (4.21) in terms of L∞-norms on the other hand,
requires much more sophistication than the derivation of L2-estimates.

The approach for the existence proof of a solution of (4.21) is based on spectral theory
in [11]. In [17] the proof relies on a discretisation of the velocity component.

The existence and uniqueness proof of solutions of the nonlinear problem (4.13), (4.20)
and (4.24) is now a contraction argument. Therefore we need estimates for the right-hand
sides of (4.13) and (4.20). Corresponding to the spaces of the solutions and inhomogenities
of the linear problem we define the norms

‖(z, w)‖∗ := ‖z‖∗ξ + ε‖w‖∗ξ,v , ‖(hz, hw)‖∗∗ := ‖hz‖∗∗ξ + ε‖hw‖∗∗ξ,v , (4.25)

weighted according to the decomposition g = Φz+ εw. In the following we identify g with
the pair (z, w), i.e., ‖g‖∗ = ‖(z, w)‖∗.

The following assumption contains rigorous statements concerning the formal properties
of the terms on the right hand sides of (4.13), (4.20):

Assumption 5 (i) The linear terms appearing in the right hand sides of (4.13) and
(4.20) can be bounded as follows:

1

ε
‖PLasΦz‖∗∗ξ,v ≤ C‖z‖∗ξ , ‖Γw‖∗∗ξ + ‖Γ̃w‖∗∗ξ,v ≤ C‖w‖∗ξ,v . (4.26)

(ii) The residual terms are uniformly bounded:

‖Πh‖∗∗ξ + ‖Ph‖∗∗ξ,v ≤ C . (4.27)

(iii) The nonlinear term R(g) is quadratic:

‖ΠR(g1)− ΠR(g2)‖∗∗ξ + ‖PR(g1)− PR(g2)‖∗∗ξ,v

≤ C(‖g1‖∗ + ‖g2‖∗)‖g1 − g2‖∗ , for ‖g1‖∗, ‖g2‖∗ ≤ C0

ε
. (4.28)
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Before stating the existence and uniqueness result we note that in terms of the original
unknown f = fas + ε2g, the condition z(0) = z0 reads

〈(v − s)ψ, f − fas〉v(ξ = 0) = −ε2z0D̃ . (4.29)

Theorem 4.3 Let the Assumptions 1 – 5 hold. Then for every z0 ∈ R and every small
enough ε > 0 there exists a solution of (4.1), (4.29), which is unique in a ball {f : ‖f −
fas‖∗ ≤ εδ} with δ independent of ε. It satisfies

‖f −M(Uvsp)‖∗ ≤ Cε2 ,

or, more precisely,

f = M(Uvsp) + εf⊥[Uvsp] + ε2Φz + ε3w,

where Uvsp is the solution of (3.11) and ‖z‖∗ξ and ‖w‖∗ξ,v are uniformly bounded as ε→ 0.

Proof. It remains to prove the existence and uniqueness of the full nonlinear problem
(4.13), (4.20), (4.24). As a consequence of assumption (4.26), the estimates from assump-
tion 4 can be extended to the full linear problem

D̃∂ξz −Ψ(ξ)z = εΓw + hz ,

ε(v − s)∂ξw −Kw − z
1

ε
PLasΦ = εΓ̃w + hw ,

with given inhomogenities hz, hw and z(0) = z0. In terms of the norms defined in (4.25)
the estimate on the solution of the linear problem can be written as

‖(z, w)‖∗ ≤ C(|z0|+ ‖(hz, hw)‖∗∗) .
Applying the solution operator for this system to (4.13), (4.20) implies a fixed point prob-
lem of the form

z = εRz(z, w) + h̃z , (4.30)

w = εRw(z, w) + h̃w , (4.31)

where Rz and Rw share the property in (4.28), and h̃z, h̃w are the terms containing the
residual, hence given and bounded due to (4.27). Using (4.28), the fix-point operator can
be estimated by

‖(εRz(z, w) + h̃z, εRw(z, w) + h̃w)‖∗ ≤ c(1 + ε(‖(z, w)‖∗)2) ,

for a constant c > 0.
This implies that for ε small enough both the ball with radius 2c and the ball with

radius ε−1 min{1/(2c), C0} are mapped into themselves by the right hand side of (4.30),
(4.31). Due to the properties of the nonlinearity, the fix-point operator is a contraction
on a ball with an O(ε−1) radius. And we conclude that for ε small, (4.30), (4.31) has a
solution with ‖(z, w)‖∗ ≤ 2c, which is unique in a ball with an O(ε−1) radius. Knowing
this and returning to (4.31), also the boundedness of ‖w‖∗ξ,v follows. ¤
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Lemma 4.4 Let the assumptions of Theorem 4.3 hold and let the norm ‖·‖∗ξ,v be such that
‖Uw‖∞ ≤ C‖w‖∗ξ,v. Then the macroscopic moments Uf,j(ξ), j = 1, . . . , n, of the solution
f of (4.1), (4.29) are strictly monotone. Due to the asymptotic expansion of the travelling
wave solution f , sgn(∂ξUf,j) = sgn(rk(U−)j∂ξyvsp) follows.

Proof. We proceed as in [17]. One can easiliy extend the proof of Theorem 4.3 to show
that the difference of two solutions (z, w) and (ẑ, ŵ) is depending Lipschitz continuously
on the initial data

‖z − ẑ‖∗ξ ≤ C|z0 − ẑ0|, ‖w − ŵ‖∗ξ,v ≤ C|z0 − ẑ0| .
For the corresponding solutions f and f̂ of (4.1), (4.29) the relation

Uf,k(0)− Uf̂ ,k(0) = ε2UΦ,k(z0 − ẑ0) + ε3(Uw,k(0)− Uŵ,k(0))

holds. The assumption ‖Uw,k − Uŵ,k‖∞ ≤ C‖w − ŵ‖∗ξ,v now implies

|Uw,k(0)− Uŵ,k(0)| ≤ C|z0 − ẑ0| .
Since UΦ,k 6= 0, the map z0 7→ Uf,k(0) is invertible for ε small, meaning that the travelling
wave can also be made locally unique by prescribing the value of Uf,k(0) instead of z0. This
argument can of course be repeated with Uf,k(ξ0) for every ξ0 ∈ R instead of the origin.

Now assume Uf,k(ξ) is not strictly monotone. Then there exist two ξ-values ξ0 and
ξ0 + δ with an arbitrarily small positive δ, such that Uf,k(ξ0) = Uf,k(ξ0 + δ). Now also
f̃(ξ, v) = f(ξ+ δ, v) is a travelling wave with Uf̃ ,k(ξ0) = Uf,k(ξ0). By the uniqueness result

we obtain f ≡ f̃ . Consequently f must be periodic, which is a contradiction to the far-field
conditions. ¤

4.3 Examples

For the BGK-models introduced in Section 2, it only remains to check Assumptions 4 and
5. The standard norms and spaces of functions of ξ we denote by (L2

ξ , ‖.‖ξ), (Hm
ξ , ‖.‖Hm

ξ
),

(L∞ξ , ‖.‖∞) and recall the definition of the inner product in v in (3.3). Then the Hilbert
space L2

ξ,v is naturally defined by the scalar product

〈f, g〉ξ,v =

∫

R
〈f, g〉v dξ , where supp f, supp g ⊂ V ,

with the induced norm ‖ · ‖ξ,v. Similarly the spaces Hk
ξ (L2

v) of functions, whose derivatives
in ξ up to order k are in L2

v, are defined by

‖f‖Hk
ξ (L2

v) =
(‖f‖2

ξ,v + . . .+ ‖∂k
ξ f‖2

ξ,v

) 1
2 .

In terms of these norms we have to make some assumptions on the Maxwellians and kinetic
entropies. We require that for a fixed v ∈ V the equilibrium distribution M(U,v) with
support in V is five times continuously differentiable in U and∫

|φ(v)α∇β
UM(U,v)|dµ < C,

∫
|φ(v)α|

(
∇β

UM(U,v)
)2

∂2
fH(M̂)dµ < C, (4.32)
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where α and β are multiindices with |α| ≤ 4 and |β| ≤ 5 and U is O(ε)-close to M̂.
Moreover we assume∣∣∣∣

∫
φ(v)αfdµ

∣∣∣∣ ≤ C‖f‖v , for |α| ≤ 3 , (4.33)

implying

‖Uf,k‖Hm
ξ
≤ C‖f‖Hm

ξ (L2
v), k = 1, . . . , n . (4.34)

We are now prepared to investigate the existence of a solution to the linear problem corre-
sponding to (4.21), (4.22). We shall mention that for the existence proof H1

ξ -based norms
are sufficient. In this case we would only need the moment conditions in (4.32) up to
|β| = 3. But since showing the asymptotic stability requires L∞-bounds on the macro-
scopic profiles of the travelling wave and also on their derivatives up to second order, we
shall rather look for solutions in the spaces H3

ξ , respectively H3
ξ (L2

v):

ε(v − s)∂ξw −Kw = hw, with hw ∈ H3
ξ (L2

v) , (4.35)

D̃∂ξz −Ψ(ξ)z = hz, with hz ∈ H2
ξ . (4.36)

As we have already indicated before, there exist constants γ , ξ̄ > 0 such that

Ψ(ξ) ≤ −γ for ξ ≥ ξ̄ , Ψ(ξ) ≥ γ for ξ ≤ ξ̄ . (4.37)

Using this property of Ψ it was shown in [17] that the solution z of (4.36) with z(0) = z0

satisfies the estimate

‖z‖H3
ξ
≤ C(|z0|+ ‖hz‖H2

ξ
) .

Additionally, based on a discretisation of the velocity component v, it was proven in [17]
that there exists a unique solution w ∈ H3

ξ (L2
v) of (4.21) satisfying

‖∂k
ξw‖ξ,v ≤ 1

κ
‖∂k

ξ hw‖ξ,v , for k = 0, . . . , 3 .

Here the positive constant κ is the one from the coercivity estimate −〈Kw,w〉v ≥ κ‖w‖2
v.

This coercivity estimate in particular holds for the negative definite operators K appearing
in the examples under consideration.

