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Abstract. We present an asymptotic analysis (with the scaled mean free
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1 Introduction

The accurate modelling of high field effects is an important task in the sim-
ulation of charge carrier flow in semiconductors. A standard and commonly
used approach is the inclusion of field dependent transport parameters in
macroscopic models. For example, the use of field dependent mobilities in
the standard drift-diffusion (DD-) model [14] is a classical approach. The
detailed form of the field dependence is usually obtained by a combination of
heuristic arguments combined with fitting to experimental values or to the
results of Monte-Carlo simulations of the semiconductor Boltzmann equation
[6].

A more rigorous approach has also been considered. With the classical
one it shares the assumption that the semiconductor Boltzmann equation
correctly represents the physics. By the Hilbert expansion method (assuming
smallness of the scaled mean free path), macroscopic models can be derived
from this kinetic equation. In particular, the low field DD-model with field
independent transport parameters has been justified in this way [5]. The
inclusion of high field effects makes the problem significantly more difficult.
Only with unrealistic assumptions on the scattering mechanisms, a DD-model
with field dependent mobility has been derived in [11]. There the DD-model
is the result of a two-step procedure. First, by a limit process an equation
without a diffusion term is derived. Then the diffusion term (with a field
dependent diffusion constant) is obtained as a higher order correction by a
variant of the Chapman-Enskog method.

In physically accurate versions of the semiconductor Boltzmann equa-
tion, scattering effects of different types and of different orders of magnitude
have to be considered. Recently, the Hilbert expansion method has been
applied to different (low field) situations resulting in a hierarchy of macro-
scopic models, lying in the gap between the full Boltzmann equation and
the DD-model [1]. Examples are the energy transport model (see also [2])
and the spherical harmonics epansion (SHE-) model. The SHE-model can be
derived either by expansion of the distribution function in terms of spherical
harmonics [15], [16] or by a Hilbert expansion assuming that elastic collisions
are the dominating physical effect [1], [4], [13]. The latter approach seems
more attractive since it can be easily applied to non-rotationally-symmetric
band structures. The unknown in the SHE-model is a distribution function
depending on the wave vector only through the energy. In a second limit pro-
cedure with dominating inelastic scattering, the DD-model can be derived



from the SHE-model.

In this work the latter limit is considered, however, for a high field situ-
ation where the effects of the driving field balance the dominating inelastic
collision mechanisms. In section 2 the SHE-model is presented and a scaling
is introduced. In section 3 the Chapman-Enskog expansion is carried out as
far as possible without specifying the dominating inelastic collision operator.
The resulting equation is structurally similar to that of [11]. The limiting
equation is a (first order) convection equation for the macroscopic density
with field dependent mobility. By the Chapman-Enskog procedure a (second
order) correction is constructed. Sections 4, 5, and 6 deal with three specific
choices of the inelastic collision term.

In section 4 a model for collisions with phonons of small energy is consid-
ered. The model has been derived in [13] by simultaneously letting the scaled
mean free path of elastic collisions and the scaled phonon energy tend to zero.
For this model the field dependent mobility can be computed explicitly. It
coincides with heuristically derived models for velocity saturation. Also the
Chapman-Enskog correction is computed and shown that the resulting equa-
tion for the density is parabolic.

A relaxation time model is considered in section 5. The existence of
the field dependent mobility is proven and its asymptotic behaviour for large
fields is examined. In this case the mean velocity does not saturate in general.

Finally, section 6 deals with a model for phonon scattering with finite
phonon energy. Here, a rigorous existence result for the field dependent
mobility is still missing. However, its asymptotic behaviour for large and
small fields is analyzed formally. The large field behaviour is as in section
4. Because of the properties of the phonon scattering operator, the low field
limit is nontrivial. In particular, the low field equilibrium distribution is not
the Maxwellian as in sections 4 and 5.

2 The SHE-Model — Scaling

The SHE-model has the form [1]

o (veaeg) e (var -l )| ). e

where the unknown F'(z,,t) is the electron distribution function depending
on position € IR3, particle kinetic energy ¢ € R, and time t € R. The

N(e)



elementary charge is denoted by ¢ and £(x,t) € R? is the electric field (here
considered given).

