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Abstract. A reactive kinetic transport equation whose macroscopic limit is
the KPP-Fisher equation is considered. In a scale, where collisions occur

at a faster rate than reactions, existence of traveling waves close to those

of the KPP-Fisher equation is shown. The method adapts a micro-macro
decomposition in the spirit of the work of Caflisch and Nicolaenko for the

Boltzmann equation. Stability of these waves is shown for perturbations in

a weighted L2-space, where the weight function is exponential and such that
the (macroscopic) linearized operator in the weighted space is self-adjoint and

negative definite. Similar approaches to stability of traveling waves are well-

known for the KPP-Fisher equation.

1. Introduction

When the chemical reaction

A+B ↔ 2A

takes place in a setting, where the density of species B can be assumed as constant
and species A is subject to one-dimensional diffusion, then the dynamics of the
density u(t, x) of species A can be described (after non-dimensionalization) by the
KPP-Fisher equation

∂tu = D∂2
xu+ u(ρ̄− u) , (1.1)

with the diffusion coefficient D > 0. This equation has two constant equilibrium
states, u ≡ 0 and u ≡ ρ̄ > 0, the former linearly unstable and the latter linearly
stable. Thus, an initial perturbation of u ≡ 0 grows to approach u ≡ ρ̄. It is
well-known that, in an unbounded domain, this growth may take the asymptotic
form of a propagating wave front, i.e. as t→ +∞ the solution approaches the form
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u(t, x) = uTW (ξ) with the traveling wave variable ξ = x − st, the constant wave
speed s ∈ R, and uTW satisfying the ordinary differential equation

Du′′TW + su′TW + uTW (ρ̄− uTW ) = 0 . (1.2)

We assume throughout that s ≥ 0. This is no restriction, because (1.2) is invariant
under the reflection s → −s, ξ → −ξ. The waves then propagate to the right and
satisfy the far-field conditions

lim
ξ→−∞

uTW (ξ) = ρ̄ , lim
ξ→+∞

uTW (ξ) = 0 . (1.3)

Equation (1.1) has been introduced by Fisher [6] as a model in population genetics
that describes the advance of individuals with a favorable gene. At the same time
Kolmogorov, Petrovskii and Piskunov [10] investigated (1.1) with a more general
nonlinearity. Some results concerning the traveling wave solutions (which have been
studied extensively) will be reviewed below.

The subject of this work is a kinetic transport model for the same physical
situation. The main modeling difference compared to a reaction-diffusion model is
the replacement of the Brownian motion by a velocity jump process. The latter can
be thought of being caused by collisions with a (non moving) background medium,
which randomize the direction of movement. A kinetic equation for the phase space
density f(t, x, v) of particles of species A can be written in the (dimensionless) form

ε2∂tf + εv∂xf = Lf + ε2Q(f) , (1.4)

with time t > 0, position x ∈ R and velocity v ∈ V ⊂ R. The left hand side of
(1.4) describes the free streaming of particles, and the terms on the right hand side
model collisions (described by the operator L) and chemical reactions (described by
the operator Q). The dimensionless parameter ε is assumed to satisfy 0 < ε � 1.
Considering its occurrence on the right hand side of (1.4), this means that collisions
are much more frequent than reactions. The powers of ε on the left hand side can
be achieved by appropriate scalings for time and position.

Collisions are described as instantaneous velocity jumps with an equilibrium
distribution M(v), satisfying the moment conditions∫
V

M dv = 1 ,

∫
V

vM dv = 0 ,

∫
V

v2M dv = D > 0 ,

∫
V

v3M dv = 0 .

A typical example is the Maxwellian distribution M(v) = (2πD)−1/2e−v
2/(2D),

V = R. The simplest collision model is the relaxation operator

Lf =

∫
V

[M(v)f(v′)−M(v′)f(v)]dv′ = Mρf − f ,

with the macroscopic density ρf (t, x) =
∫
V
f(t, x, v)dv. The collision process obvi-

ously conserves mass:
∫
V
Lf dv = 0. For the chemical reactions, it is assumed that

they produce particles with the same equilibrium velocity distribution:

Q(f) =

∫
V

[ρ̄M(v)f(v′)− f(v)f(v′)]dv′ = ρf (Mρ̄− f) .

We obtain the kinetic reaction model

ε2∂tf + εv∂xf = Mρf − f + ε2ρf (Mρ̄− f) . (1.5)

A connection between (1.5) and (1.1) can be established by the macroscopic limit
ε→ 0. Substitution of the Chapman-Enskog ansatz f = Mρf + εf⊥ into (1.5) and
integration with respect to v leads to the macroscopic equation

∂tρf + ∂x

∫
V

vf⊥dv = ρf (ρ̄− ρf ) .
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On the other hand, (1.5) implies

f⊥ = −vM∂xρf +O(ε) .

Hence, in the formal limit ε → 0, ρf solves (1.1). This is an example of the
derivation of reaction-diffusion equations from kinetic models. Formal asymptotics
of this kind for much more general cases, in particular also systems, has been carried
out by several authors (see, e.g., [1], [12]). However, a rigorous justification is only
known for linear models [1].

It is our aim to study the existence and stability of traveling waves of (1.5).
As a preliminary result, in Section 1.4, we prove global existence of solutions of
the initial value problem for (1.5) for initial data bounded by a global equilibrium.
Our approach for the analysis of traveling waves is based on the fact that, for ε
small, (1.5) can be approximated by (1.1). In Section 2 we present a constructive
existence proof for traveling waves with speed s ≥ s0 = 2

√
D ρ̄ of (1.5), which shows

the asymptotic closeness of the kinetic profiles to the solutions of (1.2) with the same
speed. We follow the approach of [5] (that is applied to traveling waves of kinetic
BGK models for scalar conservation laws) by first constructing a formal asymptotic
approximation, and then showing solvability of the problem for the correction term.
For the latter we adapt the micro-macro decomposition introduced by Caflisch and
Nicolaenko [3] for the Boltzmann equation. The major difficulty in the current
problem is caused by the fact that, in contrast to [5] and [3], the macroscopic
problem is not a conservation law. In Section 3 we show the asymptotic stability
of kinetic profiles with s > s0, under perturbations in suitable spaces. Traveling
waves for the KPP-Fisher equation are stable under perturbations, which decay
faster than (or at least as fast as) the waves. The analogous result is proven here.
The required decay properties are built into an appropriately weighted L2-space.
This has the consequence that we can control the macroscopic terms in a similar
way as for the KPP-Fisher equation.

