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1 Introdu
tionThe a

urate modelling of high �eld e�e
ts is an important task in the sim-ulation of 
harge 
arrier 
ow in semi
ondu
tors. A standard and 
ommonlyused approa
h is the in
lusion of �eld dependent transport parameters inma
ros
opi
 models. For example, the use of �eld dependent mobilities inthe standard drift-di�usion (DD-) model [14℄ is a 
lassi
al approa
h. Thedetailed form of the �eld dependen
e is usually obtained by a 
ombination ofheuristi
 arguments 
ombined with �tting to experimental values or to theresults of Monte-Carlo simulations of the semi
ondu
tor Boltzmann equation[6℄. A more rigorous approa
h has also been 
onsidered. With the 
lassi
alone it shares the assumption that the semi
ondu
tor Boltzmann equation
orre
tly represents the physi
s. By the Hilbert expansion method (assumingsmallness of the s
aled mean free path), ma
ros
opi
 models 
an be derivedfrom this kineti
 equation. In parti
ular, the low �eld DD-model with �eldindependent transport parameters has been justi�ed in this way [5℄. Thein
lusion of high �eld e�e
ts makes the problem signi�
antly more diÆ
ult.Only with unrealisti
 assumptions on the s
attering me
hanisms, a DD-modelwith �eld dependent mobility has been derived in [11℄. There the DD-modelis the result of a two-step pro
edure. First, by a limit pro
ess an equationwithout a di�usion term is derived. Then the di�usion term (with a �elddependent di�usion 
onstant) is obtained as a higher order 
orre
tion by avariant of the Chapman-Enskog method.In physi
ally a

urate versions of the semi
ondu
tor Boltzmann equa-tion, s
attering e�e
ts of di�erent types and of di�erent orders of magnitudehave to be 
onsidered. Re
ently, the Hilbert expansion method has beenapplied to di�erent (low �eld) situations resulting in a hierar
hy of ma
ro-s
opi
 models, lying in the gap between the full Boltzmann equation andthe DD-model [1℄. Examples are the energy transport model (see also [2℄)and the spheri
al harmoni
s epansion (SHE-) model. The SHE-model 
an bederived either by expansion of the distribution fun
tion in terms of spheri
alharmoni
s [15℄, [16℄ or by a Hilbert expansion assuming that elasti
 
ollisionsare the dominating physi
al e�e
t [1℄, [4℄, [13℄. The latter approa
h seemsmore attra
tive sin
e it 
an be easily applied to non-rotationally-symmetri
band stru
tures. The unknown in the SHE-model is a distribution fun
tiondepending on the wave ve
tor only through the energy. In a se
ond limit pro-
edure with dominating inelasti
 s
attering, the DD-model 
an be derived2



from the SHE-model.In this work the latter limit is 
onsidered, however, for a high �eld situ-ation where the e�e
ts of the driving �eld balan
e the dominating inelasti

ollision me
hanisms. In se
tion 2 the SHE-model is presented and a s
alingis introdu
ed. In se
tion 3 the Chapman-Enskog expansion is 
arried out asfar as possible without spe
ifying the dominating inelasti
 
ollision operator.The resulting equation is stru
turally similar to that of [11℄. The limitingequation is a (�rst order) 
onve
tion equation for the ma
ros
opi
 densitywith �eld dependent mobility. By the Chapman-Enskog pro
edure a (se
ondorder) 
orre
tion is 
onstru
ted. Se
tions 4, 5, and 6 deal with three spe
i�

hoi
es of the inelasti
 
ollision term.In se
tion 4 a model for 
ollisions with phonons of small energy is 
onsid-ered. The model has been derived in [13℄ by simultaneously letting the s
aledmean free path of elasti
 
ollisions and the s
aled phonon energy tend to zero.For this model the �eld dependent mobility 
an be 
omputed expli
itly. It
oin
ides with heuristi
ally derived models for velo
ity saturation. Also theChapman-Enskog 
orre
tion is 
omputed and shown that the resulting equa-tion for the density is paraboli
.A relaxation time model is 
onsidered in se
tion 5. The existen
e ofthe �eld dependent mobility is proven and its asymptoti
 behaviour for large�elds is examined. In this 
ase the mean velo
ity does not saturate in general.Finally, se
tion 6 deals with a model for phonon s
attering with �nitephonon energy. Here, a rigorous existen
e result for the �eld dependentmobility is still missing. However, its asymptoti
 behaviour for large andsmall �elds is analyzed formally. The large �eld behaviour is as in se
tion4. Be
ause of the properties of the phonon s
attering operator, the low �eldlimit is nontrivial. In parti
ular, the low �eld equilibrium distribution is notthe Maxwellian as in se
tions 4 and 5.2 The SHE-Model | S
alingThe SHE-model has the form [1℄N(")�F�t �  rx � qE ��"! � "D(") rxF � qE �F�" !# = Q(F ) ; (2.1)where the unknown F (x; "; t) is the ele
tron distribution fun
tion dependingon position x 2 IR3, parti
le kineti
 energy " 2 IR, and time t 2 IR. The3



elementary 
harge is denoted by q and E(x; t) 2 IR3 is the ele
tri
 �eld (here
onsidered given).The range of the energy variable is determined by the band stru
ture ofthe material: " 2 R("
) := f"
(k) : k 2 Bg ; (2.2)where B � IR3 denotes the Brillouin zone, k 2 B is the parti
le momentumand "
(k) the 
ondu
tion band diagram. The Brillouin zone is the elementary
ell of the dual L� of the 
rystal latti
e, and "
 is assumed in C1(IR3), L�-periodi
 and symmetri
 with respe
t to re
e
tions: "
(�k) = "
(k). Thedensity of states is then given byN(") = 14�3 ZB Æ("
(k)� ")dk : (2.3)We assume that N(") is 
ontinuous on R("
) and that it vanishes on �R("
).(This is a further assumption on the band diagram.) With the help of thedensity of states, the ma
ros
opi
 parti
le density is given byn(x; t) = ZR("
) F (x; "; t)N(")d" :The di�usivity tensor D(") 2 IR3�3 depends on the details of the elasti

ollision me
hanisms underlying the derivation of the SHE-model. If thoseare des
ribed by the 
ollision operator �f�t !el = Qel(f) ;a
ting on distribution fun
tions f(k), k 2 B, then a ve
tor �(k) is de�nedas a solution of the equationQel(�) = �rk"
 ;and the di�usivity is given by [1℄D(") = 14�3�h2 ZB Æ("
(k)� ")rk"
 