If we can also verify the bounds on the linear and nonlinear terms in assumption 5
the contraction argument can be carried out. Using the boundedness of Π : L2

v → R and
P : L2

v → L2
v, the moment conditions (4.32), (4.33) and the smoothness of Uvsp, we obtain

the desired bounds on the linear terms

1

ε
‖PLasΦz‖H3

ξ (L2
v) ≤ C‖z‖H3

ξ
, ‖Γw‖H3

ξ
+ ‖Γ̃w‖H3

ξ (L2
v) ≤ C‖w‖H3

ξ (L2
v) . (4.38)

We observe that for the particular examples under consideration the behaviour of Uvsp is
exponential as ξ → ±∞. This allows us to integrate the derivatives in ξ, and enables us
to deduce the boundedness of the residual-terms

‖Ph‖H3
ξ (L2

v) + ‖Πh‖H3
ξ
≤ C . (4.39)
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Here we have again additionally used the smoothness of Uvsp, the boundedness of P and
Π and the moment conditions (4.32), (4.33).

Now it only remains to control the nonlinear term

R(g) =
1

ε4
[M(Uvsp + ε2Ug)−M(Uvsp)− ε2∇M(Uvsp) · Ug]

= UgM′′(Uvsp + ε2ϑUg)Ug ,

for a ϑ ∈ (0, 1). By differentiation, the moment conditions in (4.32) and the one-dimensional
Sobolev imbedding, the estimate

‖R(g1)−R(g2)‖Hk
ξ (L2

v) ≤ C(‖g1‖Hk
ξ (L2

v) + ‖g2‖Hk
ξ (L2

v))‖g1 − g2‖Hk
ξ (L2

v) (4.40)

can be deduced to hold for all g1, g2 with ‖g1‖Hk
ξ (L2

v), ‖g2‖Hk
ξ (L2

v) ≤ Cε−2 in general. If V is

compact, the ball of admissible functions g1, g2 has to be reduced to a ball with a radius
C0ε

−1. Due to the construction of V this guarantees that the supports of the Maxwellians
resulting from Taylor expansions stay in V .

We shall give the norm of g according to (4.25) explicitly:

‖g‖∗ = ‖(z, w)‖∗ = ‖z‖H3
ξ

+ ε‖w‖H3
ξ (L2

v) . (4.41)

Hence obviously ‖g‖H3
ξ (L2

v) ≤ C‖g‖∗, and the existence and uniqueness result is an imme-

diate consequence from Theorem 4.3.
For the oncoming examples it now only remains to give a concrete setting for the

Maxwellians and the kinetic entropies, such that (4.32)-(4.33) hold.

BGK-models for scalar conservation laws

We have already mentioned that the monotonicity condition on the Maxwellian, ∂UM > 0,
provides a kinetic entropy. Considering V = R, we linearize around the left states and hence
the inner product in v can be written as

〈f, g〉v =

∫
fg

∂UM−
dµ .

As long as the Maxwellians satisfy the conditions corresponding to (4.32) and (4.33), the
existence result is an immediate consequence.

The BGK-model for the isothermal system and the gas dynamics

In both cases we have smooth Maxwellians with V = R. The conditions (4.32) and (4.33)
can be checked by direct calculations.
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The BGK-model for the isentropic system

In this example the Maxwellians under consideration have a compact support. Hence
we have to construct a Maxwellian M̂ := M(ρ̂, û) with a bigger support than all other
functions appearing in our calculations. For simplicity we denote in the following γ =
1 + 2α. Then the support of M(ρf , uf ) is bounded by

uf − cf√
α
≤ v ≤ uf +

cf√
α
. (4.42)

As we have already seen, the macroscopic profiles of the travelling wave will be monotone,
i.e.

∂ξρf > 0, ∂ξuf =
sρf − ρfuf

ρ2
f

∂ξρf =
s(ρ− − ρ−u−)

ρ2
f

∂ξρf = −(c− − εσ)
ρ−
ρ2

f

∂ξρf < 0 .

Now one can see that the left hand side of (4.42) is strictly decreasing. An expansion
shows that also the right hand side of (4.42) is decreasing, and hence neither M− nor M+

provide a large enough support. We choose

û = u−, ĉ = c+(1 + ε/ρ+) , (4.43)

defining ρ̂ and û uniquely. Then for ε small M̂ has the desired properties, i.e. the support of
M̂ includes the supports of all M(ρf , uf ) plus an additional range of order ε. And thus we

linearize from now on around the Maxwellian M̂ with the support V :=
[
û− ĉ√

α
, û+ ĉ√

α

]
.

The inner product (3.3) reads

〈f, g〉v :=
1

2βd
1
β

∫
f g M̂ 1

β
−1dv , for supp f, supp g ⊂ V .

Now it only remains to check (4.32), i.e. for M(ρ, u) with suppM(ρ, u) ⊂ V :

sup
ξ

∣∣∣∣
∫ (

∂j
ρ∂

k
ρuM(ρ, u)

)2 M̂ 1
β
−1dv

∣∣∣∣ < C , (4.44)

for j + k = 0, . . . , 5. In order to guarantee that this holds, we have to make a technical
assumption and restrict in the following α to the values

0 < α <
1

17
, or equivalently 1 < γ < 1 +

2

17
.

It is sufficient to show the uniform boundedness of
∫

suppM(ρ,u)

(
c2

α
− (v − u)2

)2(β−n) (
ĉ2

α
− (v − û)2

)1−β

dv, for n = 0, . . . , 5 . (4.45)

The assumption suppM(ρ, u) ⊂ V implies
(

c√
α

+ u− v

)(
c√
α
− u+ v

)
≤

(
ĉ√
α

+ û− v

)(
ĉ√
α
− û+ v

)
,
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for all v ∈ suppM(ρ, u) and ξ ∈ R, and hence, assuming for the moment β > 1, the
integral in (4.45) is bounded by

∫ (
c2

α
− (v − u)2

)β+1−2n

+

dv .

A transformation of variable leads to the Beta-function and hence (4.32) is valid only if
β + 1− 2n > −1, i.e. β > 8 or equivalently 0 < α < 1/17.

5 Stability of kinetic shock profiles for weak shocks

5.1 Stability of viscous shock profiles

Goodman [21] shows the asymptotic stability of viscous shock profiles for hyperbolic con-
servation laws with a positive definite visosity. Kawashima and Matsumura investigated
the asymptotic stability of traveling wave solutions of some systems for one-dimensional
gas motion [25]. In particular a decay rate for the scalar conservation law and a stability
proof for the Navier-Stokes equations in Lagrangian coordinates are given. The stability
for the isentropic gas dynamics in Lagrangian coordinates was derived by Matsumura and
Nishihara in [31].

We consider a viscous regularization of the conservation law in terms of travelling wave
coordinates and of a parabolic time scale:

ε∂tU + (J ′(U)− s)∂ξU = εD̂∂2
ξU ,

where, for simplicity, the diffusivity matrix is considered constant. A viscous profile Uvsp

satisfies the stationary version

(J ′(Uvsp)− s)∂ξUvsp = εD̂∂2
ξUvsp .

We introduce the perturbation by εUG(t, ξ) := U(t, ξ) − Uvsp(ξ) and assume the ’well-
preparedness’ condition

∫ ∞

−∞
UG(0, ξ)dξ = 0 , (5.1)

for the initial data. This should fix the shift of the asymptotic travelling wave such that
we expect convergence of UG to zero. The equation for UG can be written as

∂tUG +
1

ε
∂ξ[(J

′(Uvsp)− s)UG] + ∂ξr(UG) = D̂∂2
ξUG , (5.2)

with the nonlinearity r(U) = [J(Uvsp + εU) − J(Uvsp) − εJ ′(Uvsp)U ]/ε2. One of the basic
assumptions of the analysis we present here, will be the existence of a symmetric, posi-
tive definite, U -dependent matrix Λ(U), such that Λ(U)J ′(U) is symmetric and such that
Λ(Uvsp)D̂ ≥ κ > 0 is positive definite. A possible candidate is the Hessian ∇2η(U) of the
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entropy density, which satisfies the symmetrization property, and the matrix ∇2η(U)D(U)
with the Chapman-Enskog diffusivity is always symmetric and positive semidefinite (com-
pare to [29]). Positive definiteness cannot be expected in general, as the examples in
Section 3.3 show. For the case of non-definiteness, the details of the stability estimates
will depend on the structure of D(U). An example is carried out below.

Positive definiteness of ∇2η(Uvsp)D(Uvsp) is of course preserved, when D(Uvsp) is re-

placed by a constant approximation, say D̂ = D(Û).

Assumption 6 For every U ∈ Rn there exists a symmetric positive definite matrix Λ(U),
smoothly depending on U , such that Λ(U)J ′(U) is symmetric and Λ(Uvsp)D̂ ≥ κ > 0.

Taking the scalar product in L2
ξ of (5.2) with Λ(Uvsp)UG gives

1

2

d

dt
‖UG‖2

Λ −
1

2ε
〈UG, [∂ξΛ(J ′ − s)− Λ∂ξJ

′]UG〉ξ − 〈∂ξ(ΛUG), r(UG)〉ξ
= −〈∂ξ(ΛUG), D̂∂ξUG〉ξ , (5.3)

where we used the weighted L2-norm ‖U‖2
Λ := 〈ΛU,U〉ξ. It is well known that stability

cannot be proven based only on this equation. The main reason is that the bracket in the
second term has the unfavourable definiteness in general. An example is the scalar case,
where Λ = 1 and J ′ is a decreasing function of ξ along a shock profile.