Concerning the control of the microscopic terms, we have only been successful
under the additional assumption that the velocity space V is bounded. Recent
numerical results by E. Bouin and V. Calvez [2] suggest that this condition is
necessary. It seems that the minimal speed of stable traveling waves tends to infinity
with the maximal velocity in V . This suggests the conjecture that the traveling
waves, whose existence we prove in Section 2 also for unbounded V , may be non-
monotone in the position direction and non-positive, although their oscillations
and negative values can only be O(ε2). For bounded velocity space, it is a corollary
of the stability result that the traveling wave lies between its far-field states, in
particular it is nonnegative.

In the remainder of this section we recall the stability results for traveling wave
profiles of (1.1) and also show, how the stability of these profiles can be proven by
using energy estimates. We also carry out the formal Chapman-Enskog argument
for the approximation of kinetic traveling waves.

1.1. Traveling waves for the KPP-Fisher equation. Concerning existence of
traveling waves of (1.1), the following result is well known.

Theorem 1 ([10]). For s ≥ s0 := 2
√
D ρ̄ there exists a positive solution of (1.2),

(1.3), which is unique, up to a shift in ξ, and strictly decreasing.

Proof. One way of looking at the problem is by writing (1.2) as a planar system
and analyzing the (uTW , u

′
TW ) phase-plane. The critical points are clearly given

by the zeroes (0, 0) and (ρ̄, 0) of the nonlinearity. Linearization shows that (ρ̄, 0) is

a saddle point, with eigenvalues (−s±
√
s2 + s2

0)/(2D), and that there is a unique
orbit coming out of it in the second quadrant.
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The critical point (0, 0) has eigenvalues (−s±
√
s2 − s2

0)/(2D), thus it is a stable
node for s ≥ s0 and a stable spiral for s < s0. Hence, a positive solution to (1.2)
satisfying (1.3) can only exist if s ≥ s0. Further, it is easy to see that the triangle

0 ≤ uTW ≤ ρ̄, 0 ≥ u′TW ≥ −
s

2D
uTW , (1.6)

is an invariant region, so that the unique orbit coming out of the saddle point
enters the node, and it does so through the slow manifold when s > s0. This gives
existence of traveling waves (unique up to translation in ξ) for every s ≥ s0. �

The proof also provides the far-field behavior. On the one hand, we have

ρ̄− uTW (ξ) ∼ c eα−ξ as ξ → −∞ with α− =

√
s2 + s2

0 − s
2D

> 0 , c > 0 .

(1.7)
On the other hand, for every s > s0,

uTW (ξ) ∼ cs e−α+ξ as ξ → +∞ , with α+ =
s−

√
s2 − s2

0

2D
> 0 , cs > 0 ,

(1.8)
and, for s = s0,

uTW (ξ) ∼ c0ξ e−(s0/2D) ξ as ξ → +∞ , c0 > 0 . (1.9)

1.2. Stability of traveling waves for the KPP-Fisher equation. Throughout
this section we let uTW be a traveling wave of (1.2) with speed s > s0. We write
(1.1) in the moving coordinates t and ξ = x− st,

∂tρf − s∂ξρf −D∂2
ξρf − ρf (ρ̄− ρf ) = 0 , (1.10)

and look for solutions that are small perturbations of ρTW . Thus we assume ρf =
uTW + ρ where ρ � 1, in a sense to be made precise later. The equation for the
perturbation ρ reads

∂tρ− s∂ξρ−D∂2
ξρ+ ρ(2uTW + ρ− ρ̄) = 0 . (1.11)

It is well known that traveling waves of (1.1) are in general unstable to pertur-
bations, c.f. Canosa [4]. In the classical approach to stability, one studies linear
stability first by analyzing the spectrum of the linearized operator. In a Lp-setting
with p ≥ 2, the spectrum of the linearized operator about waves having s > s0

extends to the right hand complex plane and always contains 0 as an eigenvalue
with eigenfunction ∂ξuTW (this eigenfunction is the one generated by perturbations
equivalent to small translations in the traveling wave). To overcome this problem
one introduces norms with appropriate weights, that push the spectrum into the
left hand plane and ∂ξuTW out of the space, thus creating a spectral gap. In the
seminal work by Sattinger [11] such analysis is undertaken in L∞ with an expo-
nential weight. We borrow this idea here but, in our setting, it is more convenient
to use L2 estimates and we show next how this is done for (1.1). In the process
we need to control ‖ρ‖∞ for all times by an appropriate upper bound. This is
achieved by the continuous Sobolev embedding H1 ⊂ L∞. The reason for choosing
this approach is two-fold. First, our approach for the kinetic model will be based
on the entropy inequality for a quadratic entropy of the linear collision operator L.
Second, to our knowledge, the idea of applying integral estimates with a Sobolev
embedding argument to prove stability of traveling waves of (1.1) is new.

We define the weight function

W (ξ) = e
s

2D ξ (1.12)
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and introduce the Hilbert spaces L2
ξ = L2(R), H1

ξ = H1(R), and L2
W of functions

of ξ with the respective norms

‖ρ‖2ξ =

∫
R
ρ2dξ , ‖ρ‖2H1

ξ
= ‖ρ‖2ξ + ‖∂ξρ‖2ξ , ‖ρ‖W = ‖ρW‖ξ . (1.13)

Local existence of solutions of (1.11) in H1
ξ ∩L2

W (which means the weight acts only

as ξ → +∞) follows by a standard contraction argument. Hence, if we can show
the decay of the solution in H1

ξ ∩L2
W as time evolves, global existence follows by a

continuation principle.
We assume that ρf (0, ξ) ≥ 0, then ρf = uTW + ρ ≥ 0 holds as a consequence

of the maximum principle. For definiteness, we assume that the traveling wave
satisfies uTW (0) = 3ρ̄/4 (which makes it unique by monotonicity), implying

uTW (ξ) ≥ 3ρ̄

4
for ξ ≤ 0 . (1.14)

Multiplication of (1.11) with W gives

∂t(ρW )−D∂2
ξ (ρW ) + (κ+ 2uTW + ρ) ρW = 0 , (1.15)

with

κ :=
s2

4D
− ρ̄ > 0

by s > s0. Testing (1.11) with ρ and (1.15) with αρW (for some α > 0) and adding
the resulting equations leads to

1

2

d

dt

(
‖ρ‖2ξ + α‖ρ‖2W

)
+D

(
‖∂ξρ‖2ξ + α‖∂ξ(ρW )‖2ξ

)
+

∫
R

(2uTW + ρ− ρ̄)ρ2 dξ + α

∫
R
(2uTW + ρ+ κ)(ρW )2 dξ = 0 . (1.16)

The only problematic term is −ρ̄‖ρ‖2ξ . In order to control it, we use W ≥ 1

on [0,+∞) and the monotonicity of the wave on (−∞, 0], i.e. (1.14). Using
uTW , uTW + ρ ≥ 0, (1.16) implies the inequality

1

2

d

dt

(
‖ρ‖2ξ + α‖ρ‖2W

)
+D‖∂ξρ‖2ξ +

ακ

2
‖ρ‖2W

+

∫
R

(
2uTW + ρ− ρ̄+

ακ

2
W 2
)
ρ2 dξ ≤ 0 .

With the choice α = 3ρ̄/κ, the integrand in the last term can now be estimated
separately for positive and negative ξ:(

2uTW + ρ− ρ̄+
ακ

2
W 2
)
≥
{
ρ̄/2 , ξ > 0
ρ̄/2− ‖ρ‖∞ , ξ < 0

}
≥ ρ̄

2
− ‖ρ‖∞ .

