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Abstract

The crawling motility of many cell types relies on lamellipodia, flat
protrusions spreading on flat substrates but (on cells in suspension)
also growing into three-dimensional space. Lamellipodia consist of a
plasma membrane wrapped around an oriented actin filament mesh-
work. It is well known that the actin density is controlled by co-
ordinated polymerization, branching, and capping processes, but the
mechanisms producing the small aspect ratios of lamellipodia (hun-
dreds of nm thickness vs. several µm lateral and inward extension)
remain unclear.

The main hypothesis of this work is a strong influence of the lo-
cal geometry of the plasma membrane on the actin dynamics. This
is motivated by observations of co-localization of proteins with I-BAR
domains (like IRSp53) with polymerization and branching agents along
the membrane. The I-BAR domains are known to bind to the mem-
brane and to prefer and promote membrane curvature. This hypoth-
esis is translated into a stochastic mathematical model where branch-
ing and capping rates, and polymerization speeds depend on the local
membrane geometry and branching directions are influenced by the
principal curvature directions. This requires the knowledge of the de-
formation of the membrane, being described in a quasi-stationary ap-
proximation by minimization of a modified Helfrich energy, subject to
the actin filaments acting as obstacles. Simulations with this model
predict pieces of flat lamellipodia without any prescribed geometric
restrictions.
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1 Introduction

Movement of individual animal cells is almost exclusively performed by
crawling locomotion [1], and plays a major role in a huge variety of physi-
ological processes, i.e. embryogenesis [30, 24], immune interaction [23, 34],
the formation and transformation of the nervous system [44, 67], and tumor
invasion [32, 37].

On flat surfaces, adhesive crawling of many cell types is based on lamel-
lipodia, which are thin (100–200 nm) but wide (up to several µm), sheet-like
cell protrusions [56]. Their flat shape is not necessarily caused by flat sub-
strates, since they are also observed on non-adhesive cells like leukocytes in
suspension [68]. Lamellipodia consist of a highly organized actin filament
network, wrapped by the cell membrane [7, 61].

The membrane envelopes the cell and forms the barrier between the
interior of the cell and its environment (reviewed in [12]). It consists of
a bilayer of phospholipids which can move freely within their sheets [15],
making plasma membranes behave like two-dimensional fluids. Specific func-
tionalities are enabled by certain proteins that get attached to the plasma
membrane in various ways [62, 6]. Important for our study is that some of
these membrane proteins are able to sense and/or create curvature in the
membrane (reviewed in [38]).

The structure protein actin is found in almost all eukaryotic cells and
many prokaryotes (reviewed in [47]). It can bind to other actin monomers in
a head-to-tail fashion [65] and is therefore able to form long, double-helical
filaments [20] with a diameter of appoximately 7nm. The polarity gives the
filament an orientation, with the preferentially growing end called the plus-
or barbed end, and the other, predominantly shrinking one, the minus- or
pointed end. Actin filaments are much more flexible than microtubules [18],
another part of the cytoskeleton. So in order to create more stable struc-
tures, over one hundred accessory proteins help to regulate actin monomers
and filaments. The formation and rebuilding of actin filament networks in
lamellipodia is influenced by the following processes [41]:

• Polymerization: The most important polymerization mechanisms are
those promoted by formin or members of the VASP or WASP fami-
lies occurring at barbed ends abutting the cell membrane. Most likely
these proteins also provide tethering of barbed ends to membrane pro-
teins (and, thus, to the cell membrane) they are binding to [8].

• Branching: From existing mother filaments, new daughter filaments
can be nucleated by the Actin-Related Protein-2/3 (Arp2/3) complex,
branching off at an angle of approximately 70 degrees. Arp2/3 itself is
activated at the membrane by nucleation-promoting-factors (NPFs),
such as the Wiskott-Aldrich syndrome protein (WASP) or Scar/Wave
[33].

3



• Capping: The binding of Capping Protein (CP) to the barbed end
of a filament blocks the further polymerization und thus stops the
elongation process [64]. Filaments attached to an end-tracking motor
are protected from capping.

The architecture of the filament network is also influenced by cross-
linking proteins (e.g. α-actinin, Fascin, Filamin [59]), breaking of actin
filaments by the severing protein Gelsolin [5], adhesions to the substrate
[46], and depolymerization of actin filaments, e.g. by the Actin Depolymer-
izing Factor (ADF/Cofilin) [3]. These processes are, however, less important
for the present study of steadily protruding lamellipodia, where the relative
movement of the filaments and thus the effects of cross-linking and adhesions
can be neglected. The filament decomposition mechanisms do not signifi-
cantly affect the lamellipodium geometry either, and will not be discussed
further.

The polymerization of barbed filament ends is pushing the plasma mem-
brane outward. The shape of the resulting protrusion mostly depends on
the regulation of polymerization, branching, and capping. However, a more
direct interaction with membrane shape might be due to the way signalling
molecules, regulating the polymerization and branching machinery, are imbed-
ded in [2] or bound to [55] the membrane. There is strong evidence for the
relevance of the latter for filopodium and lamellipodium protrusion. The
insulin receptor tyrosine kinase substrate of 53 kdA (IRSp53) seems to be
especially important, reviewed in [55], as it links membrane curvature with
its membrane binding, ’zeppelin’-shaped I-BAR domain to polymerization
and branching activity, by binding via its SH3 domain to polymerization
promotors and to the branching activator WAVE and thus generating a
positive feedback loop. The details of these processes are unknown, and it
is one of the main contributions of the present work to formulate a model
for the IRSp53 mediated interaction between membrane deformation and
actin dynamics, where the unknown details are filled in in a way, which is
consistent with experimental evidence as well as with basic geometric and
mechanical considerations.