We shall still extract some information from an estimate based on (5.3). Using the fact
that ∂ξUvsp = O(ε), and that r is quadratic in the sense that |r(U)| ≤ C(|U |)U2 (with an
increasing function C), standard estimation leads to

d

dt
‖UG‖2

Λ + κ‖∂ξUG‖2
ξ ≤ C(‖UG‖∞)‖UG‖2

ξ . (5.4)

It is by now a standard method to introduce the primitive W (t, ξ) =
∫ ξ

−∞ UG(t, ξ′)dξ′.
The assumption (5.1) on the initial data and the conservation property imply the far field
conditions

W (t,±∞) = 0 . (5.5)

Integration of (5.2) gives

∂tW +
1

ε
(J ′(Uvsp)− s)∂ξW + r(UG) = D̂∂2

ξW . (5.6)

As above, we test with Λ(Uvsp)W :

1

2

d

dt
‖W‖2

Λ −
1

2ε
〈W,∂ξ[Λ(J ′ − s)]W 〉ξ + 〈ΛW, r(UG)〉ξ

= −〈∂ξW,ΛD̂∂ξW 〉ξ − 〈W,∂ξΛD̂∂ξW 〉ξ . (5.7)

Now it is reasonable to assume that the second term has the favourable sign. The last
term we estimate as∣∣∣〈W,∂ξΛD̂∂ξW 〉ξ

∣∣∣ ≤ κ

2
‖∂ξW‖2

ξ + c‖∂ξΛW‖2
ξ .
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A somewhat stronger version of the above assumption is that

− 1

2ε
〈W,∂ξ[Λ(J ′ − s)]W 〉ξ − c‖∂ξΛW‖2

ξ ≥ 0 .

With the properties of the nonlinearity we obtain

d

dt
‖W‖2

Λ +
(
κ− C(‖UG‖∞)‖W‖∞

)
‖UG‖2

ξ ≤ 0 . (5.8)

For our estimates (5.4) and (5.8) to be useful we need pointwise-in-time control of ‖UG‖∞.
This will be provided by an L2-estimate on V := ∂ξUG and Sobolev imbedding. The
derivative of (5.2) with respect to ξ can be written as

∂tV +
1

ε
∂ξ

(
(J ′(Uvsp)− s)V + ∂ξJ

′ UG

)
+ ∂2

ξ r(UG) = D̂∂2
ξV , (5.9)

We treat this equation similarly to (5.2) and (5.6), but omit the details. The result is the
estimate

d

dt
‖∂ξUG‖2

Λ + κ‖∂2
ξUG‖2

ξ ≤ C(‖UG‖∞)(‖UG‖2
ξ + ‖∂ξUG‖2

ξ) . (5.10)

The stability proof is completed by a combination of (5.4), (5.8), and (5.10). For positive
constants γ1, γ2, we define

I(t) := ‖W‖2
Λ + γ1‖UG‖2

Λ + γ2‖∂ξUG‖2
Λ .

Then, by Sobolev imbedding,

‖W‖∞ + ‖UG‖∞ ≤ cI .

With M := cI(0), we assume that M is small enough, so γ1 and γ2 can be chosen such
that

κ > C(M)(M + γ1 + γ2) , κγ1 > C(M)γ2 .

Then there is a positive constant λ such that

dI

dt
≤ −λ‖UG‖2

H2
ξ
.

Thus, I is a Lyapunov functional. By integration with respect to time, UG converges to
zero as t→∞ in the sense that

∫ ∞

0

‖UG‖2
H2

ξ
dt <∞ .
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5.2 A Lyapunov functional for BGK-models

Now the ideas of the preceding section will be carried over to kinetic shock profiles. Here
the L2-energy methods for the macroscopic system will be extended to also control the
microscopic part. Similar techniques have been used by Liu and Yu for the Boltzmann
equation [28].

We start with the kinetic equation, written in travelling wave variables and a macro-
scopic diffusion scaling:

ε2∂tf + ε(v − s)∂ξf = M(Uf )− f .

Let ϕ denote a kinetic shock profile:

ε(v − s)∂ξϕ = M(Uϕ)− ϕ .

The perturbation εG = f − ϕ satisfies

ε2∂tG+ ε(v − s)∂ξG =
1

ε
[M(Uϕ + εUG)−M(Uϕ)]−G . (5.11)

The micro-macro decomposition of the perturbation is defined byG = UG·∇UM̂+εg, where
Û in M̂ = M(Û) is a constant approximation of Uϕ, and εg = −LG is the microscopic

projection with the linearization L of the collision operator around M̂. Computing the
macroscopic moments of (5.11) gives

∂tUG +
1

ε
(J ′(Û)− s)∂ξUG + ∂ξJg = 0 . (5.12)

Like in the previous section, we obtain an equation for W (t, ξ) =
∫ ξ

−∞ UG(t, ξ′)dξ′ by
integration:

∂tW +
1

ε
(J ′(Û)− s)∂ξW + Jg = 0 . (5.13)

An equation for the microscopic part is derived by applying the microscopic projection to
(5.11):

ε2∂tg − εL((v − s)∂ξg) +∇UM̂ · (v − J ′(Û))∂ξUG

= −g +
1

ε
UG · [∇UM(Uϕ)−∇UM̂] +R(UG) , (5.14)

with

R(U) =
1

ε2
[M(Uϕ + εU)−M(Uϕ)− εU · ∇UM(Uϕ)] .

The next step is to compute the last term in (5.13) in the spirit of the Chapman-Enskog
approximation by computing g from (5.14):

∂tW +
1

ε
(J ′(Uϕ)− s)∂ξW − D̂∂2

ξW = ε2∂tJg − ε∂ξJL((v−s)g) − r(UG) , (5.15)
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with D̂ = D(Û) and

r(U) = JR(U) =
1

ε2
[J(Uϕ + εU)− J(Uϕ)− εJ ′(Uϕ)U ] .

In the same way we derived (5.8) in the previous section, we obtain

d

dt
‖W‖2

Λ + [κ− C(‖UG‖∞)‖W‖∞] ‖UG‖2
ξ ≤ ε2〈ΛW,∂tJg〉ξ − ε〈ΛW,∂ξJL((v−s)g)〉ξ .

The first term on the right hand side we rewrite using (5.13):

〈ΛW,∂tJg〉ξ =
d

dt
〈ΛW,Jg〉ξ +

1

ε
〈Λ(J ′(Û)− s)UG, Jg〉ξ + ‖Jg‖2

Λ ,

leading to

d

dt

(‖W‖2
Λ − ε2〈ΛW,Jg〉ξ

)
+ [κ− C(‖UG‖∞)‖W‖∞] ‖UG‖2

ξ

≤ ε〈Λ(J ′(Û)− s)UG, Jg〉ξ + ε2‖Jg‖2
Λ + ε〈ΛUG, JL((v−s)g)〉ξ , (5.16)

where an integration by parts has been carried out in the last term. An estimate for the
microscopic part of the perturbation is derived by taking the L2

ξ,v-scalar product of the full
perturbation equation (5.11) with G:

1

2

d

dt

[
‖UG‖2

Λ̂
+ ε2‖g‖2

ξ,v

]
+ ‖g‖2

ξ,v

=

〈
UG · ∇UM(Uϕ)−∇UM̂

ε
, g

〉

ξ,v

+ 〈R(UG), g〉ξ,v , (5.17)

with Λ̂ = ∇2η(Û). Now we assume that the factors in the scalar products on the right
hand sides of (5.16) and (5.17) are bounded linear maps of UG and of g with the exception
of the quadratic term R(UG):

d

dt

[
‖W‖2

Λ − ε2〈ΛW,Jg〉ξ
]

+
(κ

2
− C(‖UG‖∞)‖W‖∞

)
‖UG‖2

ξ ≤ ε2c‖g‖2
ξ,v ,

d

dt

[
‖UG‖2

Λ̂
+ ε2‖g‖2

ξ,v

]
+ ‖g‖2

ξ,v ≤ C(‖UG‖∞)‖UG‖2
ξ .

Adding these inequalities after multiplying the second by a positive constant δ gives

d

dt

[
‖W‖2

Λ − ε2〈ΛW,Jg〉ξ + ε2δ‖g‖2
ξ,v + δ‖UG‖2

Λ̂

]

+
(κ

2
− (δ + ‖W‖∞)C(‖UG‖∞)

)
‖UG‖2

ξ + (δ − ε2c)‖g‖2
ξ,v ≤ 0 .

For fixed δ and ε small enough, the term under the time derivative can be bounded from
below by

c
[
‖W‖2

ξ + ‖UG‖2
ξ + ε2‖g‖2

ξ,v

]
,

31



with a positive constant c. So it controls ‖W‖∞, but not ‖UG‖∞.
By taking the derivatives of (5.11) and (5.15) with respect to ξ, we obtain equations

for G and for H := ∂ξG = ∂ξUG · ∇UM̂+ εh:

∂tUG +
1

ε
∂ξ

(
(J ′(Uϕ)− s)UG

)
− D̂∂2

ξUG = ε2∂tJh − ε∂ξJL((v−s)h) − ∂ξr(UG) ,

ε2∂tH + ε(v − s)∂ξH =
1

ε
∂ξ

(
M(Uϕ + εUG)−M(Uϕ)

)
−H .

Treating the first equation like in the previous section and the second like (5.11), we obtain

d

dt

[
‖UG‖2

Λ − ε2〈ΛUG, Jh〉ξ
]

+ κ‖∂ξUG‖2
ξ ≤ C(‖UG‖∞)‖UG‖2

ξ + ε2c‖h‖2
ξ,v ,

d

dt

[
‖∂ξUG‖2

Λ̂
+ ε2‖h‖2

ξ,v

]
+ ‖h‖2

ξ,v ≤ C(‖UG‖∞)(‖UG‖2
ξ + ‖∂ξUG‖2

ξ) .

Now we take a linear combination of these inequalities like above:

d

dt

[
‖UG‖2

Λ − ε2〈ΛUG, J∂ξg〉ξ + ε2δ‖∂ξg‖2
ξ,v + δ‖∂ξUG‖2

Λ̂

]

+ (κ− δC(‖UG‖∞)) ‖∂ξUG‖2
ξ + (δ − ε2c)‖∂ξg‖2

ξ,v ≤ C(‖UG‖∞)‖UG‖2
ξ .