If we succeed below in proving ‖ρ‖∞ ≤ ρ̄/4, then the inequality

d

dt

(
‖ρ‖2ξ + α‖ρ‖2W

)
+D‖∂ξρ‖2ξ ≤ −min

{ ρ̄
2
, κ
}(
‖ρ‖2ξ + α‖ρ‖2W

)
(1.17)

is satisfied, implying exponential decay of the perturbation ρ. For proving the
required L∞-bound, we shall derive a H1-bound and use Sobolev embedding. In
terms of r = ∂ξρ, the derivative with respect to ξ of (1.11) reads

∂tr −D∂2
ξ r − s∂ξr + r(2uTW − ρ̄+ 2ρ) + 2ρu′TW = 0 .

When testing with r, the identity 2rρ = ∂ξ(ρ
2) is used:

1

2

d

dt
‖r‖2ξ +D‖∂ξr‖2ξ +

∫
R
r2(2uTW − ρ̄+ 2ρ)dξ =

∫
R
ρ2u′′TW dξ . (1.18)
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For the right hand side, we use (1.6) and observe that

u′′TW = − s

D
u′TW −

uTW
D

(ρ̄− uTW ) ≤ s2

2D2
uTW ≤

s2ρ̄

2D2
.

Therefore the right hand side of (1.18) and the other problematic term −ρ̄‖r‖2ξ can

be controlled by terms in (1.17). For β = min{D/ρ̄,D2/(2s2)} = D2/(2s2), the
functional

J [ρ] := ‖ρ‖2ξ + α‖ρ‖2W + β‖∂ξρ‖2ξ ,
is nonincreasing in time as long as

‖ρ‖∞ ≤
ρ̄

4
(1.19)

holds. Since, by Sobolev embedding, ‖ρ‖2∞ ≤ min{1, β}J [ρ], (1.19) can be guaran-
teed for all time under the initial smallness assumption

J [ρ(t = 0)] ≤ max

{
1,

1

β

}
ρ̄2

16
.

As shown above, this implies (1.17).

Theorem 2. Let s2 > 4Dρ̄, let uTW be a travelling wave solution (of (1.2), (1.3))
as in Theorem 1, and let ρf be a solution of (1.10), such that ρ0(ξ) := ρf (ξ, 0) −
uTW (ξ) satisfies∫

R
ρ2

0

(
1 + αesξ/D

)
dξ +

D2

2s2

∫
R
∂ξρ

2
0dξ ≤

ρ̄2

16
max

{
1,

2s2

D2

}
with α = 12ρ̄D

s2−4Dρ̄ . Then∫
R

(ρf (t)− uTW )2
(

1 + αesξ/D
)
dξ ≤ e−λt

∫
R
ρ2

0

(
1 + αesξ/D

)
dξ ,

with λ = min
{
ρ̄
2 ,

s2

4D − ρ̄
}

.

Remark 3. (i) The weight in the norm implies that the initial perturbation
decays faster than the travelling wave as ξ → ∞, which is known to be
necessary for stability. A decay of the perturbation is also required as
ξ → −∞, which is a weakness of the L2-approach.

(ii) Obviously, when s2 = 4Dρ̄ (or s = s0), we cannot deduce exponential
convergence by this procedure. In fact, in this case the spectrum of the
linearized operator in L2

ξ ∩ L2
W extends to the origin (see [11]). A more

delicate treatment is needed here, and without further discussion we refer
the reader to Kirchgässner [9].

1.3. Formal approximation of kinetic traveling waves. It is instructive to
perform the formal limit ε → 0 before proving existence of traveling waves. We
look for traveling waves of (1.5), i.e. solutions of the form f(t, x, v) = fTW (ξ, v)
with ξ = x− st and s > 0, satisfying

ε(v − εs)∂ξfTW = MρTW − fTW + ε2ρTW (Mρ̄− fTW ) , ρTW := ρfTW , (1.20)

subject to the far-field conditions

fTW (−∞, v) = ρ̄M(v) and fTW (+∞, v) = 0 for all v ∈ V . (1.21)

We make the ansatz

fTW (ξ, v) = ρTW (ξ)M(v) + εf⊥TW (ξ, v) with

∫
V

f⊥TW dv = 0 . (1.22)
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Substitution of (1.22) and integration in (1.20) lead to

−s∂ξρTW + ∂ξ

∫
V

vf⊥TW dv = ρTW (ρ̄− ρTW ) . (1.23)

Substitution of (1.22) into (1.20) gives the asymptotic expansion of f⊥TW as ε→ 0,

f⊥TW = −vM∂ξρTW + ε[sM∂ξρTW − v∂ξf⊥TW +MρTW (ρ̄− ρTW )] +O(ε2)

= −vM∂ξρTW + ε(v2 −D)M∂2
ξρTW +O(ε2) , (1.24)

where in the last step we have used (1.23). Substitution of (1.24) into (1.23) shows
that ρTW formally solves (1.2) up to O(ε2)-terms.

1.4. Notation and preliminary results. Next we introduce the underlying spaces
of our analysis and establish the global existence of the Cauchy problem and a max-
imum principle as preliminary results.

We define the weighted inner product in the v-direction by

〈f, g〉v =

∫
V

fg

M
dv

and denote the induced Hilbert space and norm by (L2
v, ‖·‖v). With respect to 〈·, ·〉v,

the linear collision operator Lf = Mρf − f is symmetric and negative semidefinite,
a consequence of

〈Lf, g〉v = −〈Lf,Lg〉v .
The standard norms and spaces of functions of ξ are denoted by (L2

ξ , ‖ ·‖ξ), (Hk
ξ , ‖ ·

‖Hkξ ), and (Cbξ , ‖ · ‖∞), and with weight (1.12) by (L2
W , ‖ · ‖W ) (see (??)). The

Hilbert space (L2
ξ(L

2
v), ‖ · ‖ξ,v) is then naturally defined by the scalar product

〈f, g〉ξ,v =

∫
R
〈f, g〉v dξ .