 � dk ;with the redu
ed Plan
k 
onstant �h. It is an important property of the SHE-model that D vanishes on �R("
) and that the paraboli
 modes degenerate4



there. As a 
onsequen
e, no boundary 
onditions for F are needed on thispart of the boundary.We require that the solution is regular enough for the 
ux J = �D(rxF�qE �F�" ) to vanish on the energy boundary:D(rxF � qE �F�" ) = 0 on �R("
) : (2.4)This is ne
essary for the validity of the ma
ros
opi
 
ontinuity equation�n�t +rx � ZR("
) Jd" = 0 :Finally, Q(F ) results from the inelasti
 
ollision me
hanism �f�t !inel = Qinel(f) ;and is given byQ(F )(") = 14�3 ZB Æ("
(k)� ")Qinel(F ("
))(k)dk : (2.5)An a-priori splitting of the 
ollision me
hanism into a dominating elasti
 oneand into inelasti
 ones is fundamental for the validity of the SHE-model.We assume parti
le 
onservationZR("
)Q(F )d" = 0 ;but leave details of the 
ollision operator unspe
i�ed until se
tions 4 and 5.For a s
aling of (2.1) we start out by 
hoosing a referen
e energy "0. Thena referen
e value k0 for the modulus of wave ve
tors is determined from therequirement that the s
aled band diagram "
s de�ned by"
(k) = "0"
s(k=k0)takes moderate values on B=k0. It is then reasonable to use the referen
evalue N0 = k304�3"05



for the density of states. Referen
e values for � and the di�usivity are 
hosenas �0 = �el"0k0 ; D0 = �el"0k04�3�h2 ;where �el is a typi
al relaxation time for the elasti
 
ollisions. Referen
evalues for the �eld and for the 
ollision operator in the SHE-equation aregiven by E0 = "0qL0 ; Q0 = k304�3�inel"0 ;where the referen
e length L0 is determined together with the referen
e timeby balan
ing 
oeÆ
ients in (2.1):L0 = "0�hk0p�el�inel ; t0 = �inel :The a

ordingly s
aled version of (2.1) readsN �F�t �  rx � E ��"! � "D rxF � E �F�" !# = Q(F ) ; (2.6)withN(") = ZB Æ("
(k)� ")dk ; D(") = ZB Æ("
(k)� ")rk"
 
 � dk ; (2.7)where the same symbols have been used for s
aled and uns
aled quantities,in parti
ular "
 in (2.7) a
tually stands for "
s. In se
tions 4 and 5 we shallinvestigate various spe
ializations of the model.We want to investigate the dynami
s of (2.6) at ma
ros
opi
 s
ales. De-noting by � � 1 the parameter whi
h sets the ratio of the mi
ros
opi
 tothe ma
ros
opi
 s
ale, we introdu
e the res
alingx! x� ; t! t� :While doing this, we let E un
hanged, whi
h means that we assume thepotential to have variations of order 1 over the mi
ros
opi
 s
ale. Therefore,we are looking for a ma
ros
opi
 limit at high �elds. The res
aled version of(2.6) reads�N �F�t �  �rx � E ��"! � "D �rxF � E �F�" !# = Q(F ) : (2.8)6



3 Chapman-Enskog ExpansionIn this se
tion an asymptoti
 expansion of (2.8) is 
arried out 
orrespondingto the limit �! 0. Computing the derivatives in (2.8), we obtain�N �F�t � �2rx � (DrxF ) + �rx �  DE �F�" !+�E � ��"(DrxF ) = QE(F ) ; (3.1)with QE(F ) = ��"  E trDE �F�" !+Q(F ) :Here and in the sequel the supers
ript `tr' denotes transposition.Passing to the limit �! 0, we have to investigate the equation QE(F ) =0. Hypothesis 1: The kernel of QE is one-dimensional and spanned by afun
tion ME(") � 0 withZR("
)N(")ME(")d" = 1 : (3.2)For 
arrying out the Chapman-Enskog expansion we shall also need toassume the unique solvability of inhomogeneous equations of the formQE(F ) = g ; subje
t to ZR("
)NF d" = 0 ; (3.3)for 
ertain inhomogeneities g, whi
h have to satisfy the solvability 
onditionRR("
) g d" = 0.Note that this 
ondition is a straightforward 
onsequen
e of the 
onser-vation property of Q and of the fa
t that D vanishes on �R("
). In thefollowing se
tions this hypothesis will be veri�ed for two examples of Q(F ).The distribution fun
tion is now de
omposed intoF (x; "; t) = n(x; t)ME(x;t)(") + �F?(x; "; t) (3.4)with n = ZR("
)NFd" ; ZR("
)NF?d" = 0 ;7



and, formally,n = n0 +O(�); F? = F?0 +O(�) as �! 0:Substitution of (3.4) into the SHE-equation (3.1) gives (after division by �):N �(nME )�t + �N �F?�t � �rx � (Drx(nME)) +rx � (DEn�ME�" )+�rx � (DE �F?�" ) + E � ��"(Drx(nME)) + �E ��"(DrxF?) +O(�2)= QE(F?) : (3.5)We integrate with respe
t to " and obtain the 
ontinuity equation�n�t �rx(n�0(E)E)� �rx � ZR("
)D(rx(nME)� E �F?�" )d" = O(�2) (3.6)with the mobility tensor in leading order�0(E) = � ZR("
)D�ME�" d" : (3.7)In �rst order we thus derive the 
onve
tion equation�n0�t �rx � (n0�0(E)E) = 0 (3.8)with the parti
le velo
ity v0(E) = ��0(E)E : (3.9)In order to obtain an O(�2)-approximation of the 
ontinuity equation (3.6)it is 
learly suÆ
ient to 
ompute an O(�)-approximation F? from (3.5):QE(F?) = N �(nME )�t +rx � (DEn�ME�" ) + E � ��"(Drx(nME)) +O(�):Now we negle
t the O(�)-term, use (3.6) in the form�n�t �rx � (n�0(E)E) = O(�)8