Again, the term under the time derivative is positive definite. Finally, with γ > 0 we define
the Lyapunov functional by

I(t) := ‖W‖2
Λ − ε2〈ΛW,Jg〉ξ + ε2δ‖g‖2

ξ,v + δ‖UG‖2
Λ̂

+γ
[
‖UG‖2

Λ − ε2〈ΛUG, J∂ξg〉ξ + ε2δ‖∂ξg‖2
ξ,v + δ‖∂ξUG‖2

Λ̂

]
,

and obtain

dI

dt
+

(κ
2
− (δ + γ + ‖W‖∞)C(‖UG‖∞)

)
‖UG‖2

ξ + (δ − ε2c)‖g‖2
ξ,v

+γ
(
κ− δC(‖UG‖∞)

)
‖∂ξUG‖2

ξ + γ(δ − ε2c)‖∂ξg‖2
ξ,v ≤ 0 .

The functional I controls ‖W‖2
ξ +‖UG‖2

ξ +‖∂ξUG‖2
ξ + ε2‖g‖2

ξ,v + ε2‖∂ξg‖2
ξ,v. So, by Sobolev

imbedding,

‖W‖∞ + ‖UG‖∞ ≤ cI

holds. With M := cI(0), I is indeed a Lyapunov functional, if

κ

2
> (δ + γ +M)C(M) and δ > ε2c .

This can of course be achieved by choosing δ, γ, M , and ε small enough.
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5.3 Stability of weak kinetic profiles for the isentropic gas dy-
namics BGK-model

The model of Section 2.2 satisfies the assumptions used in the previous section except the
regularity of the Chapman-Enskog diffusivity. Therefore the main steps of the analysis will
be recalled from [15].

To derive estimates for the macroscopic part we adapt ideas from [31], where the stabil-
ity of travelling waves for the isentropic system for a compressible viscous gas in Lagrangian
coordinates is proven by L2-energy estimates. Control of the microscopic terms will be ob-
tained like in the previous section.

As in the previous section, we start with the kinetic equation in diffusion scaling:

ε2∂tf + ε(v − s)∂ξf = M(ρf ,mf )− f , (5.18)

with the far-field conditions f(t, ξ = ±∞, v) = M(ρ±,m±, v). As in Section 2.2 we shall
switch between the momentum density and the mean velocity, connected by mf = ρfuf , as
second macroscopic variable. Let ϕ be the travelling wave solution. The well-preparedness
condition for the initial data now reads

∫

R
(ρf0 − ρϕ)dξ = 0,

∫

R
(mf0 −mϕ)dξ = 0. (5.19)

Introducing the perturbation G

εG = f − ϕ, ρ := ρG, m := mG ,

we obtain

ε2∂tG+ ε(v − s)∂ξG =
1

ε
[M(ρϕ + ερ,mϕ + εm)−M(ρϕ,mϕ)]−G . (5.20)

As in [15] we apply a micro-macro decomposition to the deviation G

G = ∇UM(ρ̂, m̂) ·
(

ρ
m

)
+ εg, (5.21)

where as before U = (ρ,m). Observe that −LG = εg. Then the norm of G satisfies

‖G‖2
ξ,v =

1

ρ̂

[
ĉ2‖ρ‖2

ξ + ‖(m− ρû))‖2
ξ

]
+ ε2‖g‖2

ξ,v . (5.22)

Macroscopic equations for ρ and m are obtained by computing the zeroth and first order
moments of equation (5.20)

ε∂tρ+ ∂ξ(m− ρs) = 0 , (5.23)

ε∂tm+ ∂ξ

(
∇Uj(ρ̂, m̂) ·

(
ρ
m

)
− sm

)
+ ε∂ξ

∫
v2g dv = 0 . (5.24)
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Next we apply −L to (5.20) to get an equation for g

ε2∂tg−∂ξ

(
∇UM̂ ·

[
(J ′(ρ̂, m̂)− v) ·

(
ρ
m

)])
−ε∂ξL((v−s)g) = R(ρ,m)−g ,(5.25)

with the nonlinearity

R(ρ,m) =
1

ε2

[
M (ρϕ + ερ,mϕ + εm)−M(ρϕ,mϕ)− ε∇UM̂ ·

(
ρ
m

)]
.

Using equation (5.25) we calculate
∫

R
v2g dv = q(ρ,m)− εS(g)− D̂∂ξ(m− ρû) , (5.26)

with the constant D̂ := (3− γ)ρ̂γ−1 > 0, the nonlinearity q(ρ,m) :=
∫
R v

2Rdv and

S(g) =

∫

R
v2(ε∂tg − L((v − s)∂ξg))dv . (5.27)

The stability of the shock profiles will be investigated by introducing primitives of the
macroscopic variables. According to (5.22) and the diffusion term in (5.26), it is convenient
to use

Wρ(t, ξ) =

∫ ξ

−∞
ρ(t, ξ′) dξ′ , Wu(t, ξ) =

∫ ξ

−∞
(m(t, ξ′)− ρ(t, ξ′)û)dξ′ .

Integrating (5.23),(5.24) with respect to ξ gives the macroscopic equations

∂tWρ +
1

ε
[∂ξWu + (ĉ− εσ̂)∂ξWρ] = 0, (5.28)

∂tWu +
1

ε

[
(ĉ− εσ̂)∂ξWu + ĉ2∂ξWρ

]
+ q − D̂∂2

ξWu = εS(g). (5.29)

Observe that the second equation is obtained by a linear combination of (5.23),(5.24). We
expand q as follows

q(ρ,m) =
1

ε
(∇Uj(ρϕ,mϕ)−∇Uj(ρ̂, m̂)) ·

(
ρ
m

)
+ q̃(ρ,m) ,

q̃(ρ,m) =
1

ε2

(
j (ρϕ + ερ,mϕ + εm)− j(ρϕ,mϕ)− ε∇Uj(ρϕ,mϕ) ·

(
ρ
m

))
.

and note that q̃ is purely quadratic in (ρ,m).
Now the system (5.28),(5.29) can equivalently be stated as

∂tWρ +
1

ε
[∂ξWu + (ĉ− εσ̂)∂ξWρ] = 0, (5.30)

∂tWu +
1

ε
[K2(ϕ)∂ξWu +K1(ϕ)∂ξWρ] + q̃ − D̂∂2

ξWu = εS(g), (5.31)

34



where

K1(ϕ) := c2ϕ − (uϕ − û)2 , K2(ϕ) := ĉ− εσ̂ + 2 (uϕ − û) . (5.32)

We will need the signs of K1, K2 and of their derivatives. From Lemma 4.4 we know that
the travelling wave is strictly increasing, which also implies ∂ξuϕ < 0. Then for ε small we
get

ĉ2

2
< K1(ϕ) < 2ĉ2, ∂ξK1(ϕ) > 0, ∂ξ

(
K1(ϕ)−1

)
< 0, (5.33)

ĉ

2
< K2(ϕ) < 2ĉ, ∂ξK2(ϕ) < 0. (5.34)

Recall from Theorem 4.3 that ∂ξK1(ϕ), ∂ξK2(ϕ) are O(ε) uniformly in ξ.
We start with the derivation of estimates for the macroscopic parts. For controlling

the nonlinear terms, L∞ξ -bounds of ρ,m are needed, which we shall control in H1
ξ . This

means we need to control the H2
ξ -norm of Wρ,Wu and therefore we give integral estimates

for their derivatives up to second order in the following.
Expanding (ρϕ,mϕ) around (ρ̂, m̂) gives ρϕ = ρ− + εy = ρ̂+ εŷ1 and mϕ = m− + εsy =

m̂+ εŷ2 and we can write the nonlinearity as

R(ρ,m) = (ŷ1, ŷ2) · H(M1) ·
(

ρ
m

)
+ (ρ,m) · H(M2)

(
ρ
m

)
, (5.35)

whereM1 = M(ρ̂+εϑ1ŷ1, m̂+εϑ1ŷ2),M2 = M(ρϕ+εϑ2ρ,mϕ+εϑ2m) and 0 ≤ ϑ1, ϑ2 ≤ 1.

For ‖R‖v to be well defined we have to guarantee that suppM1, suppM2 ⊂ suppM̂. Due
to the construction of M̂ this holds for M1. For M2 this is only true for sufficiently small
‖ρ‖∞, ‖m‖∞. We make this smallness assumption for the moment and prove it in the
stability result at the end of this section. By differentiating (5.35) and using (4.32), we
obtain

‖R‖2
Hk

ξ (L2
v) ≤ C̃

[
‖∂ξWρ‖2

Hk
ξ

+ ‖∂ξWu‖2
Hk

ξ

]
for k = 0, 1, 2, (5.36)

implying together with (4.33) the same bound for q

‖q‖2
Hk

ξ
≤ C̃

[
‖∂ξWρ‖2

Hk
ξ

+ ‖∂ξWu‖2
Hk

ξ

]
for k = 0, 1, 2. (5.37)

Here and in the following C̃ depends on ‖ρ‖∞, ‖m‖∞.