For k ∈ N ∪ {0}, the space Hk
ξ (L2

v) of functions whose derivatives up to order k

with respect to ξ are in L2
ξ,v is equipped with the norm

‖f‖Hkξ (L2
v) =

(
‖f‖2ξ,v + · · ·+ ‖∂kξ f‖2ξ,v

)1/2
.

In a similar way Cbξ(L
2
v) is defined by

‖f‖∞,v = sup
ξ∈R
‖f‖v .

Finally, we extend the definition of the norm with weight (1.12) to functions on
R× V , leading to the space (L2

W (L2
v), ‖ · ‖W,v) with norm

‖f‖W,v = ‖fW‖ξ,v .

For later reference we note that the Cauchy-Schwarz inequality implies

‖ρf‖ξ ≤ ‖f‖ξ,v . (1.25)

A global existence and uniqueness result for the kinetic Cauchy problem is not hard
to prove. We choose a simple setting, where the initial datum is bounded in terms
of the equilibrium distribution.

Theorem 4 (Global existence). Let 0 ≤ f0(x, v) ≤ ρ̂M(v) hold. Then the kinetic
equation (1.5) subject to the initial condition f(t = 0) = f0 has a unique mild
solution f ∈ C([0,∞); L∞(R× V )), satisfying

0 ≤ f(t, x, v) ≤ max{ρ̄, ρ̂}M(v) , ∀ (t, x, v) ∈ [0,∞)× R× V . (1.26)
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Proof. The mild formulation of the initial value problem is given by

f(t, x, v) = f0(x− vt/ε, v) +M(v)

(
1

ε2
+ ρ̄

)∫ t

0

ρf (τ, x− vτ/ε)dτ

−
∫ t

0

(
1

ε2
+ ρf (τ, x− vτ/ε)

)
f(τ, x− vτ/ε, v)dτ . (1.27)

For T > 0, we introduce the Banach space

CT = {f ∈ C([0, T ]; L∞(R× V )) : ‖f‖CT <∞} ,

‖f‖CT = sup
(t,x,v)∈[0,T ]×R×V

|f(t, x, v)|
M(v)

.

Using the property |ρf (t, x − vt/ε)| ≤ ‖f‖CT for all (t, x, v) ∈ [0, T ] × R × V , it
is straightforward to uniquely solve (1.27) in CT for small enough T by Picard
iteration. Global existence will follow from (1.26).

The nonnegativity of f is an obvious consequence of the maximum principle for
kinetic equations, after writing (1.5) in the form

ε2∂tf + εv∂xf + f(1 + ε2ρf ) = ρfM(1 + ε2ρ̄) ,

and solving by a fixed point iteration, where ρf is considered as given and nonneg-
ative. The same argument applies to the function h(t, x, v) = max{ρ̄, ρ̂}M(v) −
f(t, x, v), that satisfies

ε2∂th+ εv∂xh+ h(1 + ε2ρf ) = ρhM + ε2ρfM(ρ̂− ρ̄)+ , h(t = 0) ≥ 0 ,

proving h ≥ 0 and, thus, (1.26). �

2. Existence of traveling waves

We prove existence of traveling waves of (1.1) with a given s ≥ s0 for ε� 1. The
proof follows the steps of that in [5], stated in the subsequent sections. Essentially,
we make the expansion in Section 2.1 rigorous, but first produce a residual term
whose zeroth order moment in v vanishes.

2.1. The asymptotic approximation. We start by defining an asymptotic ap-
proximation of a traveling wave profile. In view of the computation of Section 1.3
we choose

fas(ξ, v) = M(v)uTW (ξ) + εf⊥[uTW ](ξ, v) ,

where uTW is a traveling wave of the Fisher equation (i.e. satisfying (1.2), (1.3)),
made unique by the requirement

uTW (0) =
ρ̄

2
. (2.1)

Recalling the formal expansion (1.24), we set

f⊥[u] = −vMu′ + ε(v2 −D)Mu′′ .

Integration shows that
∫
V
f⊥[u]dv = 0, implying ρas := ρfas = uTW . Clearly, fas

satisfies (1.21) and the equation (1.20) up to the residual

ε3h = ε(v − εs)∂ξfas −Mρas + fas − ε2ρas(Mρ̄− fas)
= ε3(svMu′′TW + (v − εs)(v2 −D)Mu′′′TW + uTW f

⊥[uTW ]) .

It is now not hard to prove that∫
V

h dv = 0, and ‖h‖Hkξ (L2
v) ≤ Ck for any k ∈ N , (2.2)

with ε-independent constants Ck.
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2.2. The micro-macro decomposition and the correction term. In terms of
the correction ε2g = fTW − fas, the traveling wave equation reads

ε(v − εs)∂ξg = Lg + ε2Bg + ε4R[g]− εh , (2.3)

where
Bg = ρg(Mρ̄− fas)− ρasg , R[g] = −ρgg .

On the right hand side of (2.3), we have collected the linear collision operator, a
linear term of O(ε2), a nonlinear term of O(ε4), and the residual. By the properties
of fas, a solution g of (2.3) must satisfy the far-field conditions

g(±∞, v) = 0 for all v ∈ V . (2.4)

To prove the existence of such a g, we need some preparation. First, we observe
that integration of (2.3) shows that necessarily

∂ξ

∫
V

(v − εs)g dv = ερg(ρ̄− 2ρas)− ε3ρ2
g . (2.5)

We now decompose g into a macroscopic term (with separated variables), containing
the leading order terms, and a microscopic term of order ε:

g(ξ, v) = Φ(v)z(ξ) + εw(ξ, v) . (2.6)

Here Φ is chosen such that LΦ = −ετ(v−εs)Φ+O(ε2) for some constant τ , leading
to

Φ(v) =

(
1 + ε

s

D + ε2s2
(v − εs)

)
M(v) ,

where the coefficient s/(D + ε2s2) guarantees that∫
V

(v − εs)Φ dv = 0 , (2.7)

and the decomposition of g is unique by requiring∫
V

(v − εs)2w dv = 0 . (2.8)

Integration also shows that ρΦ = 1− ε2τs and that

D1 :=

∫
V

(v − εs)2Φdv = D
D − ε2s2

D + ε2s2
= D +O(ε2) ,

which is positive for ε small enough. We also observe that, due to (2.7), (2.5) is
equivalent to