and 
ompute the O(�)-approximation F0? fromQE(F0?) = Nn�ME�t +rx � (nDE �ME�" )+NMErx � (n�0(E)E) + E � ��"(Drx(nME)) : (3.10)The O(�2)-Chapman-Enskog expansion of the SHE-model is now obtainedby solving (3.10) for F0? and repla
ing F? in (3.6) by F0?:We develop the ve
tor expressions using Einstein's summation 
onvention.After simple 
omputations, we obtain:QE(F0?) = uijEj �n�xi + n yijkEj �Ek�xi + wk �Ek�t + zij �Ej�xi! ;with zij(") = �0ijNME +Dij �ME�" ;yijk(") = ��0ij�Ek NME +Dij �2ME�"�Ek + ��"  Dij �ME�Ek ! ;wk(") = �ME�Ek N ;uij(") = zij(") + ��"(DijME) :Ea
h of the fun
tions zij, yijk, wk and uij satis�es the ne
essary 
onditionR gd" = 0 for the solvability of the equation Q(F ) = g separately. Indeed, forzij, as well as for the �rst two terms of yijk, this follows from the de�nitionof �0. For the last terms of uij and yijk, it is a 
onsequen
e of the fa
t thatD vanishes on �R("
). Finally, the solvability 
ondition for wk is obtainedby di�erentiation of the normalization 
ondition (3.2) with respe
t to Ek. Atthis point we assume the existen
e of unique solutions of (3.3) for the righthand sides g = zij, yijk, wk, and uij; we denote these solutions by Zij, Yijk,Wk, and Uij, respe
tively. We 
an write:F0? = UijEj �n�xi + n YijkEj �Ek�xi +Wk �Ek�t + Zij �Ej�xi! :Then, we de�ne U `mij = � ZR("
)D`m�Uij�" d" ;9



and Y`mijk , W`mk and Z`mij analogously. The O(�2)-approximation of the 
on-tinuity equation (3.6) now is:�n�t �rx � (n��[E ℄E)� �rx � (n~�(E)rxE)� �rx � (D(E)rxn) = 0 ; (3.11)with the �rst order mobility ��, the di�usion matrix D(E), and the higherrank mobility (i.e. operating on the derivative of the �eld) ~�(E) given by��[E ℄ = �0(E) + ��1[E ℄ ; (3.12)�1̀m[E ℄ = Y`mijkEj �Ek�xi +W`mk �Ek�t + Z`mij �Ej�xi ;D`i(E) = U `mij EjEm + ZR("
)D`iMEd" ;(~�(E)rxE)` = ~�`km �Ek�xm ; (3.13)~�`km(E) = ZR("
)D`m�ME�Ek d" :The �rst-order drift velo
ity v�,v� = ��[E ℄E + ~�(E)rxE ;has two 
ontributions: the �rst one, ��[E ℄E , is the usual drift `in the di-re
tion of the �eld', the se
ond one, ~�rxE , is a drift `in the dire
tions ofthe �eld gradients' (a
tually the last statement is rigorously true only forthe rotationally symmetri
 
ase below). The �rst order mobility �� dependson the ele
tri
 �eld and its derivatives (whi
h is indi
ated by the bra
kets).The higher rank mobility ~� maps the tensor rxE to ve
tors, whi
h appearsin formula (3.13). Note that, if the �eld gradients are O(�), the 
ontinuityequation (3.11) simpli�es into a usual drift-di�usion equation:�n�t �rx � (n�0(E)E)� �rx � (D(E)rxn) = 0 : (3.14)An open question in general is the positive-de�niteness of the di�usion tensorD. It will be proven in a parti
ular 
ase below.The 
ontinuity equation (3.11) simpli�es if the SHE di�usion matrix D isa s
alar (whi
h for instan
e happens for spheri
ally symmetri
 band diagramsand rotationnally invariant 
ollision operators). Then, the operator QE , its10



equilibrium distribution ME , and the zero-th order mobility �0 only dependon the magnitude of the ele
tri
 �eld E = jEj. In this 
ase, we denoteME = ME . We 
omputeQE(F?0 ) = u(E � rx)n + n y(e � rx)E22 + w 1E ��t E22 + zrx � E! ; (3.15)with z(") = �0NME +D�ME�" ; (3.16)y(") = ��0�E NME +D�2ME�"�E + ��"  D�ME�E ! ;w(") = �ME�E N ;u(") = z + ��"(DME) ; (3.17)and e = E=E. Again, denote by U , Y , W and Z the solutions of problem(3.3) asso
iated with the right-hand sides u, y, w, and z, and by U , Y,Wand Z, the integrals U = � ZR("
)D�U�" d" ;and so on. The 
ontinuity equation (3.11) is now�n�t �rx � (n��[E ℄E) � �rx �  n~�(E) 1ErxE22 !��rx � (D(E)rxn) = 0 ; (3.18)with ��, D, and ~� given by (3.12) and�1 = Y(e � rx)E22 +W 1E ��t E22 + Zrx � E ;D = U E 
 E + ZR("
)DMEd" Id ;~�(E) = ZR("
)D�ME�E d" :In this 
ase, the drift is a 
ombination of two drifts, one parallel to the �eldand the other parallel to the gradient of its magnitude.11