Lemma 5.1 Let Wρ,Wu be the solution of the system (5.28), (5.29). Then there exists a
constant C and C̃(‖ρ‖∞, ‖m‖∞) such that the following two estimates hold for any αk >
0, k = 0, 1, 2:

d

dt
J0 +

∫

R
κ(ϕ)W 2

u dξ +

(
α0

(
ĉ2

2
− εC̃

)
− C̃‖Wu‖∞

)
‖∂ξWρ‖2

ξ

+

(
D̂

2ĉ2
− εC − C̃‖Wu‖∞ − α0

(
1 + εC̃

))
‖∂ξWu‖2

ξ

≤ ε

∫

R

(
K1(ϕ)−1Wu + εα0∂ξWρ

)
S(g) dξ, (5.38)
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where

J0 =
1

2

∫

R

[
W 2

ρ +K1(ϕ)−1W 2
u + εα0(εD̂(∂ξWρ)

2 + 2(∂ξWρ)Wu)
]
dξ (5.39)

and

κ(φ) =
1

2ε

[
−∂ξ(K2(ϕ)K1(ϕ)−1)− 2εD̂|∂ξ(K1(ϕ)−1)|

]
> 0 ,

and accordingly for the higher order derivatives k = 1, 2:

d

dt
Jk + αk

(
ĉ2

2
− ε2C̃

)
‖∂k+1

ξ Wρ‖2
ξ +

(
D̂

2
− αk(1 + ε2C̃)

)
‖∂k+1

ξ Wu‖2
ξ (5.40)

−C̃
[
‖∂ξWρ‖2

Hk−1
ξ

+ ‖∂ξWu‖2
Hk−1

ξ

]
≤ ε

∫

R

(
∂k

ξWu + εαk∂
k+1
ξ Wρ

)
∂k

ξS(g) dξ,

where

Jk =
1

2

∫

R

[
ĉ2(∂k

ξWρ)
2 + (∂k

ξWu)
2 + εαk(εD̂(∂k+1

ξ Wρ)
2 + 2∂k+1

ξ Wρ∂
k
ξWu)

]
dξ. (5.41)

Proof. We start with the proof of (5.38) and split it into two steps. First we derive
estimate (5.38) with α0 = 0 and in the second step we prove the inequality for the remaining
terms containing α0.
Step 1: We test (5.30) with Wρ and (5.31) with K1(ϕ)−1Wu such that the integrals
containing Wρ∂ξWu and Wu∂ξWρ cancel out. Here we also take advantage of the properties
of K1 and K2, see (5.33), (5.34):

1

2

d

dt

∫ [
W 2

ρ +K1(ϕ)−1W 2
u

]
dξ +

1

ε

∫
∂ξ

(−K2(ϕ)K1(ϕ)−1
) W 2

u

2
dξ +

∫
K1(ϕ)−1Wu q̃ dξ

+D̂

∫ [
K1(ϕ)−1(∂ξWu)

2 + ∂ξ

(
K1(ϕ)−1

)
∂ξ
W 2

u

2

]
dξ = ε

∫
K1(ϕ)−1Wu S(g) dξ.

In the third term we estimate the quadratic term by
∣∣∣∣
∫
q̃ dξ

∣∣∣∣ ≤ C̃
[‖∂ξWρ‖2

ξ + ‖∂ξWu‖2
ξ

]
. (5.42)

The triangle inequality is used for the fourth term
∣∣∣∣
∫
∂ξ

(
K1(ϕ)−1

)
(∂ξW2)Wu dξ

∣∣∣∣ ≥ −
∫ [|∂ξ

(
K1(ϕ)−1

) |W 2
u + εC(∂ξWu)

2
]
dξ.

From this estimate we cannot control ‖∂ξWρ‖2
ξ . Therefore we will combine it with the next

one.
Step 2: Testing the first derivative of (5.30) with ∂ξWρ we obtain

1

2

d

dt

∫
(∂ξWρ)

2dξ +
1

ε

∫
∂2

ξWu∂ξWρdξ = 0,
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and we observe that

d

dt

∫
(∂ξWρ)Wu dξ =

∫
(∂tWu ∂ξWρ − ∂tWρ ∂ξWu) dξ.

By combining the equations in the corresponding way we get

1

2

d

dt

∫ [
ε2D̂(∂ξWρ)

2 + 2ε(∂ξWρ)Wu

]
dξ +

∫
K1(ϕ)(∂ξWρ)

2dξ −
∫

(∂ξWu)
2dξ

+

∫
(K2(ϕ)− (ĉ− εσ̂))∂ξWu∂ξWρdξ + ε

∫
∂ξWρ q̃ dξ = ε2

∫
∂ξWρ S(g) dξ.

For the fourth term on the left hand side we use the triangle inequality together with
K2(ϕ)− (ĉ− εσ̂) = 2(uϕ − û) = O(ε). Finally applying (5.42) gives the estimate.

For the bounds on the higher order derivatives we proceed as above. First we differentiate
the system (5.28), (5.29) k times and test it with ĉ2∂k

ξWρ, respectively ∂k
ξWu. Applying

∫
∂k

ξ q ∂
k
ξWu dξ = −

∫
∂k−1

ξ q ∂k+1
ξ Wu dξ ≥ −D̂

2

[
‖∂k+1

ξ Wu‖2
ξ +

1

D̂2
‖q‖2

Hk−1
ξ

]

the inequality for αk = 0 is straightforward. The remaining part is analogous as Step 2
above. ¤.

Now we concentrate on bounds for the small terms on the right hand sides in (5.38) and
(5.40). Here the estimates from [17] are extended.

Lemma 5.2 Let Wρ,Wu, g and S(g) satisfy (5.26)-(5.29). Then there exists a constant C
such that

ε

∫
K1(ϕ)−1Wu S(g) dξ −

∫
κ(ϕ)W 2

udξ (5.43)

≤ ε2 d

dt

∫
K1(ϕ)−1Wu

∫
v2 g dv dξ + εC

[‖g‖2
ξ,v + ‖∂ξWρ‖2

ξ + ‖∂ξWu‖2
ξ

]
,

and additionally for k = 0, 1, 2

ε

∫
∂k

ξWu∂
k
ξS(g) dξ (5.44)

≤ ε2 d

dt

∫
∂k

ξWu

∫
v2∂k

ξ g dv dξ + εC
[‖∂k

ξ g‖2
ξ,v + ‖∂k+1

ξ Wρ‖2
ξ + ‖∂k+1

ξ Wu‖2
ξ

]
.

Proof.
∫
K1(ϕ)−1Wu S(g) dξ

= ε
d

dt

∫
K1(ϕ)−1Wu

∫
v2g dv dξ + ε

∫
K1(ϕ)−1

(∫
v2g dv

)2

dξ
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+

∫
K1(ϕ)−1(ĉ2∂ξWρ + (ĉ− εσ̂)∂ξWu)

∫
v2g dv dξ

+

∫ [
K1(ϕ)−1∂ξWu + ∂ξ

(
K1(ϕ)−1

)
Wu

] ∫
v2L((v − s)g) dv dξ

≤ ε
d

dt

∫
K1(ϕ)−1Wu

∫
v2g dv dξ + C

(‖g‖2
ξ,v + ‖∂ξWρ‖2

ξ + ‖∂ξWu‖2
ξ

)

+

∫
∂ξ

(
− 1

2K1(ϕ)

) [(∫
v2L((v − s)g)dv

)2

+W 2
u

]
dξ.

For the first equality we used (5.26) and (5.29), moreover (4.32) and (4.33), which also
implies

∫
v2L((v− s)∂k

ξ g)dv ≤ C‖∂k
ξ g‖v. Finally to control the last term the function κ(ϕ)

is needed. We multiply the above inequality with ε and use κ(ϕ) + ε∂ξ (K1(ϕ)−1) /2 ≥ 0.
The proof for the second estimate is similar. ¤

Lemma 5.3 Let Wρ,Wu, g and S(g) satisfy (5.26)-(5.29). Then there exists a constant C
and a C̃ such that for k = 0, 1, 2

ε2

∫
∂k+1

ξ Wρ∂
k
ξS(g) dξ ≤ ε2 D̂

2

d

dt
‖∂k+1

ξ Wρ‖2
ξ + εC̃

[
‖∂ξWρ‖2

Hk
ξ

+ ‖∂ξWu‖2
Hk

ξ

]
+ εC‖∂k

ξ g‖2
ξ,v.

Proof. These estimates cannot be derived in the same way as before, since the derivatives
in the bounds would get too high and could not be controlled by the macroscopic estimates
anymore. Here we take advantage of ε2. We use equation (5.26) for S(g)

ε2∂k
ξS(g) = ε

(
∂k

ξ q − D̂∂k+2
ξ Wu −

∫
v2∂k

ξ gdv

)
.

Now we substitute ∂k+2
ξ Wu according to (5.28) implying

ε2

∫
∂k+1

ξ Wρ∂
k
ξS(g)dξ = ε

∫
∂k

ξ q∂
k+1
ξ Wρ dξ + ε2

∫
D̂∂t

(∂k+1
ξ Wρ)

2

2
dξ

−ε
∫ ∫

v2∂k
ξ g∂

k+1
ξ Wρ dv dξ.

¤
For getting control of the microscopic terms we derive estimates from the full kinetic
perturbation equation.

Lemma 5.4 Let G, decomposed as in (5.21), be the solution of (5.20). Then there exists
a C̃ such that for k = 0, 1, 2

d

dt

[
1

ρ̂

(
ĉ2‖∂k+1

ξ Wρ‖2
ξ + ‖∂k+1

ξ Wu‖2
ξ

)
+ ε2‖∂k

ξ g‖2
ξ,v

]
+ ‖∂k

ξ g‖2
ξ,v ≤ C̃

[
‖∂ξWρ‖2

Hk
ξ

+ ‖∂ξWu‖2
Hk

ξ

]
.

38



Proof. The kth derivative of (5.20) is tested with ∂k
ξG. For more details see [17]. ¤

Now we are able to prove the main result of this section.

Theorem 5.5 Let the assumptions of Theorem 4.3 hold and let ϕ be the travelling wave
solution. Let f0(ξ, v) be the initial datum for (5.18) and let

Wρ,0(ξ) =
1

ε

∫ ξ

−∞
[ρf0(ξ

′)− ρϕ(ξ′)] dξ′ ,

Wu,0(ξ) =
1

ε

∫ ξ

−∞
[(mf0(ξ

′)−mϕ(ξ′))− û(ρf0(ξ
′)− ρϕ(ξ′))] dξ′ .

Moreover we assume f0−ϕ ∈ H2
ξ (L2

v) (implying f0(±∞, v) = ϕ(±∞, v)) and Wρ,0,Wu,0 ∈
L2

ξ, which ensures assumption (5.19). Let

‖Wρ,0‖L2
ξ
+ ‖Wu,0‖L2

ξ
+

1

ε
‖f0 − ϕ‖H2

ξ (L2
v) ≤ δ (5.45)

for a δ small enough, which is independent from ε. Then for ε small enough equation (5.18)
with initial data f0 has a unique global solution. In particular, small amplitude travelling
waves are locally stable in the sense that

lim
t→∞

∫ ∞

t

‖f(s, .)− ϕ(.)‖2
H2

ξ (L2
v)ds = 0.