The first assumption is that IRSp53 is localized at the membrane and
that its localization within the membrane is driven by a preference for highly
curved regions. This can be justified by energy considerations using the
shape and membrane binding properties of the I-BAR domain (analogously
to [2]). As a second premise it is assumed that IRSp53 molecules form
clusters, a property that is indicated by the large scale deformations of
membranes [51]. It will be assumed that a cluster with the shape of a band
attached to the membrane is running along the leading edge, which induces
membrane curvature (orthogonal to the direction of the band) according
to the shape of the I-BAR domain of IRSp53. The third assumption is
that the machineries for polymerization and branching of actin filaments
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co-localize with IRSp53, which is supported by experimental evidence [43].
For polymerization we adopt the actoclampin model [11, 10], based on end-
tracking motors, with a force dependent polymerization speed. This has
the consequence that polymerizing barbed ends are (via IRSp53) tethered
to the membrane and protected from capping. A tether is supposed to have
linear elastic stretching properties up to a threshold force, above which the
tether breaks. As a logical consequence of the assumptions so far, the tether
also breaks, when (by lateral or upward flow) the barbed end of the filament
moves into a membrane region with no residence of IRSp53. It is assumed
that untethered barbed ends continue to polymerize until they get capped,
but are unable to nucleate new filaments. These properties are also present
in the tethered ratchet model [40] where, however, the breaking of tethers
occurs spontaneously and only untethered filaments polymerize until they
are capped. We conjecture that with an appropriate choice of the relevant
parameters the main qualitative properties of our model would be similar
with a tethered ratchet submodel for polymerization.

Branching is assumed to happen at (or very close to) barbed ends with
a fixed branching angle (here taken to be 73◦ [63]). The main question is
to determine the direction of the plane spanned by mother and daughter
filaments. Our choice is a consequence of the observation that IRSp53 is
often observed in tubular structures [36]. Therefore we assume that it tends
to line up in the direction of the smaller principal curvature of the membrane.
This is translated to a preference of the daughter filament for this direction.
Evidence for a preferred direction of branching is provided by data of [63]
showing that smaller distances between branch points on actin filaments are
approximately integer multiples of their helical pitch.

A precise mathematical formulation of the model will be given in the
following section. It also requires a description of the membrane shape
as a two-dimensional surface. This will be based on the well established
Helfrich model [19], where the total bending energy of the membrane is
minimized. The model has to be adapted to the present situation, with
the actin filaments as obstacles and the possibility of inward pulling forces
exerted by tethered barbed ends.

Mathematical models of lamellipodium dynamics roughly belong to one
of two categories: ’Macroscopic’ models consider the actin network as a con-
tinuum with various assumptions on filament geometry and/or the rheologi-
cal properties of the network, e.g. [45, 50, 13]. The model used here belongs
to the class of ’microscopic’ models, where the dynamics of individual actin
filaments are described (usually as stochastic processes). Simulations with
microscopic models are typically restricted to lamellipodial segments close
to the leading edge, both for complexity reasons and for a lack of detailed
models for the events in the rear part and at the sides of the lamellipodium.
Because of the flatness of lamellipodia, useful information on the network
architecture can be obtained from two-dimensional models both with rigid
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[63] and deformable leading edges [52]. The three dimensional network ar-
chitecture has been investigated in this way with a prescribed rigid shape of
the plasma membrane [54, 2] and with a deformable leading edge geometry
[22]. In these studies, the basic flat shape of the lamellipodium including its
thickness has been prescribed.

The model presented here seems to be the first without a priori infor-
mation on lamellipodium geometry. Mathematically and numerically, this
comes at the price of solving for the membrane a general two-dimensional
time-dependent surface equation in three-dimensional space. Since the deriva-
tion and implementation of a suitable simulation algorithm has been a
formidable challenge by itself, it is only outlined in the following section,
and described in detail in a parallel work [53]. The important advantage
of the model is a complete account for the interaction between membrane
geometry and actin filaments. The simulation results presented in Section
3 show that the model predicts the development of flat lamellipodia. Also
the computed architecture of the actin filament network agrees qualitatively
with EM data. The simulations have been carried out with parameter val-
ues, which partially have been reported in the literature and partially are
reasonable guesses. We are confident that a full parametrization of the
model is possible by detailed comparisons to electron tomograms, similarly
to [63]. This is the subject of ongoing work.

2 The mathematical model

The model consists of two interacting systems. The dynamics comes from
the growth of actin filaments as they push (and sometimes pull) the mem-
brane, which reacts passively and in a quasi-stationary way. However, there
is a feedback effect by the influence of the membrane deformation on the
actin dynamics.