4 Intera
tion with phonons of small energyWe apply the above pro
edure to a 
ollision operator derived in [13℄, [12℄as an approximation for the intera
tion of ele
trons with phonons of smallenergy.The s
aled SHE 
ollision operator Q dedu
ed there is given by:Q(F ) = ��" "S(") �F�" + F!# ; (4.1)with S(") = ZB ZB Æ("
(k)� ")Æ("
(k0)� ")�s(k; k0)dk0dkHere �s(k; k0) stands for the appropriately s
aled transition matrix (
f. [12℄and se
tion 2).In the following we shall deal with several examples sharing two basi
assumptions. The �rst assumption is that Qel is a relaxation time operatorwith �s(k; k0) = �("
(k)) :Then, S(") = �(")N(")2 ;where N is the density-of-states (2.3) and the SHE-di�usion matrix D isgiven byD(") = 34(2�)2=3�(")N(") ZB Æ("
(k)� ")rk"
 
rk"
dk :The di�usion matrix still depends on the properties of the band diagram.The se
ond assumption is a spheri
ally symmetri
 band diagram: Wesuppose that B is a ball, possibly with in�nite radius and"
(k) = "
(jkj2) ;with a stri
tly monotone fun
tion "
. We denote by 
 the inverse fun
tion of"
, de�ned on R("
): jkj2 = 
("
(k)) ;12



We obtainN = 2�p

0 ; S = 4�2
(
0)2� ; D = (2�)2=3 
(
0)2�Id :The examples mentioned above are(i) Paraboli
 band diagram: We assume that the band diagram is that of afree parti
le 
 = "=(2�)2=3with " 2 R("
) = [0;1). Then,N = p" ; S = "�(") ; D = "�(")Id :Two sub
ases are parti
ularly interesting:(i-a) Lyumkis 
ase [9℄: � � 1: Then,N = p" ; S = " ; D = "Id ; (4.2)(i-b) Chen 
ase [3℄: � = p". Then,N = p" ; S = "3=2 ; D = p"Id ; (4.3)(ii) Kane's band diagram [7℄: This is a 
orre
tion to the paraboli
 bandapproximation whi
h a

ounts for non-paraboli
ity e�e
ts 
lose to the bottomof the 
ondu
tion band. It is given by
 = 1(2�)2=3 "(1 + ��") ; " 2 [0;1) ; (4.4)where �� is the so-
alled 'non-paraboli
ity' 
oeÆ
ient. In this 
ase,N = q" (1 + ��") (1 + 2��") ;S = " (1 + ��") (1 + 2��")2�(") ;D = "(1 + ��")(1 + 2��")2�(")Id :The 
oeÆ
ients have the same behaviour near the origin as in the paraboli

ase but their behaviour for large " is very di�erent.(ii-a) Lyumkis 
ase [9℄: � � 1: Then, as "!1, we haveN � "2 ; S � 4(��)3"4 ; D � 14�� Id :13



(ii-b) Chen 
ase [3℄: � = p", Then, as "!1, we haveN � "2 ; S � 4(��)3"9=2 ; D � 14�� 1p"Id :Going ba
k to the general 
ase, we writeQE(F ) = (E trDEF 0)0 + (S(F 0 + F ))0 = (DEF 0 + SF )0 ;where primes denote derivatives with respe
t to " andDE = E trDE + S :Hypothesis 2: (i) The energy range R("
) is an interval [0; "�℄ with "�being �nite or in�nite.(ii) N , D, S and the entries of D are C2 fun
tions. N and S are positive,D is positive de�nite on (0; "�), and N , S, and D vanish on �R("
), i.e. at0 if "� =1 and at 0 and "� if "� is �nite.(iii) If "� =1, the integral I(") = R "0 SDE (u)du diverges as "!1. Further-more the integral J = Z 10 exp(�I("))N(")d" ; (4.5)
onverges.These hypotheses mat
h the physi
al requirements. The 
oeÆ
ients van-ish on �R("
) be
ause this set is a set of 
riti
al values of the energy banddiagram "
. The divergen
e of I(") in the 
ase "� = 1 is a non-runawayhypothesis, whi
h guarantees that the �eld will not drag too many parti
lesto too large energies. This hypothesis is similar to the non-integrability ofthe s
attering frequen
y required for the high-�eld di�usion approximationof the Boltzmann equation [11℄. It is easy to 
he
k that these hypotheses aresatis�ed in the Chen and Lyumkis examples above, for both the paraboli
and the Kane dispersion relations.Assuming hypothesis 2, we 
an de�neU("; "0) = exp � Z "0" SDE (u)du! ; "; "0 2 [0; "�℄ : (4.6)Theorem 4.1 Suppose Hypothesis 2 is satis�ed. Then the solutions F ofQE(F ) = 0 ; (4.7)14



whi
h are bounded on [0; "�℄ and su
h that DEF 0 ! 0 as "! 0 are given byF = nME with n 2 IR andME(") = AU(0; ") ; (4.8)where A is su
h that Z "�0 ME(")N(")d" = 1 :The requirement DEF 0 ! 0 as " ! 0 is the energy boundary 
ondition(2.4) at " = 0 2 �R("
). It is easily 
he
ked that the equilibrium distributionalso satis�es DEM 0E ! 0 as "! "�.Proof: We solve (DEF 0 + SF )0 = 0, or DEF 0 + SF = C, where C is a
onstant. At " = 0, we require that F is bounded and that DEF 0 ! 0 as" ! 0. This imposes the 
hoi
e C = 0. Then F is given by (4.8) and it isan easy matter to 
he
k that it sati�es all the requirements of the theorem.Example 4.1 Paraboli
 band diagram, Lyumkis 
ase (4.2): In this 
asestraightforward 
omputations show thatME(") = 2p� 1T 3=2E e�"=TE ; TE = 1 + E2 : (4.9)The zeroth-order moblity �0 is given by�0(E) = 2p� TE : (4.10)The zeroth-order drift velo
ity v0(E) saturates at high �eld, a standard fea-ture of mobility models in the literature [14℄:limE!1 jv0(E)j = 2p� :Example 4.2 Paraboli
 band diagram, Chen 
ase (4.3): In this 
ase,ME(") = Ae�" �1 + "E2�E2 :15