∂ξ

∫
V

(v − εs)w dv = ρg(ρ̄− 2ρas)− ε2ρ2
g . (2.9)

The problem we now solve is obtained by substituting (2.6) into (2.3), thus

(v − εs)Φ z′ + ε(v − εs)∂ξw =
1

ε
z LΦ + Lw + εBg + ε3R(g)− h , (2.10)

and, like g, its micro- and macro-components z and w have to satisfy the homoge-
neous far-field conditions

w(±∞, v) ≡ 0 , z(±∞) = 0 . (2.11)

The next step consists of writing (2.10) as a system of two equations; one con-
taining only derivatives of z and the other containing only derivatives of w. This is
achieved by applying the right macroscopic and microscopic projections. Applying

Pf :=

∫
V

(v − εs)f dv (2.12)

to (2.10) we obtain, by (2.8),

D1z
′ + sρΦz = PLw + εPBg + ε3PR(g)− Ph . (2.13)
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We differentiate (2.13) and use the moment relation (2.9). After multiplying the re-
sulting equation by D/D1 = 1+O(ε2) and collecting the small linear and nonlinear
terms on the right hand side we arrive at

Dz′′ + sz′ + z(ρ̄− 2ρas) = εBz(z, z′, w, ∂ξw) + ε2Rz(g, ∂ξg)− h̃ , (2.14)

where

Bz(z, z′, w, ∂ξw) =
D

D1
[−ρw(ρ̄− 2ρas)− sρ′w + ∂ξPBg]

+
1

ε

(
1− D

D1
ρΦ

)
(sz′ + z(ρ̄− 2ρas)) ,

Rz(g, ∂ξg) =
D

D1

[
ρ2
g + ε∂ξPR(g)

]
, h̃ = − D

D1
∂ξPh .

The right hand side of (2.14) is the linearization of the Fisher equation at ρas.
The microscopic projection

Πf := f − (v − εs)Φ
D1

Pf (2.15)

has the properties Π(v− εs)Φ = 0 and Π(v− εs)w = (v− εs)w, by (2.8). Applying
Π to (2.10) we get the following equation for w:

ε(v− εs)∂ξw−Lw =
(v − εs)Φ

D1

∫
V

vw dv+ εΛ z + εΠBg+ ε3ΠR(g)−Πh , (2.16)

where

Λ :=
1

ε2
ΠLΦ = s2 v2 −D

D2 − ε4s4
M = O(1) .

Since the symmetric operator L is only negative semidefinite, we introduce a new
symmetric operator M, which is strictly negative and coincides with L on the set
of functions w satisfying (2.8) (this idea is borrowed from [3]):

Mw := Lw − (v − εs)2M

∫
V

(v − εs)2w dv .

Lemma 5. The operator M is symmetric and negative definite with respect to
〈·, ·〉v. There exists a constant σ > 0, such that

−〈Mw,w〉v ≥ σ‖w‖2v for all w ∈ L2
v . (2.17)

The proof is analogous to that in [5] and we do not repeat it here.
We now replace L in (2.16) by the operator M:

ε(v − εs)∂ξw −Mw =
(v − εs)Φ

D1

∫
V

vw dv + εΛ z + εΠBg + ε3ΠRg −Πh. (2.18)

The equivalence to the original problem is not obvious:

Lemma 6. The function g = Φz + εw is a solution of (2.3), (2.4) if and only if z
and w solve (2.14), (2.18) subject to (2.11).

Proof. We follow the proofs in [3] and [5]. The problem (2.14), (2.18) (2.11) has
been derived from (2.3), (2.4) using the properties (2.9), (2.8) of solutions of the
latter. In particular (2.8) is not a necessary condition for existence. Hence we
have to check that (2.8) also holds for solutions of (2.14), (2.18), (2.11), without
requiring it as a side condition. Using∫

V

Πf dv =

∫
V

f dv,

∫
V

(v − εs)Πf dv = 0 ,
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integration of (2.18) implies

ε∂ξ

∫
V

(v − εs)w dv = −(D + ε2s2)

∫
V

(v − εs)2w dv + ε(ρg(ρ̄− 2ρas)− ε2ρ2
g) ,

ε∂ξ

∫
V

(v − εs)2w dv = 2εsD

∫
V

(v − εs)2w dv .

The second equation is a linear ODE with constant coefficients for the unknown∫
V

(v − εs)2w dv. Since w(±∞, v) = 0, the only possible solution is∫
V

(v − εs)2w dv = 0 .

Knowing this and returning to the first differential equation we also recover (2.9).
�

We now eliminate the first term on the right hand side in (2.18) by substituting
(2.13):

ε(v − εs)∂ξw −Mw = A(z, z′) + εBg + ε3Rg − h , (2.19)

where

A(z, z′) = − (v − εs)Φ
D1

(D1z
′ + sρΦz) + εΛ z .

Thus we have arrived at our final differential problem (2.14), (2.19), subject to
(2.11). In the following sections we show solvability via a fix-point argument.

2.3. The Linear Problem. We first analyze the leading order system of (2.14),
(2.19), where the given inhomogeneity contains the higher order terms. In partic-
ular, we prove the solvability of

Dz′′ + sz′ + z(ρ̄− 2ρas) = hz , with hz ∈ H1
ξ , (2.20)

ε(v − εs)∂ξw −Mw = A(z, z′) + hw , with hw ∈ H2
ξ (L2

v) . (2.21)

We shall look for solutions in the same spaces as the inhomogeneities. This replaces
the homogeneous far-field conditions, and provides uniqueness for the solution of
(2.21). This requirement allows, however, a one-parameter set of solutions of (2.20).
This reflects the arbitrary shift in the wave and uniqueness will be guaranteed by
posing also an initial condition,

z(0) = z0 , z0 ∈ R . (2.22)

For (2.20) we obtain

Lemma 7. Let hz ∈ Hk
ξ , k ≥ 0. Then the problem (2.20), (2.22) with s ≥ s0

possesses a unique solution z ∈ Hk+2
ξ , satisfying (with C > 0 independent from z0

and hz)

‖z‖Hk+2
ξ
≤ C(|z0|+ ‖hz‖Hkξ ) .