The range of the energy variable is determined by the band structure of
the material:

e € R(e.) :={e.k): k€ B}, (2.2)

where B C IR? denotes the Brillouin zone, & € B is the particle momentum
and .(k) the conduction band diagram. The Brillouin zone is the elementary
cell of the dual L* of the crystal lattice, and &, is assumed in C'(R?), L*-
periodic and symmetric with respect to reflections: e.(—k) = £.(k). The
density of states is then given by

N(e) = L/B(S(gc(k) o)k (2.3)

43

We assume that N(g) is continuous on R(e..) and that it vanishes on OR(z,.).
(This is a further assumption on the band diagram.) With the help of the
density of states, the macroscopic particle density is given by

n(z,t) = /R o e NG,

The diffusivity tensor D(g) € R*** depends on the details of the elastic
collision mechanisms underlying the derivation of the SHE-model. If those
are described by the collision operator

(%) —eun.

acting on distribution functions f(k), & € B, then a vector A(k) is defined
as a solution of the equation

Qe(N) = Ve,
and the diffusivity is given by [1]
1

- 473k

D(e) /B 5(eo(k) — £)Vie, @ Nk,

with the reduced Planck constant /. It is an important property of the SHE-
model that D vanishes on OR(e.) and that the parabolic modes degenerate
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there. As a consequence, no boundary conditions for F' are needed on this
part of the boundary.

We require that the solution is regular enough for the flux J = —D(V,F —
g€2E) to vanish on the energy boundary:

D(V,F — qé'aa—f) =0 on OR(e.) . (2.4)

This is necessary for the validity of the macroscopic continuity equation

on
— +V,- Jde = 0.
ot + R(e) c

Finally, Q(F) results from the inelastic collision mechanism

or
<E>mel - Qmel(f) )

and is given by

QUF)E) = 15 [ 8(eelk) = ) Qua(F(e0)) (R) k. (2.5)

An a-priori splitting of the collision mechanism into a dominating elastic one
and into inelastic ones is fundamental for the validity of the SHE-model.
We assume particle conservation

/R(EC) Q(F)ds =0,

but leave details of the collision operator unspecified until sections 4 and 5.

For a scaling of (2.1) we start out by choosing a reference energy ;. Then
a reference value kg for the modulus of wave vectors is determined from the
requirement that the scaled band diagram e.; defined by

(k) = coces(k/ ko)

takes moderate values on B/ky. It is then reasonable to use the reference
value

ko

Ny =
0 471'380
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for the density of states. Reference values for A and the diffusivity are chosen
as
Tel€0 _ Tecoko
ko O 4mp?
where 7, is a typical relaxation time for the elastic collisions. Reference

values for the field and for the collision operator in the SHE-equation are
given by

)\0:

o k?’
Ey=—, 0= 370 ;

qLo AT Tinel€o
where the reference length Lg is determined together with the reference time
by balancing coefficients in (2.1):

€0

LO = Ak V TelTinel » to = Tinel -
0

The accordingly scaled version of (2.1) reads

VI (v.-62) [ ()| cam. o

N(e):/B(S(gc(k)—g)dk, D(s):/B(S(ec(k)—e)vkec@)\dk, (2.7)

where the same symbols have been used for scaled and unscaled quantities,
in particular ¢, in (2.7) actually stands for ¢.;. In sections 4 and 5 we shall
investigate various specializations of the model.

We want to investigate the dynamics of (2.6) at macroscopic scales. De-
noting by o < 1 the parameter which sets the ratio of the microscopic to
the macroscopic scale, we introduce the rescaling

T t
T — —, t— —.
« «

While doing this, we let £ unchanged, which means that we assume the
potential to have variations of order 1 over the microscopic scale. Therefore,

we are looking for a macroscopic limit at high fields. The rescaled version of
(2.6) reads

N (av.-e2) o (cwr-e) <am. s



3 Chapman-Enskog Expansion

In this section an asymptotic expansion of (2.8) is carried out corresponding
to the limit & — 0. Computing the derivatives in (2.8), we obtain

oF OF
0
with
0 OF
F)=—|&"DE— F).
Q:(F) = o (e7Dell ) + o)

Here and in the sequel the superscript ‘tr’ denotes transposition.
Passing to the limit & — 0, we have to investigate the equation Qg (F) =
0.

Hypothesis 1: The kernel of Q¢ is one-dimensional and spanned by a
function Mg (g) > 0 with

/R o NVEMee)de =1, (3.2)

For carrying out the Chapman-Enskog expansion we shall also need to
assume the unique solvability of inhomogeneous equations of the form

Qe(F) =g, subject to NFds =0, (3.3)
R(ee)

for certain inhomogeneities g, which have to satisfy the solvability condition
fR(ec) gde = 0.