and A�1 = p� a(E2) ; a(�) = Z 10 e�u �1 + u���pudu :The mobility is given by �0(E) = 1p� b(E2)a(E2) ;with b(�) = Z 10 e�u �1 + u��� 12pu du :As E (and, thus, �) tends to in�nity and " is kept �xed, the equilibriumdistribution 
an be approximated by the Druyvenstein distributionME(") � 21=4�(3=4)E3=2 exp � "22E2! ;and we have a(�) � �3=4�(3=4)21=4 ; b(�) � �1=4�(1=4)27=4 ;and therefore, �0(E) � �(1=4)23=2�(3=4)p� 1E :Again, the velo
ity v0 saturates as E !1.Example 4.3 Kane's band diagram (4.4), Lyumkis 
ase (4.2): In this 
ase,ME(") = Ae�"  u2 +p2u+ 1u2 �p2u+ 1!�� exp �2� ar
tan(p2u� 1) + 2� ar
tan(p2u+ 1)� ;with u = 1 + 2��"pE ; � = pE8p2�� :16



A straightforward but lengthy asymptoti
 analysis for large �elds givesME(") � 
E�6=5 exp "�(2��"+ 1)510��E2 # ; as E !1; " �xed;�0(E) � 
E�6=5;where 
 denotes (possibly di�erent) 
onstants depending only on ��: Thus,the velo
ity v0 de
ays as E�1=5 after going through a maximum.Example 4.4 Kane's band diagram (4.4), Chen 
ase (4.3): The large �eldbehaviour is now given byME(") � 
E�1 exp "�(2��"+ 1)512��2E2 ���"� 110�# ; as E !1; " �xed;�0(E) � 
E�7=6 :The qualitative behaviour is as above with the velo
ity de
ay given by E�1=6:We note that for paraboli
 band diagrams, equilibria ME have fasterde
ay at large energy in the Chen 
ase than in the Lyumkis 
ase. In theLyumkis 
ase, D and S are 
omparable. Also the equilibrium ME di�ersfrom the Maxwellian at latti
e temperature over the whole energy range.A
tually, the equilibrium is a Maxwellian with a �eld-modi�ed temperatureTE. In the Chen 
ase, D is negligable 
ompared to S at large energy andthe equilibrium is just the latti
e Maxwellian with a polynomial weight, thedegree of whi
h in
reases as the �eld in
reases. The same 
omments hold forthe Kane band diagram in both the Lyumkis and Chen 
ases.We now investigate the solvability of inhomogeneous equations with theoperator QE . As for the sele
tion of the equilibria, the regularity questionsare important. We separately 
he
k the 
ase "� �nite and "� in�nite.Theorem 4.2 Suppose that R("
) = [0; "�℄ with "� �nite and that Hypothesis2 holds. Let g be a given integrable fun
tion on [0; "�℄ su
h that the fun
tions1DE(") Z "0 g(u)du and 1DE(") Z "�" g(u)du ;are integrable at " = 0 and "�, respe
tively. Then, the equationQE(F ) = g ; (4.11)17



admits a bounded solution F su
h that DEF 0 ! 0 as "! f0; "�g, if and onlyif Z "�0 g d" = 0 :This solution is unique under the additional 
onstraintZ "�0 FN d" = 0 :Proof: Equation (4.11) is written(DEF 0 + SF )0 = g ; (4.12)Integration of (4.12) givesDEF 0 + SF = r + C ; (4.13)where C is a 
onstant and r(") = Z "0 g(u)du :For F to be bounded at 0 with DEF 0 ! 0 as " ! 0, we obviously need to
hoose C = 0. Then, the general solution of (4.13) isF (") = Z "0 U(u; ")� rDE � (u)du+ CME ; (4.14)where U , de�ned in (4.6), is solution of the homogeneous equation, ME isthe equilibrium (4.8) and C is an arbitrary 
onstant. We now examine underwhi
h 
ondition the solution (4.14) satis�es the requirements of the theoremnear " = "�. De�nes(") = Z "�" g(u)du ; G = Z "�0 g(u)du = r + s : (4.15)We write, for an arbitrary "0 2 (0; "�),F (") = � Z ""0 U(u; ")� sDE � (u)du+G Z ""0 U(u; ")� 1DE � (u)du+ C 0ME : (4.16)18



The �rst term F1 at the r.h.s. of (4.16) is obviously bounded and su
h thatDEF 01 ! 0 as "! "�. The se
ond term F2 is a solution of the equationDEF 0 + SF = G ;whi
h satis�es these requirements only if G = 0.To handle the 
ase "� =1, we need additional hypotheses:Hypothesis 3: (i) If "� = 1, we assume that S is monotone in theneighbourhood of 1, su
h that��" � 1S� (") = o( 1DE (")) ;as "!1 and that the integralZ 1"0 U(u; "0) ����� ��" � 1S� (u)����� dudiverges.(ii) In addition ��" �NDES � (") = o(N(")) ;and �NDES � (")U("0; ")! 0 ;as "!1.Theorem 4.3 Suppose that R("
) = [0;1℄ and that Hypotheses 2 and 3 (i)hold. Let g be an integrable fun
tion on [0; "�℄ su
h that1DE(") Z "0 g(u)du ;is integrable at 0. Then, the equation (4.11) admits a lo
ally bounded solutionF su
h that DEF 0 ! 0 as "! 0, SF ! 0 and DEF 0 ! 0 as " ! 1 if andonly if Z 10 gd" = 0 :19