Proof. Since (2.20) is the linearization of (2.1) at its solution ρas, the derivative ρ′as
is a solution of the homogeneous equation. The standard order reduction procedure
then allows to rewrite (2.20) as the first order system

z′ =
ρ′′as
ρ′as

z + z1 , z′1 = −
(
s

D
+
ρ′′as
ρ′as

)
z1 +

hz
D
. (2.23)

Starting with the second equation, (2.1), ρ′as < 0, and 0 < ρas < ρ̄ imply

−
(
s

D
+
ρ′′as
ρ′as

)
=
ρas(ρ̄− ρas)

Dρ′as
< 0 .
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Since, by the asymptotic behavior of ρas, this coefficient converges to negative
values as ξ → ±∞, the stronger statement

−
(
s

D
+
ρ′′as
ρ′as

)
≤ −γ < 0 ,

holds. By standard ODE methods, a unique decaying solution z1 of the second
equation in (2.23) exists for decaying hz (using the ’boundary condition’ z1(−∞) =
0). It can be estimated by testing the equation with z1, giving

‖z1‖ξ ≤
1

γD
‖hz‖ξ .

Turning to the first equation in (2.23), we observe that

lim
ξ→∞

ρ′′as(ξ)

ρ′as(ξ)
< 0 , lim

ξ→−∞

ρ′′as(ξ)

ρ′as(ξ)
> 0 .

This is the situation covered in Lemma 3.5 of [5], implying the existence of a unique
solution satisfying

‖z‖ξ ≤ C ′(|z0|+ ‖z1‖ξ) ≤ C ′
(
|z0|+

1

γD
‖hz‖ξ

)
.

Testing (2.20) with z and with z′′ we obtain estimates for the first and second
derivatives, implying ‖z‖H2

ξ
≤ C(|z0| + ‖hz‖L2

ξ
). Finally, the same procedure can

be applied to differentiated versions of (2.20), completing the proof. �

We remark that the previous proof makes use of the positivity and strict mono-
tonicity of ρas. The assumption s ≥ s0 is therefore crucial.

Now A(z, z′) can be considered as a given inhomogeneity in (2.21), and the
following result from [5] can be used:

Proposition 8. Let h̃w ∈ Hk
ξ (L2

v), k ≥ 0. Then there exists a unique solution

w ∈ Hk
ξ (L2

v) of

ε(v − εs)∂ξw −Mw = h̃w ,

satisfying

‖w‖Hkξ (L2
v) ≤

1

σ
‖h̃w‖Hkξ (L2

v) ,

with σ as in Lemma 5.

Sketch of the proof. Uniqueness and the stability estimate are obtained by testing
the equation with w and the k-th derivative of the equation with ∂kξw. Existence can
be proven in several ways, one of which is the approximation by a discrete velocity
system with a finite number of discrete velocities. This reduces the problem to an
ODE system. Care has to be taken in order not to destroy the definiteness of M
by the approximation. �

The final result on the linear problem can now be easily proven.

Lemma 9. Let hz ∈ Hk
ξ and hw ∈ H l

ξ(L
2
v), then there exists a unique solution

(z, w) ∈ Hk+2
ξ ×Hm

ξ (L2
v), m = min{k + 1, l}, of (2.20), (2.21), (2.22), satisfying

‖z‖Hk+2
ξ (L2

v) ≤ C(|z0|+‖hz‖Hkξ ) , ‖w‖Hmξ (L2
v) ≤ C(|z0|+‖hz‖Hkξ +‖hw‖Hlξ(L2

v)) .

Proof. The only thing left to note is the estimate

‖A(z, z′)‖Hk+1
ξ (L2

v) ≤ ‖z‖Hk+2
ξ

,

whose proof is straightforward by the definition of A. �
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2.4. The Nonlinear Problem. In this section we prove existence and uniqueness
of solutions of the nonlinear problem (2.19), (2.14), subject to z(0) = z0, in the
spacesH3

ξ andH2
ξ (L2

v), respectively. After the preparations in the previous sections,
the proof is a straightforward contraction argument. We need, however, estimates
for the right hand sides of (2.19) and (2.14). In the following, C denotes (possibly
different) ε-independent constants.

Lemma 10. (i) The linear terms B and Bz satisfy the estimate

‖B(Φz + εw)‖H2
ξ (L2

v) + ‖Bz(z, z′, w, ∂ξw)‖H1
ξ
≤ C(‖z‖H2

ξ
+ ‖w‖H2

ξ (L2
v)) .

(ii) The nonlinearities R and Rz are quadratic: Let g1, g2 ∈ H2
ξ (L2

v), then

‖R(g1)−R(g2)‖H2
ξ (L2

v) + ‖Rz(g1, ∂ξg1)−Rz(g2, ∂ξg2)‖H1
ξ

≤ C
(
‖g1‖H2

ξ (L2
v) + ‖g2‖H2

ξ (L2
v)

)
‖g1 − g2‖H2

ξ (L2
v) .

Proof. The proof is straightforward. All that is needed for (ii) is the one-dimensional
Sobolev embedding H1

ξ ⊂ Cbξ and (1.25). �

According to the spaces of the solutions and inhomogeneities of the linear prob-
lem we define the norm

‖(z, w)‖ := ‖z‖H3
ξ

+ ε‖w‖H2
ξ (L2

v) (2.24)

Clearly, ‖g‖H2
ξ (L2

v) is bounded from above by ‖(z, w)‖.
Before stating the existence result for traveling waves we note that in terms of

the original unknown fTW = fas + ε2g, the condition z(0) = z0 reads∫
V

(v − εs)2(fTW (0, v)− fas(0, v))dv = ε2D1z0 . (2.25)

Theorem 11. Let the wave speed satisfy s ≥ s0. For every z0 ∈ R and for ε small
enough, there exists a solution fTW of (1.20) satisfying (2.25), which is unique in
a ball {f : ‖f − fas‖ ≤ δ}, where the radius δ can be chosen independently from ε.
It satisfies

‖fTW − fas‖H2
ξ (L2

v) = O(ε2) ,

or, more precisely,

fTW = fas + ε2Φz+ ε3w = MuTW − εvMu′TW + ε2(v2 −D)Mu′′TW + ε2Φz+ ε3w ,
(2.26)

where uTW satisfies (1.2), (1.3) with (2.1), and ‖z‖H3
ξ

and ‖w‖H2
ξ (L2

v) are uniformly

bounded as ε→ 0.

Proof. Let ε be small enough. Then as a consequence of Lemma 10 (i), the solv-
ability results for the above linear problem (2.20), (2.21) can be extended to the
full linear problem

Dz′′ + sz′ + z(ρ̄− 2ρ) = εBz(z, z′, w, ∂ξw) + hz ,

ε(v − εs)∂ξw −Mw = A(z, z′) + εB(z, w) + hw ,

with inhomogeneities hz, hw and z(0) = z0. Applying the solution operator to the
nonlinear problem (2.14), (2.19), we obtain a fixed point problem (z, w) = G(z, w),
where the fix point operator is bounded by

‖G(z, w)‖ ≤ C0(1 + ε2‖(z, w)‖2) .