Proof. The main idea is to construct a Lyapunow functional, which is decaying in time.
Recall (5.39), (5.41) and define

I := I0 + γ1I1 + γ2I2,

where

I0 := J0 + εC0

[
1

ρ̂

(
ĉ2‖∂ξWρ‖2

ξ + ‖∂ξWu‖2
ξ

)
+ ε2‖g‖2

ξ,v

]

−ε2

[∫ ∫
K1(ϕ)−1v2gWu dvdξ + α0

D̂

2
‖∂ξWρ‖2

ξ

]
,

and for k = 1, 2

Ik := Jk + εCk

[
1

ρ̂

(
ĉ2‖∂k+1

ξ Wρ‖2
ξ + ‖∂k+1

ξ Wu‖2
ξ

)
+ ε2‖∂k

ξ g‖2
ξ,v

]

−ε2

[∫ ∫
v2∂k

ξ g ∂
k
ξWu dvdξ + αk

D̂

2
‖∂k+1

ξ Wρ‖2
ξ

]
.

Here the constants Cj, j = 0, 1, 2, are positive and independent from ε. Then for any
γ1, γ2 > 0 the functional H(t) is bounded from above and below by

‖Wρ‖2
H2

ξ
+ ‖Wu‖2

H2
ξ

+ ε
[‖∂3

ξWρ‖2
ξ + ‖∂3

ξW2‖2
ξ

]
+ ε3‖g‖2

H2
ξ (L2

v),
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respectively by

‖Wρ‖2
H2

ξ
+ ‖Wu‖2

H2
ξ

+ ε‖G‖2
H2

ξ (L2
v).

We combine the estimates from Lemmata 5.1-5.4 to get a final one for the time derivative
of I and write all terms on the left hand side. For an initial data and ε small enough,
one can show that there exist constants γ1, γ2 > 0 and αj > 0, j = 0, 1, 2, such that
the coefficients of ‖∂k+1

ξ Wρ‖2
ξ , ‖∂k+1

ξ Wu‖2
ξ , k = 0, 1, 2, are positive initially. Since by

the Sobolev-Imbedding I controls the L∞ξ -norms of Wρ,Wu and their derivatives, these
coefficients stay positive, if I(0) is small enough, which is guaranteed by assumption (5.45).
Hence

d

dt
I(t) ≤ 0, for all t ≥ 0,

and the proof is completed by integrating with respect to t. ¤

Remark 5.6 (Isothermal Case) There is one difference in the isothermal case impor-
tant to be mentioned. Since the sound speed c is constant, the derivative of K1(ϕ) corre-
sponding to (5.32) is now of O(ε2) and has a different sign

∂ξK1(ϕ) = −2(uϕ − u−)∂ξuϕ < 0.

Therefore the macroscopic estimate corresponding to (5.38) with α0 = 0 has to be derived
differently. We test equation (5.30) with K1(ϕ)Wρ and (5.31) with Wu to obtain

1

2

d

dt

∫
(K1(ϕ)W 2

ρ +W 2
u )dξ + εC‖Wρ‖2

ξ +
D̂

2
‖Wu‖2

ξ

−C̃‖Wu‖∞(‖∂ξWρ‖2
ξ + ‖∂ξWu‖2

ξ) + 2‖∂ξWu‖2
ξ = ε

∫
S(g) ∂ξWu dξ

Observe that here we do not need estimate (5.43).

6 Shock profiles for strong shocks of scalar conserva-

tion laws

The first existence proof of large kinetic shock profiles is due to Golse [22] for the Perthame-
Tadmor model. The proof for other kinetic models for scalar conservation laws follows
similar steps. It consists of obtaining the shock profile as the limit of profiles for ξ on a
finite interval [−L,L] as L → ∞. Since the shock profile problem is translation invariant
in the ξ direction, care has to be taken with fixing the profiles before taking this limit.

In this section we consider (1.1) and assume that its macroscopic limit is a scalar
conservation law. Furthermore we assume throughout this section that V = R and dµ = dv.

We start by giving some ingredients that are common to the examples that follow and
that allow a way of proving existence and stability of strong shock profiles. A description
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of the proofs is then done in Section 6.1 and 6.2. This section is completed in Section 6.3
by presenting the program for the examples in sections 2.1 and 2.4.

We assume that the equilibrium distribution M(U, v) is continuous in v and has con-
tinuous derivatives with respect to U . The macroscopic flux is assumed to be genuinely
nonlinear and, without loss of generality, strictly concave:

J ′′(U) < 0 . (6.1)

A key property of M is its invertibility with respect to U : we assume that there exists a
ζ(f, v) such that

U = ζ(f, v) ⇐⇒ f = M(U, v) . (6.2)

To be more precise, we shall assume that the function M(v) : U →M(U, v) is C2(R)
and that there exist U+, U− ∈ R ∪ {−∞,+∞} such that

∂UM(U, v) > 0 for all U ∈ [U−, U+] . (6.3)

We continue by briefly describing some of the additional features of the equations.

Existence and uniqueness and the maximum principle:
In general, local (in time) existence and uniqueness of the initial value problem

∂tf + v∂xf = Q(f) , on R+ × R× V (6.4)

f(0, x, v) = finit(x, v) for (x, v) ∈ R× V (6.5)

follows by considering the mild formulation of (1.1)

f(t, ·, ·) = T (t)finit(·, ·) +

∫ t

0

T (t− s)Q(f(s, ·, ·)) ds , (6.6)

where T (t) denotes the continuous group generated by the linear transport operator v∂x.
Thus, well-posedness follows if Q(f) is Lipschitz continuous in the domain of T (t) by a
fixed point argument.

We shall assume that Q(f) allows a form of comparison principle, which relates the
solution to the distribution M at constant values of U : Let U−, U+ ∈ R be given, then if
the initial condition satisfies

M(U−, v) ≤ finit(x, v) ≤M(U+, v) (6.7)

then the solution of (6.4)-(6.5) satisfies

M(U−, v) ≤ f(t, x, v) ≤M(U+, v) for all t > 0 (6.8)

and thus also

U− ≤ Uf (t, x) ≤ U+ for all t > 0 . (6.9)

The general result for smooth initial data is the following:
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Proposition 6.1 Let finit ∈ C1
0(R × V ), such that there exists U−, U+ ∈ R with (6.7),

then there exists a unique solution f ∈ C1(R+ × R× V ) satisfying (6.8) and (6.9).

Kinetic entropy inequality For any increasing function χ the following holds
∫

V

χ(ζ(f, v))Q(f) dv ≤ 0 . (6.10)

I.e. (1.5) holds with H(f, v) =
∫ f

f̄
χ(ζ(g, v)) dg. All convex entropies η are recovered from

a kinetic entropy density H by taking χ = η′, and so (1.10) holds.
Additionally, we assume that for η(U) = U2/2 the entropy dissipation can be quantified.

Namely, that there exists a constant C > 0 independent of ε such that
∫

V

ϕ(f, v)Q(f) dv ≤ −C
∫

V

(f −M(Uf ))
2w(v) dv (6.11)

where the function w only depends on v and is positive and uniformly bounded.

L1-contraction
Another property that is satisfied by scalar conservation laws is the L1-contraction. For
the kinetic equation we shall assume that for two given solutions of (6.4)-(6.5) such that
f − g ∈ L1(R× V ) for all t > 0

∫

V

(Q(f)−Q(g))sign(f − g) dv ≤ 0 . (6.12)

We also assume that the equality holds if and only if sign(f − g) is constant (independent
of v). The L1-contraction property now follows from (6.12). Subtracting the equations for
f and g and multiplying by sign(f − g) implies that

∂t

∫

V

|f − g| dv + ∂x

∫

V

v|f − g|dv ≤ 0 . (6.13)

Or integrating with respect to x:

d

dt

∫

R

∫

V

|f − g| dv dx ≤ 0 . (6.14)

Also a comparison principle (that generalizes Proposition 6.1) follows easily from (6.13)
(by the Crandall-Tartar-Lemma [13]). Two solutions f and g with f − g ∈ L1(Rx× V ) for
all t > 0 clearly satisfy

∫

R

∫

V

(f − g) dv dξ =

∫

R

∫

V

(finit − ginit) dv dξ for all t > 0 .

Then if finit ≥ ginit then also f ≥ g for all t > 0.
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6.1 Existence of kinetic profiles for strong shocks

We now look for traveling wave solutions with speed s connecting different equilibrium
states. The traveling wave variable is defined by

ξ = x− st . (6.15)

and we look for functions f(ξ, v) that satisfy

(v − s)∂ξf = Q(f) (6.16)

lim
ξ→−∞

f(ξ, v) = M(U−, v) lim
ξ→+∞

f(ξ, v) = M(U+, v) (6.17)

with U± ∈ R, where the far field conditions hold almost everywhere in v.
Indeed, integrating (6.16) with respect to v over V gives

∂ξ

∫

V

(v − s)f dv = 0

and integration with respect to ξ, using (6.17), implies that
∫

V

(v − s)f dv = J(U−)− sU− = J(U+)− sU+ (6.18)

thus we recover the Rankine-Hugoniot condition.
Observe that if a solution of (6.16)-(6.17) exists then (6.1) implies that U− < U+, and

no solution exists if U− > U+. This is a consequence of (1.6): multiplying (6.16) by χ and
integration with respect to v gives

∂ξ

∫

V

(v − s)H(f, v) dv ≤ 0

(this is the traveling wave version of (1.6)). Integration with respect to ξ and (6.17) implies

(ψ(U+)− ψ(U−))− J(U+)− J(U−)

U+ − U−
(η(U+)− η(U−)) ≤ 0 . (6.19)

It is now a standard exercise of scalar conservation laws to prove that U− < U+: since this
inequality holds for all convex entropies, we choose to write if for η(U) = U2/2, and ψ now
satisfies ψ′(U) = U J ′(U). Defining

L(U) := (ψ(U)− ψ(U−))− 1

2
(J(U)− J(U−)) (U + U−)

the inequality (6.19) becomes L(U+) ≤ 0. We now compute L(U−) = 0 and observe

L′(U) =
1

2
[J ′(U)(U − U−)− (J(U)− J(U−))] < 0 ,

which holds by the concavity of J , thus U− < U+.
The general result is the following
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Theorem 6.2 There exists a traveling wave solution (unique up to translations in ξ) such
that

lim
ξ→±∞

f(ξ, v) →M(U±, v) weakly in L1
v(ω)

Its macroscopic density is continuous and monotonically increasing.