If, in addition, hypothesis 3 (ii) is satis�ed, and if�NS � (") Z 1" g(u)duis integrable at 1, then, R10 NFd" is �nite and the solution is unique underthe additional 
onstraint Z 10 FNd" = 0 :Proof: The proof starts like that of theorem 4.2. To satisfy the requirementsat " = 0, the solution must be given by (4.14). We now investigate thebehaviour of F at 1. For "0 > 0 arbitrary, formula (4.16) is true providedthat s and G are de�ned by (4.15) with "� =1. We haveZ ""0 U(u; ")� 1DE � (u)du = U("0; ") Z ""0 U(u; "0)� 1DE � (u)du :An integration by parts gives:Z ""0 U(u; "0)� 1DE � (u)du = 1S(")U("; "0)� 1S("0)� Z ""0 U(u; "0) ��" � 1S� (u)du ;Be
ause of hypothesis 3 (i) and 
lassi
al 
omparison arguments, we haveZ ""0 U(u; "0) ��" � 1S� (u)du = o�Z ""0 U(u; "0)� 1DE � (u)du� ;and both integrals diverge as " ! 1. We dedu
e that F2 (see de�nition inthe proof of theorem 4.2) is su
h that SF2 ! G as "!1. Sin
e s! 0, wealso dedu
e SF1 ! 0 thus proving SF ! 0 if and only if G = 0. Then, wealso have DEF 0 = s� SF ! 0, ending the existen
e part of the proof.We now suppose that hypothesis 3(ii) is satis�ed and investigate the in-tegrability of NF , whi
h is that ofK = Z 1"0 N(")�Z ""0 U(u; ")� sDE � (u)du� d" :20



We writeK = Z 1"0 � sDE � (u)U(u; "0)�Z 1u U("0; ")N(")d"�du :By an integration by parts and hypothesis 3(ii), we have:Z 1u U("0; ")N(")d" = �NDES � (u)U("0; u) + Z 1u ��" �NDES � (")U("0; ")d" :By hypothesis 3(ii) and 
lassi
al 
omparison arguments, we obtainZ 1u U("0; ")N(")d" � �NDES � (u)U("0; u) :Then, the behaviour of K is similar to that ofK 0 = Z 1"0 �NsS � (u)du ;whi
h 
onverges due to the hypothesis of theorem 4.3.It is a simple matter to 
he
k that, in the above examples (Lyumkisand Chen 
oeÆ
ients with paraboli
 or Kane band diagram), the fun
tions(3.16){(3.17) satisfy the requirements of theorem 4.3. We shall now dis
ussthe 
omputation of the transport 
oeÆ
ients of the 
ontinuity equation (3.18)in the Lyumkis example (4.2) for a paraboli
 band and show that the resultingp.d.e. is paraboli
. We re
allN(") = p" ; S(") = " ; D(") = "Id ; " 2 R("
) = [0;1) ; (4.17)ME(") = 2p� T 3=2E e�"=TE ; �(E) = 2p�TE ; with TE = 1 + E2 :We now 
ompute the termZ 10 "�F?0�" d" = � Z 10 F?0 d" ;in (3.6). The equation (3.10) 
an be written asQE(F?0 ) = 2np� ��t � 1TE� 32s "TE � � "TE�3=2! e�"=TE21



+rx � (nE) 2p� T 3=2E  2s eps�TE � "TE! e�"=TE+nE � rx � 1TE� 2p�TE  s "�TE + � "TE�2 � 5"2TE! e�"=TE+E � rx  n ��"(DME)! :Lemma 4.1 Suppose that N , D and S are given by (4.17) and that g sat-is�es the hypotheses of theorem 4.3 and in parti
ular, that R10 g(")d" = 0.Then the unique solution of problem (3.3) satis�es� Z 10 "�F�" = Z 10 F d" = TE Z 10 G(u) Z 1u g(vTE)dv du ;with G(u) = 2p� Z 10 e�tpt+ u+ptdt :Proof: Integration of QE(F ) = g gives�F�" + FTE = �r(") := � 1TE" Z 1" g(s)ds : (4.18)The expli
it 
omputation of the solution givesF (0) = TE Z 10 Ĝ(u)r(uTE)du ;with Ĝ(u) = 2p� Z 1u pv eu�vdv = 2p� Z 10 pt+ u e�tdt :Then, integration of (4.18) givesZ 10 F d" = TE Z 10 Ĝ(u)� 1u Z 1u g(vTE)dv du :The proof is 
ompleted by the observation that Ĝ(0) = 2�(3=2)=p� = 1 andthe 
omputationĜ(u)� Ĝ(0)u = 2up� Z 10 (pt + u�pt)e�tdt = G(u) :22



From the lemma we obtainZ 10 F?0 d" = A1nTE ��t � 1TE�� A2s 1TE rx � (nE)�A3nqTEE � rx 1TE + 1p�E � rx  npTE! ;with A1 = 2p� Z 10 G(u) Z 1u �32pv � v3=2� e�vdv du ;A2 = 2p� Z 10 G(u) Z 1u  2p�pv � v! e�vdv du ;A3 = 2p� Z 10 G(u) Z 1u  1p�pv + v2 � 52v! e�vdv du :Finally, the 
ontinuity equation be
omes�n�t �rx � (nE�0) = �rx � "D(E)rxn+ nq�(1 + E2)rxE2� nE(1 + E2)3=2 A1p1 + E2�E2�t � A2(1 + E2)rx � E (4.19)�� 12p� � A3�E � rxE2!# ;with D(E) = 1p1 + E2  2p� (1 + E2)Id +  A2 � 1p�! E 
 E! :We 
on
lude this se
tion by showing that (4.19) is paraboli
:Lemma 4.2 The matrix D(E) is positive de�nite for every E 2 IR3.Proof: It suÆ
es to prove2p� + A2 � 1p� � 0 :23



It is easily shown thatZ 1u  v � 2p�pv! e�vdv � 0and 0 < G(u) � G(0) = �(1=2)=p� = 1 hold. This implies0 < �A2 � 2p� Z 10 Z 1u  v � 2p�pv! e�vdv du= 2p� Z 10  u2 � 2p�u3=2! e�udu= 2p�  �(3)� 2p��(5=2)! = 1p� :5 A Relaxation Time ModelIn this se
tion, the inelasti
 operatorQinel is assumed to be a relaxation-time-type operator whi
h drives the distribution fun
tion towards a Maxwellianwith the latti
e temperature. We start with the general formQinel(f)(k) = ZB s(k; k0)[f(k0)M("
(k))� f(k)M("
(k0))℄ dk0 ;where M(") = e�" is the Maxwellian with s
aled latti
e temperature equalto 1 and s(k; k0) is a nonnegative fun
tion symmetri
 in k; k0. Consequently,in the SHE model, the operator Q(F ) reads, for a fun
tion F depending onlyon the energy "(k),Q(F )(") = ZR("
) S("; "0)[F ("0)M(")�M("0)F (")℄d"0and S("; "0) = ZB ZB Æ("
(k)� ")Æ("
(k0)� "0)s(k; k0)dk0dkIn order to obtain a relaxation-time model for inelasti
 s
attering, we takes(k; k0) = H("
(k))H("
(k0)) ;with a given nonnegative fun
tion H (to be spe
i�ed later). This impliesS("; "0) = N(")H(")N("0)H("0) :24