Our model describes a small section of the lamellipodium close to the
leading edge. Thus, artificial lateral and rear boundaries have to be intro-
duced. Since our main goal is to explain the flatness of the lamellipodium,
we have to be careful not to enforce the flatness by the data of the model. In
particular, this could happen by the necessary inflow of filaments through
the artificial lateral boundaries by lateral flow. The necessity of providing
this data is avoided by a periodicity assumption, where the ouflow data at
the left are the inflow data at the right and vice versa. The direction of
periodicity will be orthogonal to the main protrusion direction. However,
there is no restriction with respect to the other two directions such that the
cross section and, in particular, the thickness of the growing structure is not
restricted.
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The plasma membrane

We model a piece of membrane which, when stretched out, is of roughly
rectangular shape with two opposing boundary segments being the top and
bottom parts of the rear boundary, and the other two the left and right part
of the lateral boundary. The latter two will be mathematically identified by
the periodicity assumption mentioned above. This means that our model
resides in the domain T1 × R2, where the one-dimensional torus T1 will be
represented by the interval [0, L1], where L1 = xmax is roughly the length
of the modelled piece of leading edge. Since we shall describe a membrane
piece of fixed area A0 (see below), it is natural to use the parameter space
S = T1 × [0, L2] with L2 = A0/xmax for the parametrization

M (t) = {r(s, t) : s ∈ S} ⊂ T1 × R2 ,

of the membrane piece at time t ≥ 0.
The periodicities in parameter space and physical space are related by

r(s1 + L1, s2, t) = (r1(s, t) + xmax, r2(s, t), r3(s, t)) .

The rear boundary Γr(t) := r(T1 × {0, L2}, t) consists of the bottom and
top parts with s2 = 0 and, respectively, s2 = L2. The parametrization
is only a geometric description of the membrane, and the parameter s does
not have any physical meaning regarding the position of individual lipids. In
particular, we do not attempt to describe the lipid flow along the membrane,
which would significantly increase the complexity of the model [21], not
necessary for the purpose of this work. The part of the membrane attached
to the IRSp53 cluster (from now on called the leading edge) corresponds to
the rectangle SL := T1× [L2/2−L/2, L2/2 +L/2] of width L in parameter
space (see Fig. 1A):

L (t) := {r(s, t) : s ∈ SL } ⊂M (t) , t ≥ 0 .

By the properties of IRSp53, the leading edge will have mechanical proper-
ties (described below) different from the rest of the membrane. Its location
in physical space will be a result of the curvature distribution along the
membrane.

At each point in time, the deformation of the membrane will be deter-
mined by minimization of a potential energy functional, subject to a number
of constraints. These are partly due to the presence of the actin filaments,
which are assumed to be rigid and immotile. Filaments will be labelled
by the indices i ∈ I(t) = {1, . . . , N(t)}, where N(t) ∈ N increases by one
at each branching event. Since depolymerization and severing effects are
not modelled, the activity of each filament can be described in terms of
its (time independent) direction fi ∈ S2 (i.e. |fi| = 1, oriented towards
its barbed end) and of the position Fi(t) of the barbed end (satisfying
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Figure 1: Membrane geometry and forces. A: Membrane geometry. The leading
edge region L is depicted in brown, while the rest of the membrane is colored in
silver. The rear boundary Γr and the lateral boundary at xmax are highlighted
as yellow and, respectively, light blue tubes. The background wall functions as a
reference only, with vertical stripes of width 100nm. B: Tether force. The linkage
between the filament (depicted in red with a green barbed end) and the membrane
(transparent) pulls the membrane back. The force is visualized by the green arrow.
C: Membrane tension. The membrane tension (yellow) acts tangentially. D: Volume
constraint force. For µvol > 0 the inward pushing force (magenta) is acting on the
whole membrane.

Fi(t1) − Fi(t2) = sgn(t1 − t2)|Fi(t1) − Fi(t2)|fi). We also distinguish be-
tween filaments whose barbed ends are tethered to the membrane, i ∈ It(t),
untethered, i ∈ Iu(t), or capped, i ∈ Ic(t), with I(t) = It(t) ∪ Iu(t) ∪ Ic(t).

The bending energy: Plasma membranes behave like two-dimensional
fluids [1], and can be described mechanically as deformable fluid surfaces
[16]. They are virtually inextensible and cannot sustain shear stress, which
makes bending the sole form of deformation.

We consider an adapted version of the Helfrich model [19], i.e. the Will-
more functional

Ebend[M ] := 2µbend

∫
M
H2dσ , (1)

with the bending modulus µbend, the surface area element dσ on M and
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the mean curvature H = k1+k2
2 , where k1 ≤ k2 are the signed principal

curvatures with the convention that kj > 0 corresponds to convexity of the
cell. Compared to the full Helfrich energy, the Gauss curvature has been
neglected, which is not a restriction, since we do not investigate topology
changes of the membrane. Instead of incorporating the mechanical proper-
ties of the IRSp53 cluster as a local spontaneous curvature, we have chosen
to model this effect as a constraint (see below). Consequently, the constant
bending modulus assumes a homogeneous membrane material.

The tethering energy: The stretching of tethers of barbed ends (slightly)
removed from the membrane produces the contribution

Etether(t)[M ] := µtether
∑
i∈It(t)

d(Fi(t),M )2 (2)

to the potential energy, where the tethers are assumed to behave like linear
springs with spring constant µtether (see Fig. 1B). By d(x,M ) we denote the
signed distance of the point x ∈ R3 to the membrane with the convention
that d(x,M ) is positive, when x is inside the cell. The signed distance is only
used for points close to the membrane, where its definition is unambiguous.

Membrane tension: Since the total membrane area of the cell is limited,
the protruding lamellipodium has to overcome a membrane tension force,
leading to an energy contribution at the rear boundary:

Epull(M
∗)[M ] := µpull

∫
Γ∗
r

r · a∗n ds∗ , (3)

where ds is the length element along ∂M and an is the unit tangent vector
of M normal to ∂M and oriented inwards. Quantities with the superscript
∗ should not be seen as part of the argument M of Epull, although they
depend on the membrane deformation. By energy minimization (here only
with respect to r in the integrand), Epull contributes the tangential force
−µpullan, distributed along Γr (see Fig. 1C). This trick is necessary since
such a force is nonconservative and cannot be represented by an energy
functional.