The constant C0 bounds the initial condition and the residual terms, and the non-
linear terms are of order ε2. We see that for ε small enough, G maps both the ball
with radius 2C0 and the ball with radius 1/(2ε2C0) into themselves. Also, with the
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property of the nonlinearity, the fixed point operator G is a contraction on a ball
with radius of order O(ε−2).

We can conclude that for ε small enough, the fixed point problem has a solution
(z, w) with ‖(z, w)‖ ≤ 2C0, which is unique in a ball with an O(ε−2)-radius. Know-
ing this and returning to the fixed point problem, the boundedness of ‖w‖H2

ξ (L2
v)

follows. �

We remark that the contraction argument above could also be carried out in
Hk
ξ (L2

v) for any k ∈ N, by using Lemma 9, so the existence result also holds in

Hk
ξ (L2

v) for k ∈ N.

3. Dynamic stability of traveling waves

In this section we prove the local asymptotic stability of traveling waves with
speed s > s0. For this purpose it is necessary to make the assumption

H1. The set of velocities V is bounded, and we let vmax := supv∈V |v|.
As for the macroscopic equation in Section 1.2, we restrict our attention to nonnega-
tive solutions. This can be done by taking nonnegative initial data, since Theorem 4
guarantees the nonnegativity of the solution.

In the traveling wave variable (1.5) becomes

ε2∂tf + ε(v − εs)∂ξf = Mρf − f + ε2ρf (Mρ̄− f) . (3.1)

The traveling wave fTW (ξ, v) constructed in Theorem 11 becomes a stationary
solution. We choose z0 in (2.22) such that the shift of ρTW is fixed to

ρTW (0) =
3

4
ρ̄ . (3.2)

The initial datum G0(v, ξ) of the perturbation

G(t, v, ξ) = f(t, v, ξ)− fTW (v, ξ) , ρ(t, ξ) := ρG(t, ξ) ,

is assumed to satisfy G0 + fTW ≥ 0 guaranteeing G(t, ·, ·) + fTW ≥ 0 for all t ≥ 0
and, in particular, ρ+ ρTW ≥ 0. Then G satisfies

ε2∂tG+ ε(v − εs)∂ξG = Mρ−G+ ε2(Mρρ̄− (ρTW + ρ)G− ρ fTW ) . (3.3)

Before proceeding with the energy estimates we apply a micro-macro decomposition
to G as follows

G = Mρ+ εg , i.e.

∫
V

g dv = 0 , implying ‖G‖2v = ρ2 + ε2‖g‖2v . (3.4)

With a slight abuse of notation, we denote W (ξ) = eλξ and multiply (3.3) by W/ε2:

∂t(GW ) +
1

ε
(v − εs)∂ξ(GW )− λ

ε
(v − εs)GW

= −gW
ε

+W (Mρρ̄− (ρTW + ρ)G− ρ fTW ) . (3.5)

The scalar product with GW contains the term∫
R

∫
V

(v − εs)G
2W 2

M
dv dξ =

∫
R

∫
V

(v − εs)
(
ρ2M + 2ερg + ε2 g

2

M

)
dvW 2dξ

= −εs‖ρ‖2W + 2ε

∫
R

∫
V

vg dv ρW 2dξ + ε2

∫
R

∫
V

(v − εs) g
2

M
dvW 2dξ

≤ −εs‖ρ‖2W + 2ε
√
D

∫
R
‖g‖vρW 2dξ + ε2vmax‖g‖2W,v

≤ ε(a− s)‖ρ‖2W +

(
εD

a
+ ε2vmax

)
‖g‖2W,v ,
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with an arbitrary positive constant a. In the estimate, assumption H1 has been used
as well as the Young inequality and the Cauchy-Schwarz inequality

∣∣∫
V
vg dv

∣∣ ≤√
D‖g‖v. Using it, the scalar product of (3.5) with GW leads to

1

2

d

dt
‖G‖2W,v +

(
1− λD

a
− εc

)
‖g‖2W,v

+

∫
R

(
λ(s− a)− ρ̄+ ρ+ 2ρTW − ε2c

)
ρ2W 2dξ ≤ 0 , (3.6)

where the constant c contains L∞ξ -bounds for fTW . Two versions of (3.6) will be
used:

(i) λ = 0 (i.e., W = 1),
(ii) λ and a are chosen such that 1−λD/a and λ(s− a)− ρ̄ are positive. This

is possible by the assumption s > s0 = 2
√
ρ̄D. With λ = s/(2D) (i.e., W

is as in Section 1.2) and a = 3s/4− ρ̄D/s, we obtain

1− λD

a
=

s2 − s2
0

3s2 − s2
0

=: γ , λ(s− a)− ρ̄ =
s2 − s2

0

8D
=
κ

2
.

A linear combination, with the second version multiplied by a positive constant α,
gives

1

2

d

dt

(
‖G‖2ξ,v + α‖G‖2W,v

)
+ (1− εc)‖g‖2ξ,v + α(γ − εc)‖g‖2W,v

+

∫
R
ρ2
(
−ρ̄+ ρ+ 2ρTW − ε2c+

ακ

2
W 2 − ε2cW 2

)
dξ ≤ 0 .

Here we have used ρ + ρTW ≥ 0 and ρTW ≥ −ε2c. Now we employ (3.2), |ρTW −
uTW | = O(ε2), and the monotonicity of uTW :

ακ

4
W 2 − ρ̄+ ρ+ 2ρTW ≥

{
ακ/4− ρ̄− ε2c, ξ > 0,
ρ̄/2− ‖ρ‖∞ − ε2c, ξ < 0 .

Now the choice α = 6ρ̄/κ completes the proof of our main estimate:

1

2

d

dt

(
‖G‖2ξ,v + α‖G‖2W,v

)
+ (1− εc)‖g‖2ξ,v + α(γ − εc)‖g‖2W,v

+
( ρ̄

2
− ‖ρ‖∞ − ε2c

)
‖ρ‖2ξ +

(
3ρ̄

2
− ε2c

)
‖ρ‖2W ≤ 0 . (3.7)

This will imply exponential decay of G for ε small enough as soon as we obtain
an appropriate bound for ‖ρ‖∞. As in Section 1.2, this will be a consequence of a
bound on ‖ρ‖H1

ξ
and of Sobolev imbedding.