Consequently we haveQE(F ) = ��"  E trDE �F�" !+NHM(") ZR("
)NHF ("0)d"0�NHF (") ZR("
)NHM("0)d"0In this model �(") = 1=H(") 
an be interpreted as an energy dependentrelaxation time. To simplify the 
omputations, we assumeH(") = "�1=2�� ; � < 1 ;and the paraboli
 band assumptionsR("
) = [0;1) ; N(") = p" ; D(") = "I3�3 :ThereforeQE(F ) = E2 ��"  "�F�" !+ "��e�" Z 10 F (u)u�� du� "��F (")�(1��) : (5.1)The following lemma shows that the kernel of QE has dimension 1.Lemma 5.1 Let E � 0. Then the equation QE(F ) = 0, where the operatorQE is de�ned by (5.1), has a unique positive solution FE su
h thatZ 10 FE(u)u��du = 1 :Proof: The result is trivial for E = 0, with the kernel of Q0 spanned by theMaxwellian. For E > 0, we �rst introdu
e the 
hange of variables" =  E2(1� �)2�(1� �) y! 11�� ; FE = �(1� �)E2(1� �)GE : (5.2)The new unknown GE solves the problem� ddy  ydGEdy !+GE = ÆE(y) ; Z 10 GE(y) dy = 1 : (5.3)with ÆE(y) = E2(1� �)�(1� �)2 exp 24� E2(1� �)2�(1� �) y! 11��35 : (5.4)25



It is readily seen thatZ 10 ÆE(y) dy = 1 ; limE!1 ÆE = Æwhere Æ is the Dira
 measure.In order to prove the existen
e and uniqueness of GE, we �rst investigatethe homogeneous equation� ddy  ydGdy !+G = 0 ; (5.5)whi
h 
an be transformed to the Bessel equation of order zero by the trans-formation z = 2ipy. The general solution 
an thus be written in terms ofthe zeroth order Bessel fun
tion and the Hankel fun
tion H(1)0 [8℄. However,only the solutionG1(y) = i�H(1)0 (2ipy) = 2 Z 11 e�2spyps2 � 1 ds (5.6)is integrable. This and the positivity of G1 imply uniqueness of GE. Theasymptoti
 behaviour of G1 
an be dedu
ed from the behaviour of H(1)0 [8℄:G1(y) � p�y�1=4e�2py ; y !1 ;G1(y) � � ln y ; y ! 0+ : (5.7)We shall also need the asymptoti
 behaviour of dG1=dy, given by the deriva-tives of the right hand sides of (5.7).The solution of (5.3) is obtained by the variation-of-
onstants ansatzGE(y) = G1(y)�(y) with the resultGE(y) = G1(y) Z y0 1tG1(t)2 Z 1t G1(s)ÆE(s) ds dt : (5.8)From (5.7), we dedu
e that GE is well de�ned. It remains to 
he
k theintegrability of GE and the validity of the se
ond equation in (5.3). We
ompute ydGEdy (y) = ydG1dy (y) Z y0 1tG1(t)2 Z 1t G1(s)ÆE(s) ds dt+ 1G1(y) Z 1y G1(s)ÆE(s) ds : (5.9)26



It is easily seen from (5.7) that (5.9) tends to zero as y ! 0+. The mono-toni
ity of ÆE and G1 implies�����ydGEdy (y)����� � �����ydG1dy (y)����� Z y0 ÆE(t)tG1(t)2 Z 1t G1(s) ds dt+ Z 1y ÆE(s) ds : (5.10)The se
ond term on the right hand side obviously tends to zero as y ! 1.In the �rst term we use (5.7) andZ 1t sre�asqds � tr�q+1aq e�atq ; t!1 ; (5.11)whi
h holds for any r 2 IR, a; q > 0, to showZ 1t G1(s) ds � p�t1=4e�2pt ; t!1 :As a 
onsequen
e we haveÆE(t)tG1(t)2 Z 1t G1(s) ds = O �t�1=4ÆE(t)e2pt�= O t� ddt �ÆE(t)e2pt�! = O y� ddt �ÆE(t)e2pt�! ;as t � y ! 1 for some � � 0. This estimate is suÆ
ient for showingthat also the �rst term on the right hand side of (5.10) and, thus, y dGE=dytends to zero as y !1. Now integration of the di�erential equation in (5.3)
ompletes the proof.The lemma veri�es Hypothesis 1 withME(") = FE(")R10 pz FE(z) dz :The mobility is given by�(E) = R10 FE d"R10 p"FE d" = 0�q�(1� �)E(1� �) 1A 11�� R10 GEy�=(1��) dyR10 GEy(1+2�)=2(1��) dy ;with the fun
tion GE given by (5.8). The asymptoti
 behaviour as E !1is analyzed in the following: 27