Volume constraint: Assuming no mass exchange between the cell and its
environment and incompressibility of the cytoplasm, the cell volume remains
fixed. The contribution of this constraint to a Lagrangian of the whole cell
suggests the energy contribution

Evol(M
∗)[M ] := µvol

∫
M ∗

r · n∗ dσ∗ , (4)
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with the unit outward (with respect to the cell) normal n and the Lagrange
multiplier µvol, whose value has to be prescribed in the absence of infor-
mation on the remaining part of the cell. The meaning of the superscript
∗ is as in (3). An interpretation of µvol is the difference between extracel-
lular and intracellular hydrostatic pressures acting on the membrane. Its
sign depends on the cytoskeletal activity. If contracting effects, typically
caused by actin-myosin interaction, dominate, µvol will be negative. This
is the situation in blebbing cells. On the other hand, dominating protru-
sion effects, caused by polymerizing filaments pushing the membrane, will
be balanced by larger extracellular pressure and make µvol positive. Here
we assume the latter scenario and use small positive values of µvol (see Fig.
1D). The desired effect is only to keep the membrane in touch with the actin
network in regions without tethered filaments. As an alternative, tethering
of the cytoskeleton to the membrane would be needed also on the top and
the bottom of the lamellipodium.

Constraint 1 – pushing filaments: All barbed ends have to lie inside
the cell:

d(Fi(t),M (t)) ≥ 0 , i ∈ I(t) , t ≥ 0 , (5)

which enforces membrane protrusion, when filaments polymerize at their
barbed ends.

Constraint 2 – surface area: We have to make a decision, which piece
of membrane we are actually describing. Part of this decision is to fix the
surface area: ∫

M (t)
dσ =

∫
M (0)

dσ = A0 . (6)

Constraint 3 – leading edge: The leading edge region

L(t) = r(T1 × [L2/2− L/2, L2/2 + L/2], t) ⊂M (t)

of the membrane is supported by I-BAR domains of IRSp53 molecules. We
assume that they are aligned with the principal direction c2 of the larger
principal curvature k2, that in the leading edge region this principal direction
is equal to the s2-direction ∂s2r, and that the larger principal curvature is
equal to the curvature κ of the I-BAR domain. Furthermore, we assume
that the leading edge has width L, guaranteed by the constraint that in the
leading edge region s2 is an arclength along the s2-curves. The parameter
L is typically chosen 2–3 times the length of the I-BAR domain, assuming
IRSp53 oligomers of that size. The assumption that these oligomers lead
to stiffening of the leading edge within the membrane is translated into the
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constraint that the center line (s2 = L2/2) of the leading edge is not curved
in the s2-direction. As formulas, these constraints read

c2 ‖ ∂s2r , k2 = κ , |∂s2r| = 1 , for s2 ∈ [L2/2− L/2, L2/2 + L/2] ,

∂2
s1r ‖ n , for s2 = L2/2 .

Constraint 4 – rear boundary: The artificial rear boundary Γr(t) of
the membrane consists of an upper and a lower segment, whose shapes have
to be prescribed due to the liquidity of the membrane material. We require
that they belong to a cut-off plane, aligned with the x-axis by the periodicity
assumptions and roughly orthogonal to the main protrusion direction. This
prevents the computed membrane piece from moving completely either to
the top or to the bottom of the lamellipodium.

The main protrusion direction in the yz-plane is determined as the av-
erage ω(t) of the azimuth angles

ωi = arcsin

 fiz√
f2
iy + f2

iz

 , i ∈ It(t) ∪ Iu(t) ,

of growing filaments. The normal vector of the cut-off plane is then given
by d(t) := (0, cos(ω(t)), sin(ω(t))), and the side condition reads: For each
t ≥ 0 there exists c(t) ∈ R, such that

r(s, t) · d(t) = c(t), for s ∈ [0, L1]× {0, L2} . (7)

The full membrane model: Denoting the set of all admissible membrane
shapes M (t) = r(S, t) satisfying the constraints 1–4 by M(t), the membrane
deformation is determined as fixed point of the map M ∗ 7→M , defined by

M = argminM̂∈M(t)E(M ∗, t)[M̂ ] ,

E(M ∗, t) := Ebend + Etether(t) + Epull(M
∗) + Evol(M

∗) .

More precisely it should be said that it is not guaranteed that the energy
functional has a unique minimizer. Therefore we add the requirement that
M (t) should depend continuously on time, when this is true for E(M ∗, t),
and that it is chosen as the local minimum closest to M (t−), when E(M ∗, t)
jumps at t.

Actin filaments

Actin filaments are modeled as oriented rods that are immobile and stiff.
Uncapped filaments grow continuosly, and nucleation of new filaments by
branching off tethered ones is included as stochastic process that happens
at barbed ends. After losing its tether a filament gets capped stochastically.
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Other effects changing actin filament networks, such as depolymerization
and severing, occur predominantly further back in the lamellipodium and
are thus neglected. We recall the notation for the filament directions fi and
the barbed end positions Fi(t) , i = 1, . . . , N(t), as well as the sets It(t),
Iu(t) and Ic(t) of indices of respectively tethered, untethered and capped
barbed ends, all subsets of I(t) = {1, . . . , N(t)}.