We describe the steps of the proof in some detail.

Step 1: The slab problem First one constructs profiles on the intervals [−L,+L] for all
L > 0, by solving the equation

(v − s)∂ξf
L = Q(fL), ξ ∈ (−L,+L) , v ∈ V (6.20)

subject to the inflow boundary conditions

fL(−L, v) = M(U−, v) , for v > s (6.21)

fL(+L, v) = M(U+, v) , for v < s . (6.22)

The definition of a fixed point map will depend in each case on Q(f), and is similar to the
fixed point map defined to prove existence of the evolution equation. In particular, this
fixed point map iteration will preserve the maximum and the comparison principles. In
general, regularity of the macroscopic slab profiles might need to be proved additionally
by means of averaging lemmas, for instance.

A general result can be formulated as follows

Proposition 6.3 With the assumptions (6.3) and that the collision operator admits a
maximum principle and that (6.10) hold, the slab problem (6.20)-(6.22) has a solution
fL ∈ L1

x,v((−L,L)× V ) with continuous macroscopic density UL, and satisfying

M(U−, v) ≤ fL(ξ, v) ≤M(U+, v) for all ξ ∈ R , v ∈ V , (6.23)

then also U+ ≤ UL ≤ U−.

The analogous for the Boltzmann equation is still open. Some results on a slab appear
in Arkeryd, Cercignani, and Illner [1], Arkeryd and Nouri [2] and Ukai [38]. A maximum
principle is not available here.

Step 2: Centering the profile The limiting problem for L = ∞ is translation invariant
with respect to ξ. For this reason, before taking the limit L→∞, we normalize the shift
of the profiles fL. First we observe that by (6.23) and the inflow boundary conditions

UL(−L) =

∫ s

−∞
fL(−L, v) dv +

∫ +∞

s

fL(−L, v) dv

≤
∫ s

−∞
M(U+, v) dv +

∫ +∞

s

M(U−, v) dv ≤ UL(L) .
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Then, for all L > 0, by continuity of UL we can take ξL ∈ [−L,L] such that

UL(ξL) = U∗ :=

∫ s

−∞
M(U+, v) dv +

∫ +∞

s

M(U−, v) dv .

Next we shift the point ξL to the origin. Before that we first need to extend the ξ domain
of fL to R:

fL
1 (ξ, v) :=





fL(−L, v) ξ < −L
fL(ξ, v) − L ≤ ξ ≤ L
fL(L, v) L > ξ .

For a sequence Ln → ∞ as n → ∞ we let ξn := ξLn and fn(ξ, v) := fLn
1 (ξ − ξn, v), and

Un :=
∫

V
fn dv. Clearly now Un(0) = U∗ for all n.

Passing to the limit L → ∞ in the equation will differ in each case. But, the bound
(6.23) extends trivially and holds for fn. Then fn converges weakly∗ in L∞ξ,v(R × V ) to
some f satisfying (6.23). Applying velocity averaging one obtains that Un → Uf uniformly
on compact sets and Uf (0) = U∗. The weak limit f of fL

1 solves the limit equation in the
distributional sense (the limit of the non-linear terms is treated in a similar way as for the
existence proof; it depends on the specific form of Q(f)). It is yet necessary to prove that
the shifted intervals [−Ln + ξn, Ln + ξn] tend to R.

Proposition 6.4 L + ξL, L − ξL → ∞ as L → ∞. And there exist sequences ξn → ∞
and ηn → −∞ such that the solution of the limit problem satisfies

f(ξn, v) →M(U+, v) , f(ηn, v) →M(U−, v) v − a.e. .

In the proof one argues by contradiction, assuming that for a sequence Ln → ∞,
ξn − Ln → ξ∗ > −∞ as n → ∞. Then, by passing to the limit in the equation in
the distributional sense, the limit f of fn satisfies a half-space problem for ξ ≥ ξ∗ with
equilibrium inflow data:

(v − s)∂ξf = Q(f) , for ξ ≥ ξ∗

f(ξ∗, v) = M(U−, v) , for v > s .

One then proves that f(ξ∗, v) = M(U−, v) also holds for v ≤ s v-a.e. and actually that
f(ξ, v) = M(U−, v) for ξ ≥ ξ∗ v-a.e..

With the aid of (6.11) and the continuity of Uf one proves that Uf → U+∞ as ξ →∞,
and that, restricted to a subsequence ξn, f(ξn, v) →M(U+∞) v-a.e. Using the maximum
principle and the inflow boundary condition it can be shown that U− ≤ U+∞ ≤ U+ and
that ∫

v<s

(v − s)(f(ξ∗, v)−M(U−, v)) dv = 0 , J(U+∞)− sU+∞ = J(U−)− sU−

then, by (6.23),

f(ξ∗, v) = M(U−, v) v − a.e. , (6.24)
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as anticipated. It is next shown that
∫

V

(Q(f)−Q(M(U−))) sign(f −M(U−)) dv = 0

and (6.12) gives that sign(f −M(U−)) is constant, actually zero by (6.24), thus f(ξ, v) =
M(U−, v) for all ξ ≥ ξ∗. This is in contradiction with Uf (0) = U∗, then −L+ ξL → −∞.

A similar argument shows that L + ξL → ∞ and that there is a sequence ξk → −∞
as k → ∞ such that there exists U−∞ with f(ξk, v) →M(U−∞, v) as k → ∞ v-a.e. The
entropy inequality again implies that U−∞ ≤ U+∞. Finally, J(U−∞)−sU−∞ = J(U+)−sU+,
as before, hence U−∞ = U− and U+∞ = U+.

Step 3: monotonicity with respect to ξ
Monotonicity of the macroscopic profiles now follows as a consequence of (6.12). And

in particular implies that the far-field conditions hold in the stronger sense of Theorem 6.2.
First we observe that the following holds

Lemma 6.5 Let f and g be two solutions of (6.4) such that there exists sequences ξn →∞
and ηn → −∞ with

lim
n→∞

(f(ξn, v)− g(ξn, v)) = 0 lim
n→∞

(f(ηn, v)− g(ηn, v)) = 0

then sign(f − g) is independent of v.

This follows by subtracting the equations of f and g, multiplying by sign(f − g) and
integrating with respect to v and ξ (as in (6.13)) gives

0 = ∂ξ

∫

R

∫

V

(v − s)|f − g| =
∫

R

∫

V

(Q(f)−Q(g))sign(f − g) dv dx ,

thus sign(f − g) is independent of v.
This means that if we consider a traveling wave solution f , any translation of it f̂(ξ, v) =

f(ξ + a, v) with a > 0, f̂ is clearly a traveling wave solution as well, and the above lemma
applies, giving that sign(f − f̂) is independent of v. In particular, that f is monotone with
respect to ξ holds if an expression of the form

∫
w(v)f dv for any positive w, is monotone.

This step can be performed in the examples and will depend on the form of Q(f).
We can now state the general result:

Theorem 6.6 If J ′′(U) < 0 and U− < U+, there exists a traveling wave solution f (unique
up to translation in ξ) such that

lim
ξ→±∞

f(ξ, v) ⇀M(U±, v) weakly in L1
v(V ).

Moreover, its macroscopic density is continuous and monotonically increasing.
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6.2 Stability of kinetic profiles for strong shocks

We now study dynamic stability of the traveling wave just constructed. We prove that
solutions of the Cauchy problem (6.4)-(6.5) approach a traveling wave solution as t → ∞
if the initial condition has the same far field behavior of a shock profile.

We let ϕ(ξ, v) be a kinetic shock profile, i.e. a solution to (6.16) and (6.17). We also
let it, by a shift in ξ if necessary, be chosen such that for the initial datum finit(ξ, v)

∫

R

∫

V

(finit − ϕ) dv dξ = 0 . (6.25)

We denote the difference between the solution of the initial value problem and the shock
profile by h(t, ξ, v) := f(t, ξ, v)− ϕ(ξ, v), so h satisfies

∂th+ (v − s)∂ξh = Q(f)−Q(ϕ) , (6.26)

h(t = 0) = finit − φ ,

∫

R

∫

V

h(t, ξ, v) dv dξ = 0 . (6.27)

Multiplying (6.26) by sign(h) and integrating with respect to v and ξ we get

d

dt

∫

R

∫

V

|h| dv dξ ≤
∫

R

∫

V

(Q(f)−Q(ϕ)) sign(h) dv dξ ≤ 0 .

And so limt→∞ ‖h‖L1
x,v
<∞, and also

∫

R

∫

V

|h| dv dξ ≤
∫

R

∫

V

|hinit| dv dξ for all t > 0 .

For each tn → ∞ we define hn(t, ξ, v) := h(tn + t, ξ, v) → h∞(t, ξ, v). The sequences
{hn}n are bounded in L∞(0,∞;L1

ξ,v ∩ L∞ξ,v(R × V )). Then (restricted to a subsequence)
hn → h∞ as n → ∞ in L∞x,v(R × V ) weak∗. Because of the translation invariance in ξ
we get equicontinuity in the ξ-direction; by applying the L1 contractivity to the difference
h(t, ξ + h, v)− h(t, ξ, v). Thus we can conclude that there is a subsequence of tn such that

hn → h∞ as n→∞ in L∞ξ,v(R× V ) weak∗ .

Also since
∫
R |∂ξ(Uf − Ug)| dξ ≤

∫
R
∫

V
|∂ξ(f − g)| dv dξ, there exists a U∞ such that

∫

V

hn dv = Uhn → U∞ strongly in L1
ξ(R) . (6.28)

We now observe that
∫ ∞

0

∫

R×V

(Q(fn)−Q(ϕ)) sign(hn) dv dξ dt

=

∫ ∞

tn

∫

R×V

(Q(f)−Q(ϕ)) sign(h) dv dξ dt→ 0 as n→∞ .
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The term Q(fn) − Q(ϕ) can be rearranged in the examples and one can take the limit in
the weak formulation of the equation satisfied by hn, using (6.28) in the nonlinear term.
In addition the above implies that the sign(h∞) does not depend on v, and it is easy to
check that

∫ ∫
h∞ dv dξ = 0, since this property is preserved in t. The limit equation is

∂th∞ + (v − s)∂ξh∞ = Q̃h∞

sign(h∞) = sign(Uh∞) ,

∫

R

∫

V

h∞ dv dξ = 0

and holds in the weak sense. Here Q̃ results from the linearisation of Q(fn) − Q(ϕ) and
taking the limit n→∞.