Lemma 5.2 As E !1, GE(y) (given by (5.8)) 
onverges to G1(y) (givenby (5.6)) for y > 0. For all � > �1,limE!1 Z 10 y�GE(y) dy = Z 10 y�G1(y) dy :Before proving the lemma, we point out its obvious 
onsequen
e,�(E) � �0E�1=(1��) ; as E !1 ;Consequently jv(E)j = O(E��=(1��)) as E !1. Thus, the velo
ity saturatesfor large �elds if � = 0, it tends to zero for 0 < � < 1 and to 1 for � < 0.Proof: As a �rst step, we rewrite GE asGE(y) = CEG1(y) +HE(y)withHE(y) = G1(y) Z y1 1tG1(t)2 Z 1t G1(s)ÆE(s) ds dt ;CE = Z 10 1tG1(t)2 Z 1t G1(s)ÆE(s) ds dt = 1� Z 10 HE(y) dy :The se
ond representation of CE follows from the fa
t that both the integralsof GE and of G1 over IR+ are equal to 1. Sin
e limE!1 ÆE = Æ, we dedu
elimE!1HE(y) = 0 ; 8y > 0 :On the other hand, from the monotini
ity of G1, we have the estimatejHE(y)j � G1(y) �����Z y1 dttG1(t) ����� :The right hand side of the above inequality is a lo
ally bounded fun
tion onIR+ whose asymptoti
 behaviour as y ! 0+ is given by j log(y) log(j log(y)j)j.Therefore y�HE(y) is in L1(0; 1) for � > �1 and the dominated 
onvergen
etheorem yields limE!1 Z 10 y�jHE(y)j dy = 0 :Let us now prove that limE!1 Z 11 y�jHE(y)j dy = 0 :28



By using the Fubini theorem, we obtainZ 11 y�jHE(y)j dy = Z 11 G1(t)G2;E(t)tG1(t)2 dt ;where G1(t) = Z 1t y�G1(y) dy ; G2;E(t) = Z 1t G1(s)ÆE(s) ds :Using (5.11) together with the inequalityG2;E(t) � ÆE(t) Z 1t G1(s) ds ;we obtain the estimateG1(t)G2;E(t)tG1(t)2 � C�t�0ÆE(t) ; t > 1 ;where C� and � 0 only depend on �. BesidesZ 11 ÆE(t)t�0dt = C�;�0E�2�0 Z 1E2(1��)2�(1��) e�u1=(1��)u�0 du :Using (5.11) on
e more, we �nally obtainlimE!1 Z 11 y�jHE(y)j dy = 0 :Noting the 
onsequen
e limE!1CE = 1 the proof is 
ompleted.6 Phonon s
atteringIn 
ontrast to se
tion 4, we now 
onsider the intera
tion of ele
trons withphonons whose energy "ph is of the order of magnitude of the thermal energy.The 
orresponding s
attering operator in the SHE-model is a di�eren
e oper-ator. Its expression, for the paraboli
 band 
ase with the Lyumkis 
oeÆ
ients(4.2) isQ(F )(") = e"pq"("+ "p)F ("+ "p) +q"("� "p)+ F ("� "p)��q"("+ "p) + e"phq"("� "p)+�F (")29



with "p = "ph=kT:We shall perform formal asymptoti
s of order 1 of QE as E ! 1 andE ! 0 to 
ompute the value of the mobility �(E) at E = 0 and its behaviouras E !1.We start with the limit E ! 1. We introdu
e the small parameterÆ = ("p=E)2 and the res
aling " = yE2="p. Then the equation QE(F ) = 0 isequivalent toÆ ddy  ydFdy !+ e"pqy(y + Æ)F (y + Æ) +qy(y � Æ)+ F (y � Æ)��qy(y + Æ) + e"pqy(y � Æ)+�F (y) = 0 :Expansion around Æ = 0 and 
omparing 
oeÆ
ients of Æ givesddy "y  dFdy + (e"p � 1)F!# = 0 :Solving this equation and transforming ba
k to the original variables givesME(") � 2p�  "p(e"p � 1)E2 !3=2 exp �"p(e"p � 1)E2 "! ;and, thus, �(E) � 2p�q"p(e"p � 1)E ; E !1 :Note that this asymptoti
 behaviour with velo
ity saturation at large �eldsis qualitatively the same as that of se
tion 4.The 
omputation of the low �eld mobility �(0) is more subtle. Thisis due to the fa
t that the kernel of the phonon s
attering operator Q isin�nite dimensional: It is the set of all fun
tions of the form e�"P (") with Pperiodi
 with period "p [10℄. Therefore the limit M0 of ME as E ! 0 is notdetermined uniquely by the formal limiting equation Q(M0) = 0. We onlyhave M0(") = e�"P (") with an arbitrary "p-periodi
 P . More informationis obtained by using the fa
t that all "p-periodi
 fun
tions R are 
ollisioninvariants of Q [10℄:Z 10 Q(F )Rd" = 0 ; for arbitrary F :30



We multiply the equation QE(ME) = 0 by R, integrate with respe
t to ",divide the resulting equation by E2 and let E ! 0:Z 10 ("M 00)0Rd" = 0 ; for all "p-periodi
 R :An integration by parts and substitution of the form of M0 shows that thisequation is equivalent to0 = � Z "ph0 a(")(P 0 � P )R0 d" = Z "ph0 [a(")(P 0 � P )℄0Rd" ; (6.1)with a(") = 1Xj=0(j"p + ")e�j"p�" ; 0 � " � "p :The se
ond equality in (6.1) is due to a(0) = a("p). The summation of theseries de�ning a 
an be 
arried out by deriving a di�erential equation for a.We obtain a(") = e�"1� e�"p �"+ "pe"p � 1�Equation (6.1) is a weak formulation of the di�erential equation[a(P 0 � P )℄0 = 0 ; in (0; "p) ;with periodi
 boundary 
onditions. The solution is given byP (") = 
e" ""p � (1� e�"p) ln 1 + (e"p � 1) ""p!# ; 0 � " � "ph :Note that the periodi
 
ontinuation of P is in C1;1([0;1)) but not in C2([0;1)).The 
onstant 
 has to be determined su
h that the 
onditionZ 10 p" e�"P (") d" = 1is satis�ed. It is noteworthy that, as opposed to the examples in the previousse
tions, M0(") = e�"P (") is not a Maxwellian. The low �eld mobility is afun
tion of the s
aled phonon energy "p and given by�(0) = Z 10 M0(") d" = 11� e�"p Z "p0 e�"P (") d" :31
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