Polymerization: For the addition of new monomers at barbed ends, we
adopt the actoclampin model [8], which assumes that filaments are elongated
with the help of end tracking proteins. The polymerization process involves
a motor step, where the barbed end and the membrane are pushed apart,
whose activation energy depends on the force between the barbed end and
the membrane. The polymerization rate for filament number i ∈ It(t)∪Iu(t)
can be written as

kp =
kp,max

1 + exp(γ(Fi −Fstall/2)δi/kBT )
,

with the force Fi between the barbed end and the membrane with the con-
vention that positive values of Fi describe pushing forces and negative val-
ues describe pulling forces. The maximal polymerization rate kp,max is thus
reached in the limit of large pulling forces. In the case of untethered fil-
aments, which lack a physical link to the membrane, no pulling forces are
generated. The thermal energy is denoted by kBT , and δi = lf (n · fi)
is the displacement of the membrane in the direction of the normal n by
adding one monomer, which increases the length of the filament by lf . The
two remaining parameters Fstall and γ are chosen such that the maximal
polymerization rate for elongation orthogonal to the membrane (δi = lf ) is
reached up to a few percent (1− α) for Fi = 0, and that it is reduced to a
few percent α when Fi = Fstall:

γ =
2kBT

lfFstall
log

(
1− α
α

)
.

The stall force Fstall is chosen in the range 0.5–2 pN, which is rather small
compared to published data as an account of the rigidity of the model fila-
ments.

For all tethered barbed ends (i ∈ It(t)) located inside the cell (i.e.
d(Fi(t),M (t)) > 0) the force is computed as the pulling force

Fi = −µtetherd(Fi(t),M (t)) .

Since untethered filaments lack a connection to the membrane, the pulling
force is set to 0. If the barbed end is abutting the membrane (i.e. d(Fi(t),M (t)) =
0), the momentary value of the total membrane energy E(t)[M (t)] is com-
pared to the value Ei(t)[Mi(t)], obtained without the pushing action of
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filament number i. This involves the solution of the membrane model with
Constraint 1 replaced by

d(Fj(t),Mi(t)) ≥ 0 , j ∈ I(t) \ {i} .

The force exerted by the filament (changing the membrane deformation from
Mi(t) to M (t)) is then given by

Fi =
E(t)[M (t)]− Ei(t)[Mi(t)]

d(Fi(t),Mi(t))
.

Branching: A simple model including an exchange of Arp2/3 molecules
between the membrane and the cytoplasm, and a branching rate propor-
tional to the local availability of Arp2/3, combined with a Michaelis-Menten
approximation [35] leads to the branching rate for filament number i ∈ It(t)

kbr,i = cbrai = cbr
a0ka

ka + cbrρi
,

where cbr is the branching rate per Arp2/3 density along the membrane, and
ai is the equilibrium Arp2/3 density, written in the Michaelis-Menten ap-
proximation in terms of the equilibrium density in the absence of branching,
a0, the attachment/detachment rate of Arp2/3 from the membrane, ka, and
the local density of tethered barbed ends, ρi, competing for Arp2/3. The
barbed end density ρi is computed by the ratio of the number of barbed ends,
tethered to a small piece of membrane around Fi(t), to the area correspond-
ing to the membrane piece. Similar competition terms in the branching rate
have been used, e.g. in [28]. The branching rate can be rewritten with
conveniently defined parameters as

kbr,i =
kbr,max

1 + ρiL/nref
,

with the maximal branching rate kbr,max = cbra0 and a typical number
nref = kaL/cbr of barbed ends per length of leading edge. Motivated by
results of [63], showing distances between branch points on filaments larger
than their helical pitch, we assume a minimal distance lbr between branch
points.

When branching occurs from filament number i, the direction fd of the
daughter filament needs to be determined. Since we assume a fixed branch-
ing angle φbr, fd needs to lie on a cone, determined by

fi · fd = cosφbr .

On this cone, the branching direction is chosen randomly. The choice of
the preferred directions is one of the main new modeling assumptions of
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this work. As described in Constraint 3, we assume the I-BAR domains of
IRSp53 to be aligned with the direction of the bigger principal curvature of
the membrane. Furthermore the IRSp53 molecules line up side-by-side, i.e.
in the direction ∂s1r. This makes it natural to assume that ∂s1r provides
the preferred branching direction in the sense that the direction fd of the
daughter filament lies in the plane spanned by the mother filament direction
fi and ξ = ∂s1r/|∂s1r|. The intersection of the cone and the plane leads to
two possible preferred directions, which can be written as

f±d =
sin(φi ∓ φbr)fi ± sin(φbr)ξ

sin(φi)
, with cos(φi) = fi · ξ .

The above mentioned cone can now be parametrized by an angle φ:

fd(φ) = cos(φ)f+
d + (1− cos(φ)) cos(φbr)fi +

sin(φ) sin(φbr)

sin(φi)
fi × ξ ,

such that fd(0) = f+
d , fd(π) = f−d . We restrict to daughter filaments pointing

towards the membrane and not too parallel to it by requiring

fd(φ) · n ≥ sin(φmin) ⇐⇒ φ ∈ Dmin ,

with the unit outward normal n to the membrane and a cut-off angle φmin.
The condition φmin < π/2 − φbr is sufficient to guarantee that at least one
of the preferred daughter filament directions lies in the allowed part of the
cone. The daughter filament direction is now determined by a random choice
of φ ∈ Dmin according to the probability density

g(φ) =
1

c

(
1− cos(φi)

2
g0

(
φ

σbr

)
+

1 + cos(φi)

2
g0

(
φ− π
σbr

))
, (8)

where g0 is the normalized Gaussian on [−π/σbr, π/σbr] and continued peri-
odically outside. The positive constant c is chosen such that g is a probabil-
ity density on Dmin. The weights involving φi give preference to daughter
filaments pointing more towards the membrane (see Fig. 2).