Let us see that h∞ ≡ 0. We argue by contradiction, first we assume that there is a
(t0, ξ0, v0) such that h∞(t0, ξ0, v0) > 0. There must be a (ξ1, v1) such that h∞(t0, ξ1, v1) < 0.
This implies h∞(t0, ξ0, v) > 0 and h∞(t0, ξ1, v) < 0 for all v, because sign(h∞) does not
depend on v. In fact sign(h∞) does not change along characteristics. So taking ξ2 =
ξ0 + (v0 − s)(t1 − t0) and t1 6= t0, we get h(t1, ξ2, v) > 0. Now we can choose v2 such that
ξ1 = ξ2 + (v2 − s)(t0 − t1), implying h∞(t0, ξ1, v) > 0, a contradiction.

The stability result can now be stated

Theorem 6.7 Let f be a solution of (6.4)-(6.5), with M(U−, v) ≤ finit ≤M(U+, v), such
that limx→±∞ finit(x, v) = M(U±, v). Let ϕ be a traveling wave solution such that (6.25)
holds, then for every sequence tn →∞, f(tn + t, ξ, v) → ϕ(ξ, v) in L∞(0, T ×R×V ) weak∗.

6.3 Examples

BGK-model for scalar conservation laws
The above program has been carried out in [14], [18] for the BGK-model of scalar conser-
vation laws described in Section 2.1.

Kinetic entropy inequalities are obtained from (6.3) by letting ζ be the inverse of
M(U, v) as we already described in Section 2.1. For this model (6.11) readily holds with
w(v) = (supU−≤U≤U+

∂UM(U, v))−1.
In several of the arguments that follow a subsequence of distribution functions will

converge in L∞x,v(R×V ) weak∗ as a consequence of the maximum principle. Then either by
an averaging lemma or a uniform estimate derived from the equation, the corresponding
sequence of macroscopic densities Uf converges strongly in some Lp

x(R) with 1 ≤ p < ∞
or uniformly in Cx(R). Passing to the limit in the equation can be done easily in the weak
formulation because the only nonlinear term M(Uf , v) involves f through Uf .

Let us briefly see why Proposition 6.1 holds. The mild formulation (6.6) which now
reads

f(t, x, v) = e−tf0(x− vt, v) +

∫ t

0

e(s−t)M(Uf (s, x− v(t− s)), v) ds ,

and a standard fixed point argument gives local existence in time. A comparison principle
follows easily from the mild formulation too. Let f 1

init and f 2
init be two initial conditions
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such that f 1
init ≤ f 2

init, and let f 1 and f 2 denote the corresponding solutions, let also
ginit := f 2

init − f 1
init and g := f 2 − f 1, then g satisfies

∂tg + ∂xg + g = ∂UM(Ū , v)Ug ,

for some Ū . Thus by (6.3) the positivity of the initial condition is preserved in time. This
can be applied to steady solutions M(U∗, v) where U∗ is constant, and so the maximum
principle follows.

We observe that in this case the mild formulation gives a self-consistent formulation in
terms of Uf :

Uf (t, x) = e−t

∫

V

f0(x− vt, v) dv +

∫ t

0

e(s−t)

∫

V

M(Uf (s, x− v(t− s)), v) dv ds .

A similar formulation is used to solve the slab problem associated to the traveling wave
equation, as we shall see.

Let us now check that the L1-contraction property holds. We just need to show that
(6.12) holds for any two solutions of the initial value problem, with different initial condi-
tions, f and g and such that f − g ∈ L1

x,v(R× V ). We compute

∫

V

{M(Uf ), v)−M(Ug, v)− (f − g)}sign(f − g) dv =
∫

V

{|M(Uf ), v)−M(Ug, v)| − |f − g|} dv = |Uf − Ug| −
∫

V

|f − g| dv ≤ 0 .

where we have used (6.3).
We now sketch the proofs of existence and stability of traveling waves. We recall that

with the traveling wave variable (6.15) we look for solutions of the problem (6.16) subject
to (6.17), where the traveling wave speed s is given by (6.18). That U− < U+ under the
assumption (6.1) follows from (6.19), as before.

Let us turn now to the existence of traveling waves. To solve the slab problem (6.20)
subject to (6.21) and (6.22), the following fixed point map can be used

T : UL 7→
∫

V

fL dv ,

where fL solves (6.20), for a given UL, subject to the boundary conditions (6.21) and
(6.22). So the proof is an application of the Schauder’s fixed point theorem. The special
form of the collision operator allows to define a fixed point map that is in fact an operator
of macroscopic densities and that maps a subspace of the locally continuous functions
into itself. The compactness of the operator holds by applying an averaging lemma. The
definition of the operator implies that there is a unique fL that solves the equation and
whose macroscopic density is the fixed point, giving the existence.

The passage to the limit L→∞ after the profile has been centered can be carried out
in the same way as above and the proof of Proposition 6.4, in particular, follows similarly.
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The only thing left to check in order to conclude that Theorem 6.6 holds is the mono-
tonicity of the profiles. By Lemma 6.5 we only need to prove that if f is a traveling
wave solution which satisfies the far field conditions in the sense of Proposition 6.4, then∫

V
w(v)f dv is monotone increasing for a positive function w. In this case we can take

w(v) ≡ (v − s)2; we let g = f −M(U−, v) and multiply the equation satisfied by g by
(v − s). Integrating with respect to v yields

∂ξ

∫

V

(v − s)2g dv = J(Ug + U−)− J(U−)− sUg −
∫

V

(v − s)g dv . (6.29)

But integration with respect to v of the equation for g implies that
∫

V
(v−s)g dv is constant,

and further, after taking the limit along the sequences ξn and ηn, that
∫

V
(v − s)g dv = 0.

Finally, by (6.1) and U− ≤ Uf ≤ U+,

∂ξ

∫

V

(v − s)2g dv = J(Uf )− J(U−)− s(Uf − U−) > 0 .

The proof of stability of the shock profiles can be readily adapted and we shall not
comment further on it.

Fermions in a background medium
We now consider the kinetic model for fermion-phonon interaction in the presence of a
large electric field E described in Section 2.4 and review the results from [5]. In one space
dimension, numerical computations of J(U) suggest that for E 6= 0 then sign(J ′′(U)) =
sign(E), see [5] and [19]. Let us assume without loss of generality that E > 0 and that
J ′′(U) > 0.

Existence and the maximum principle are proved by noticing that Qs(f) can be split
into a linear and a nonlinear part

Qs(f) = λ1(f) + λ2(f) f (6.30)

where the operators λ1(f) and λ2(f) are linear integral operators. The fixed point iteration
is defined by solving at each step the linear equation

ε∂tf
n+1 + εv∂xf

n+1 + E ∂vf
n+1 − λ2(f

n) fn+1 = λ1(f
n) , (6.31)

with

f 0 = finit ∈ L1
v(R;W 1,1

x (R))

where (6.31) can be solved by the method of characteristics or by semigroup theory. Pos-
itivity of solutions fn follows by observing that if f ≥ 0 then −λ2(f) ≥ 0 and λ1(f) ≥ 0.
That fn ≤ 1 for all n also follows, by writing the equation in terms of gn = 1 − fn and
using that Qs(1− gn) = −Qs(g

n) gives the equation (6.31) with fn+1 and fn replaced by
gn+1 and by gn, respectively. So gn ≥ 0 for all n if g0 = 1− f 0 ≥ 0.

Thus, the sequence fn is uniformly bounded in L∞ and there is a subsequence that
converges weakly∗ to some f ∈ L∞. It has been shown, Mustieles [32], that the sequence
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fn converges strongly in L∞([0, T ];L1
x,v(R2)), by deriving L1 estimates of the form ‖fn+1−

fn‖L1 ≤ C‖fn − fn−1‖L1 , and the existence holds.
That (6.10) and (6.11) hold has been shown by Ben Abdallah, Chaker and Schmeiser

[5]. We do not go into the proof here, we just remark that (6.11) holds for any convex
entropy η, not only for η = U2/2, namely

∫

R
(Qs(f)− E∂vf)χ(ζ(f, v)) dv ≤ −C

∫

R
(f − F (Ūf ))

2M(v) dv

holds for any strictly increasing function χ ∈ C1, with ζ, as before, defined by (6.2) and
with Ūf :=

∫
ζ(f, v)M(v) dv. The inequality (6.12), and hence L1-contraction, was proved

by Poupaud [36].
To prove the existence of the slab problem (6.20)-(6.22) one can proceed as in [4] for

the Milne problem. Using the iteration, analogous to (6.31),

(v − s)∂ξf
n+1 + E∂vf

n+1 − λ2(f
n)fn+1 = λ1(f

n) ,

for E > 0 the iteration procedure is started with f 0 = M(U+, v), thus clearly f 1 ≤ f 0, the
comparison principle implies that fn+1 ≤ fn for all n, thus the sequence defined by the
iteration is decreasing, and fn ∈ L1([−L,L]×Ω)∩L∞([−L,L]×Ω). The existence of fixed
points is achieved by passing to the limit n → ∞; the convergence is strong in L1 by the
monotone convergence theorem, and weak∗ in L∞, this allows passing to the limit in Q.
An additional argument that uses the inequality (6.12) is needed to prove the uniqueness
of the fixed point. For E < 0 the iteration procedure is started at f 0 = M(U−, v) instead.

The rest of the existence proof now follows as in Section 6.1. We only remark that the
monotonicity of f with respect to ξ is directly proved for Uf (here w(v) = 1), it requires a
technical lemma that follows by analyzing the collision term, we refer to [5] for details.

The proof of stability follows the same lines. We only remark that the splitting of the
operator (6.30) and averaging lemmas are used here to pass to the limit in the h equation
(6.26).
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