We introduce the ξ-derivative of G and its micro-macro decomposition:

∂ξG(ξ, v, t) = H(ξ, v, t) = r(ξ, t)M(v) + εh(ξ, v, t) , r = ∂ξρ , h = ∂ξg ,

implying ρr = ∂ξ(ρ
2/2). The equation

∂t(HW ) +
1

ε
(v − εs)∂ξ(HW )− λ

ε
(v − εs)HW +

hW

ε
= W (Mrρ̄− (ρ′TW + r)G− (ρTW + ρ)H − r fTW − ρ∂ξfTW ) , (3.8)
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for H is treated in the same way as (3.5), leading to an estimate similar to (3.6)
with a number of extra terms:

1

2

d

dt
‖H‖2W,v +

(
1− λD

a
− εc

)
‖h‖2W,v +

∫
R

(λ(s− a)− ρ̄+ 2ρ+ 2ρTW ) r2W 2dξ

≤
∫
R

ρTW ρ
2W 2dξ − ε2

∫
R

(r + ρ′TW )〈g, h〉vW 2dξ

−ε
∫
R
r〈fTW , h〉vW 2dξ − ε

∫
R
ρ〈∂ξfTW , h〉vW 2dξ . (3.9)

By the boundedness of ‖fTW ‖∞,v and ‖∂ξfTW ‖∞,v, the terms on the right hand
side can be estimated by

∫
R

ρTW ρ
2W 2dξ ≤ c‖ρ‖2W ,

−ε2

∫
R
(r + ρ′TW )〈g, h〉vW 2dξ ≤ ε2

2
‖g‖∞,v

(
‖r‖2W + ‖h‖2W,v

)
+ε2c

(
‖g‖2W,v + ‖h‖2W,v

)
,

−ε
∫
R
r〈fTW , h〉vW 2dξ ≤ ε2c

(
‖r‖2W + ‖h‖2W,v

)
,

−ε
∫
R
ρ〈∂ξfTW , h〉vW 2dξ ≤ ε2c

(
‖ρ‖2W + ‖h‖2W,v

)
.

The ε2 on the right hand sides of the third and fourth estimate is explained by the
fact that the scalar products on the left hand sides only see the O(ε) microscopic
component of fTW . Collecting these results, we arrive at

1

2

d

dt
‖H‖2W,v +

(
1− λD

a
− εc− ε2

2
‖g‖∞,v

)
‖h‖2W,v

+

∫
R

(
λ(s− a)− ρ̄+ 2ρ+ 2ρTW − ε2c− ε2

2
‖g‖∞,v

)
r2W 2dξ

≤ c‖ρ‖2W + ε2c‖g‖2W,v .

The next step is again to take the sum of this inequality with λ = 0 and its product
with α = 6ρ̄/κ for λ = s/(2D) and a = 3s/4− ρ̄D/s:

1

2

d

dt

(
‖H‖2ξ,v + α‖H‖2W,v

)
+

(
1− εc− ε2

2
‖g‖∞,v

)
‖h‖2ξ,v + α

(
γ − εc− ε2

2
‖g‖∞,v

)
‖h‖2W,v

+

(
ρ̄

2
− 2‖ρ‖∞ − ε2c− ε2

2
‖g‖∞,v

)
‖r‖2ξ +

(
3ρ̄

2
− ε2c− αε2

2
‖g‖∞,v

)
‖r‖2W

≤ c
(
‖ρ‖2ξ + α‖ρ‖2W

)
+ ε2c

(
‖g‖2ξ,v + α‖g‖2W,v

)
. (3.10)
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The final step in the estimation procedure is the combination of (3.7) with (3.10),
where the latter is multiplied with a positive constant β:

1

2

dJ

dt
+ (1− εc)‖g‖2ξ,v + α(γ − εc)‖g‖2W,v

+
( ρ̄

2
− βc− ‖ρ‖∞ − ε2c

)
‖ρ‖2ξ +

(
3ρ̄

2
− βαc− ε2c

)
‖ρ‖2W

+β

(
1− εc− ε2

2
‖g‖∞,v

)
‖∂ξg‖2ξ,v + βα

(
γ − εc− ε2

2
‖g‖∞,v

)
‖∂ξg‖2W,v

+β

(
ρ̄

2
− 2‖ρ‖∞ − ε2c− ε2

2
‖g‖∞,v

)
‖∂ξρ‖2ξ

+β

(
3ρ̄

2
− ε2c− αε2

2
‖g‖∞,v

)
‖∂ξρ‖2W ≤ 0 (3.11)

with

J(t) := ‖G‖2ξ,v + α‖G‖2W,v + β‖∂ξG‖2ξ,v + βα‖∂ξG‖2W,v

The value of β is chosen small enough such that the constants ρ̄/2−βc and 3ρ̄/2−
βαc in the second line of the estimate are positive. By Sobolev imbedding,

‖ρ‖2∞ + ε2‖g‖2∞,v ≤ cJ

holds. Therefore, if J(0) and ε are small enough, then all coefficients in (3.11) are
positive initially and remain so, since J(t) is decreasing in this case. Actually, a
constant a > 0 exists such that dJ/dt ≤ −aJ .

This completes the proof of the main result of this section.

Theorem 12. Let H1 hold and let fTW be the traveling wave from Theorem 11
with speed s > s0 made unique by (3.2). Let f0(v, ξ) satisfy 0 ≤ f0 ≤ ρ̂M with a
positive ρ̂, and let

‖f0 − fTW ‖H1
ξ (L2

v) + ‖f0 − fTW ‖H1
W (L2

v)

and ε be small enough, but independently from each other.
Then the solution of (3.1) with initial datum f0 satisfies

‖f(t)− fTW ‖2H1
ξ (L2

v) + ‖f(t)− fTW ‖2H1
W (L2

v)

≤ Ce−at
(
‖f0 − fTW ‖2H1

ξ (L2
v) + ‖f0 − fTW ‖2H1

W (L2
v)

)
,

with an exponential decay rate a > 0.

Corollary 13. Under the assumptions of Theorem 12, the traveling wave satisfies

0 ≤ fTW (v, ξ) ≤ ρ̄M(v) ∀ v ∈ V , ξ ∈ R .

Proof. The assumptions of Theorem 12 permit initial data satisfying 0 ≤ f0 ≤ ρ̄.
The conclusion then follows from Theorem 4 and from the limit t→∞. �
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[9] K. Kirchgässner. On the nonlinear dynamics of travelling fronts. J. Differ. Equations, 96

(2):256–278, 1992.

[10] A. Kolmogorov, I. Petrovskii and N. Piskunov. Étude de l’équation de la diffusion avec

croissance de la quantite de matière et son application à un problème biologique. Bull. Univ.
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