Breaking tethers: There are two possible reasons for breaking the con-
nection of filament number i with the membrane. The first one is Fi =
µtetherd(Fi(t),M (t)) > Fmax, i.e. when the force on the tether exceeds a
critical value. Secondly tethers are lost if the barbed end grows out of the
IRSp53 cluster due to lateral or vertical flow. Untethered filaments are still
polymerizing but without any pulling forces, and they are unable to form
branches.

Capping: Untethered barbed ends are capped randomly with the rate
pcap. This process is motivated by the lack of protection from capping by a
barbed end tether. Capped filaments do not grow or branch anymore and
influence the membrane only as obstacles.
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Figure 2: Branching, two views. To indicate the direction of movement, the mem-
brane is depicted at time t in light blue and at time t+∆t in grey; motherfilament in
blue; extrapolated motherfilament in dashed blue; most likely and a second possible
daughter filament direction in black and, respectively, grey. The lower view is in
the direction of the motherfilament highlighting the different regions of the branch-
ing cone: directions pointing backwards in light red, directions too parallel to the
membrane in dark red and the allowed part of the branching cone in shaded green,
the lighter color indicating a higher probability to branch in that direction. Also
indicated is the assumed positioning of the I-BAR domains of IRSp53 molecules.

Lateral boundaries: Just as the membrane, the filaments are assumed
to satisfy periodic boundary conditions, meaning that filaments growing out
of the simulation domain through one of the planes r1 = 0 or r1 = xmax,
immediately enter again through the other one at the same (r2, r3)-position
and with the same direction.

Initial conditions: The initial condition is constructed to resemble a typi-
cal shape for a protruding lamellipodium of thickness H0. The initial barbed
ends Fi(0) (i ∈ I0 = {1, . . . , N0}, N0 = nrefxmax) are randomly placed on
a cylindric surface orthogonal to the x-direction, consistent with the Con-
straints 2–4 for the simulated membrane piece.
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Figure 3: Typical initial condition for the simulation; barbed ends of capped
filaments are depicted in white

For the filament directions

fi =

 cos(φi) cos(γi)
sin(φi) cos(γi)

sin(γi)

 ,

the angles φi and γi are chosen randomly with a two-peaked distribution
for φi, where the peaks are at π/2± φbr/2 with standard deviation σφ. The
azimuth angles γi are chosen with mean 0 and standard deviation σγ (see
Fig. 3).

Numerical implementation

The numerical implementation of the model is described in detail by the
same authors in [53]. The time stepping is based on operator splitting
separating the adjustment of the cell membrane and the evolution of the fil-
aments. The membrane is approximated by a Loop subdivision surface [31],
based on a triangulation of the parameter domain, a finite element method
already successfully used to model cell membranes in [16]. The constraints
are replaced by penalty terms, leading to an unconstrained minimization
problem. At each time step the minimizing surface is found as steady state
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of the corresponding gradient flow, starting from the position of the mem-
brane at the previous time step. Thus we ensure that a local minimum near
the previous configuration is attained. In the second part the rates for poly-
merization, branching and capping are determined for each filament, and
they are evolved accordingly by a Monte Carlo procedure.

Choice of parameter values

Symbol Value Description Refs.

xmax 250nm minimal length of simulated
leading edge

A0 1.4× 105nm2 area of simulated membrane
L 75nm leading edge width

(supported by IRSp53)
µbend 20kBT ≈ 82 pN nm membrane bending modulus [4, 14]

(at T = 300K)
µtether 1 pN/nm tether spring constant [42]
µpull 5× 10−3–10−1pN/nm membrane tension at the rear
µvol 10−5pN/nm2 pressure on the membrane
κ (40nm)−1 IRSp53 I-BAR domain curvature [29, 36]

Table 1: Membrane geometry and mechanical parameters

Symbol Value Description Refs.

kp,max 15s−1 maximal polymerization rate [8]
Fstall 1.5pN polymerization stall force [17]
kBT 4.1pN nm thermal energy (at T = 300K)
lf 2.7nm elongation length per monomer [57]
α 0.01 reduction factor of the maximal

polymerization rate at the stall force
kbr,max (10s)−1 maximal branching rate
nref 140µm−1 reference number of barbed ends [48]

per leading edge length
lbr 10nm minimal distance between branches [63]
φbr 73◦ branching angle [63]
φmin 15◦ minimal angle between

filament and membrane
σbr 10◦ standard deviation of branching direction
pcap 0.16–0.5s−1 capping rate for untethered filaments
Fmax 10pN maximal tether force [60]

Table 2: Polymerization, branching, and capping parameters

The parameters important for the membrane model are collected in Ta-
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ble 1. The width xmax (in the direction of the leading edge) of the simulation
region is chosen as a compromise between the goals to permit a reasonably
large number of filaments and of computational efficiency, and a similar ar-
gument holds for the choice of the total simulated membrane area A0. No
experimental evidence is available for the choice of the width L of the leading
edge region. There is some indirect evidence [51] that I-BAR domains (of
length 18nm [58]) may oligomerize by end-to-end connections. We choose
a value of L, approximately corresponding to oligomers with 4 members.
The membrane curvature radius induced by the I-BAR domain of IRSp53 is
approximately 1/κ = 40nm [29, 36]. The bending modulus of the membrane
depends on its detailed composition. Our choice µbend = 20kBT for its value
is of the correct order of magnitude [4, 14]. The spring constant of tethers
connecting barbed ends to the membrane is another parameter, where good
experimental evidence is missing. The value µtether = 1pN/nm has been
suggested in [9] and is of the same order of magnitude as in simulations of
the actin comet tail of baculovirus [42], where it produced reasonable re-
sults. Our standard value for the membrane tension µpull = 5×10−3pN/nm
applied at the rear end of the simulated membrane is rather on the floppy
side (compare to, e.g. [39]), corresponding to a rather small value of the
polymerizaton stall force (see below). Some experiments with (up to 20
fold) higher values of the membrane tension have also been carried out. The
value µvol of the inward pressure on the membrane is chosen such that a
total force of only a few pN acts over the whole simulated membrane area,
which just prevents the membrane from lifting off from the actin network in
regions without tethered filament ends. This has a negligible effect on the
lamellipodium geometry.

Table 2 contains the parameters corresponding to polymerization, branch-
ing, and capping. The value of the maximal polymerization rate kp,max =
15/s has been chosen such that a maximal cell speed of 2µm/min [63] is
reached by filaments with an angle of φbr/2 to the leading edge. This value
of kp,max lies within a range given in [8]. The polymerization stall force
Fstall is a disputed parameter. The value we have picked from the literature
[17] is on the small side, as mentioned above. Our precise definition of stall
force is the force, where the maximal polymerization rate is reduced by the
factor α = 0.01, whose precise choice is not very important. The maximal
branching rate kbr,max is used as a fitting parameter to regulate the total
number of pushing filaments per leading edge length, which is well know
to be of the order of 100/µm (see, e.g. [48]), also motivating our choice
nref = 140/µm. A minimal distance lbr between branches on a filament
is motivated by the observation that very few branches are closer to each
other than the helical repeat (≈ 36nm) of actin filaments [63]. We choose a
minimal distance smaller than that to allow for the influence of membrane
deformations or filament twisting. The minimal angle φmin between nucle-
ated filaments and the membrane prohibits the creation of filaments without
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a chance of staying attached to the membrane. Its value is an ad-hoc choice,
just as that of the standard deviation σbr of the branching direction from
the preferred one. The latter determines the number of filaments, whose
barbed ends eventually become untethered by leaving the leading edge re-
gion. No experimental evidence is available for the capping rate pcap of these
filaments. Together with the width L of the leading edge region, this is the
parameter expected to have the strongest influence on the lamellipodium
width. Different choices for its value in a reasonable range have been tested.
The maximal pulling force Fmax, which can be sustained by a tether, has
been measured in [60].

Reasonably realistic initial networks of N0 = nrefxmax filaments are
determined stochastically using the parameters in Table 3. Different values
for the initial thickness H0 of the lamellipodium have been tested.

Symbol Value Description Refs.

H0 100–300nm lamellipodium thickness [56]
σφ 10◦ standard deviation of horizontal filament angle [66]
σγ 5◦ standard deviation of azimuth filament angle [49]

Table 3: Initial condition parameters

3 Simulation results

All simulations have been carried out for a time of 2 minutes with time
steps of 20ms. The description of the simulation results is grouped into
three parts, dealing with a qualitative description of computed membrane
deformations, with the comparison to experimental data for our standard
parameter set with pcap = 0.2s−1, µpull = 5 × 10−3pN/nm, and with the
effects of variations of these two parameters, respectively.

The simulated lamellipodium is flat

The most important geometric observation is that we are able to simulate
pieces of lamellipodium protruding for at least 3µm in a stable manner and
remaining flat even without adhesion to a substrate. As an example, Fig.
4 and the video in the supporting material show a typical time evolution
and Fig. 5 gives a perspective from the side. The top and bottom parts
of the cell membrane remain very flat apart from the necessary bending
near the leading edge. The designated leading edge region stays at the front
of the lamellipodium, a property not a priori enforced by the model. The
membrane stiffness is sufficient to keep the leading edge rather straight. As
will be further developed in the quantitative part of the results, the mean
thickness of the lamellipodium evolves around an equilibrium.
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Figure 4: Time evolution after A: 0s, B: 60s, and C: 120s. Left column: Filaments
in red, tethered barbed ends in green, capped barbed ends in white, and branch
points in yellow. Right column: Membrane in silver with leading edge region in
brown, pushing barbed ends indicated on the membrane surface as bronze (tethered
barbed ends) or silver (untethered or capped filaments) spheres.

Quantitative results

Thickness: The thickness of the simulated lamellipodium at time t is
computed as the mean of the distances between corresponding points on
the upper and the lower rear boundary. For each value x ∈ [0, xmax] there
exists exactly one point rl(x, t) on the lower part of Γr(t) (s2 = 0) and one,
ru(x, t), on the upper part (s2 = L2) with rl1(x, t) = ru1(x, t) = x. The
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Figure 5: Side view of the simulation after 120s shows the flatness of the lamel-
lipodium.

lamellipodium thickness is then defined by

H(t) :=
1

xmax

∫ xmax

0
|rl(x, t)− ru(x, t)| dx .

Figs. 6A, 6B, 6C show the time evolutions of the thickness for 6 simulation
runs each for the initial thicknesses 100nm, 160nm, and, respectively, 300nm.
The ensemble averages of these simulations are shown in Fig. 6D. An even
clearer picture is obtained by time averaging of these curves over the previous
50sec, Fig. 6E. The mean thickness settles around approximately 147nm,
which is in the range of measured data reported between 70nm and 180nm
(see, e.g., [25]). The stochastic variations are to be expected and within a
reasonable range. The variations of the initial thickness does no influence
the average thickness in the long run. The mean thickness of 147nm seems
to be a stable equilibrium value for our standard parameter set.

Speed: The average protrusion speed in our simulations is 1.8µm/min,
close to the one used for the computation of the maximal polymerization
rate.

Filaments: For key properties of the simulated actin filament network
long term averages after an initial transient period have been computed and
compared to data from the literature. We obtained the average values:

• 88 for the number of tethered filaments per micron (Fig. 7A), which
is on the low side compared to Vic Small’s estimate of around 120
filaments per micron [48],

• 134µm−1 for the F-actin density (Fig. 7B, again rather low compared
to the value 342µm−1, extracted from electron tomograms by filament
tracking [66]), and

• 205/µm2 for the branch density (Fig. 7C, comparing well to the one
reported for RAC induced lamellipodia, approximately 240/µm2 [26]).

Considering that no specific cell type has been modelled, that the experimen-
tal data originate from rather different experimental set-ups, and that no
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Figure 6: Lamellipodium thickness vs. time. A, B, C: 6 simulations each with,
respectively, 100nm, 160nm, and 300nm initial thickness. D: averages of the sim-
ulations in A, B, and C. E: time averages of the ensemble averages in D over the
previous 50sec.
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Figure 7: Properties of the actin filament network in the six simulations of Fig.
6A. A: number of tethered filaments, B: filament density (length/area), C: branch
density (number/area); average in black.

thorough parameter fitting procedure has been carried out, all the extracted
data fit the reported values reasonably well.

The angular distribution of filaments in the protrusion plane shows two
peaks at a distance of half the branching angle around the direction of
protrusion (Fig. 8), as typical for protruding cells. The peaks are too
pronounced compared to electron tomograms [27, 66], possibly due to the
rigidity of the simulated filaments and the branches.

As an indication for the main protrusion direction, we use the mean
azimuth angle of all polymerizing filaments (see Constraint 4). Fig. 9 shows
that the mean protrusion direction is on the average preserved with time,
with slightly varying averages in different simulation runs as a consequence
of not prescribing the protrusion direction.

Influence of varying parameters

The effect of varying the capping rate pcap for untethered filaments is de-
picted in Fig. 10. The tendency is not surprising: Bigger values of the
capping rate lead to smaller values and smaller fluctuations of the lamel-
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Figure 8: Angle distribution of one simulation over time after A: 0s, B: 40s, C:
80s, D: 120s (normalized filament length per angle).

Figure 9: Average azimuth angle ω over time.

lipodium thickness. For small capping rates a linear dependence could be
expected, with a saturation effect for large capping rates, whence the width
of the IRSp53 cluster will be the dominating influence.

Finally, we carried out a number of experiments with higher values (2–
20 fold of the standard value) of the membrane tension parameter. This
slightly reduces the mean values of the lamellipodium thickness, but most
notably its variance depending on time is reduced (Fig. 11A). Both filament
density and branch density increase with membrane tension (Fig. 11B,C)
which is a natural consequence of smaller polymerization speed at roughly
unchanged branching rates.
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Figure 10: A: Influence on the lamellipodium thickness of varying the capping rate
pcap. B: time averages.

4 Discussion

This work tries to give partial answers to the question, why flat lamellipodia
exist. The main goal was to develop a theory based on protein interactions
using only local information without any prescribed input on global quanti-
ties such as protrusion direction or lamellipodium thickness. The essential
idea is a mutual influence between local geometric properties of the cell
membrane and the dynamics of the actin network, mediated by membrane
bound proteins. A reasonable candidate for this role is IRSp53, whose mem-
brane bound I-BAR domain interacts with membrane curvature and whose
SH3 domains may act as an anchor for promotors of actin branching and
polymerization.
In our mathematical model for actin dynamics and membrane deformation,
the presence of a band-shaped cluster of IRSp53 molecules attached to the
cell membrane and inducing membrane curvature is assumed. Only in this
aggregated form, IRSp53 can be expected to have significant influence on
membrane bending. The positioning of the cluster is part of the energy min-
imization procedure determining membrane shape. The important question
of describing the aggregation mechanism producing the cluster has not been
addressed. It would require a model for the movement of IRSp53 molecules
along a deforming membrane. This is a major step in model development
requiring a description of the incompressible lipid flow along the membrane
[21] as a prerequisite. A computationally feasible approach, which does not
seem to be available yet, is subject of our ongoing work. The model pre-
sented here may explain the stability of flat lamellipodia (see Fig. 6), but
not their initiation.
Another challenge remaining open so far, is a full parametrization of the
model by fitting to experimental results, including a systematic study of
sensitivities with respect to critical parameters. Since filament tracking and
the identification of branch points in electron tomograms [63] provides com-
plete snap shots of the actin network, the complete parametrization (simi-
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Figure 11: Influence of increased membrane tension on A: lamellipodium thickness,
B: filament density, and C: branch density.

larly to [42]) is a realistic goal. The bottleneck in this effort is computation
time. Our numerical methods [53] need to be optimized, such that many
simulation runs can be done within acceptable periods of time.
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