Note that this condition is a straightforward consequence of the conser-
vation property of @) and of the fact that D vanishes on OR(g.). In the
following sections this hypothesis will be verified for two examples of Q(F).

The distribution function is now decomposed into

F(z,e,t) = n(x,t) Me(zy) () + aF - (z,¢,1) (3.4)
with

n = NFde, NFtde =0,
R(ee) R(ee)



and, formally,
n=mnyg+0(), Fr=F-+0(a) as a—0.
Substitution of (3.4) into the SHE-equation (3.1) gives (after division by «):

a(’rLMg) aFJ' aME
N 5+ OJNW —aV, - (DVy(nMe)) +V, - (Dé’n?)

+aV -(DE'E)—H‘J-Q(DV (nMg)) + EQ(DV FL)+O( %)
AV Oe Oe s (M @ Oe “ “

= Qe(FY). (3.5)

We integrate with respect to € and obtain the continuity equation

on 0 OF+
O Vi ©)) a% [ D(Talate) £

)de = O(a?) (3.6)

with the mobility tensor in leading order

OMg¢

0 - _ <
W0(E) = /R(EC)D e (3.7)

In first order we thus derive the convection equation

on
9, (il (€)€) 0 33)

with the particle velocity
V0 (E) = -’ (E)E. (3.9)

In order to obtain an O(a?)-approximation of the continuity equation (3.6)
it is clearly sufficient to compute an O(a)-approximation F* from (3.5):

8(nMg)
ot

+V, - (Dé’n%) +&- 2(DVI(nZ\/[‘g)) + O(w).

1y
Qe(F7) =N Oe Oe

Now we neglect the O(«)-term, use (3.6) in the form

on

5~ Ve (i (€)€) = 0(a)



and compute the O(«)-approximation FOL from

—L1 . oM, £ 6Mg
Qe(Fy ) = Nn 5 +V, - (nDE 86)

+NMeV, - (np(E)E) + € -

%(Dvx(nMg)). (3.10)

The O(a?)-Chapman-Enskog expansion of the SHE-model is now obtained
by solving (3.10) for 7y and replacing F'* in (3.6) by IS

We develop the vector expressions using Finstein’s summation convention.
After simple computations, we obtain:

— on o0&y o€ 0&;
QS(FOJ_) = Uijg a +n (yzﬂcgj a + Wi —— ot i + Zij A Oz >
with
OMg¢
Zij(g) = /,LZJNMg‘i‘D” 92 s

8/LZJ 62M5 0 8Mg
. = NM, D, — —
viak(e) = g NMe+ Dipae-+ 5\ Pige,

oM.

ugle) = 25(e) + e (DiyMe)

Each of the functions z;;, yijr, wi and wu;; satisfies the necessary condition
[ gde = 0 for the solvability of the equation Q(F) = g separately. Indeed, for
zij, as well as for the first two terms of y;;, this follows from the definition
of 1°. For the last terms of u;; and y;;1, it is a consequence of the fact that
D vanishes on OR(g.). Finally, the solvability condition for wy is obtained
by differentiation of the normalization condition (3.2) with respect to &. At
this point we assume the existence of unique solutions of (3.3) for the right
hand sides g = z;;, yijk, wi, and u;;; we denote these solutions by Z;;, Y,
Wi, and U;j, respectively. We can write:

on ( 0y, o0&}, 85]-)

F =U;;&i— ot Zja—],’i

4%
Then, we define

o
um =— Dyy——Lde,

R(ee) Oe



and yl m WM and Zf;m analogously. The O(«a?)-approximation of the con-
tinuity equation (3.6) now is:

0 _

8—’; — Y, (pCE]E) — aV, - (NU(E)VLE) — aV, - (D(E)Van) = 0, (3.11)
with the first order mobility ;% the diffusion matrix D(£), and the higher
rank mobility (i.e. operating on the derivative of the field) i(£) given by

pel€] = p’(E) +ap'le], (3.12)
0 o0& 0E;
‘m ‘m k Im
M%m[‘g] = yzyk:g]a Wk at Zz] a—x_za
) Im
Du(€) = UTEE, + /R . DMl
- . o€
(AEVV:E)e = fitkmm (3.13)
- OMg¢
m g = -D m d .
frerm (E) R(ee) i &, €

The first-order drift velocity v,
v = pEE + p(E)VLE,

has two contributions: the first one, u®[£]€, is the usual drift ‘in the di-
rection of the field’, the second one, aV,&, is a drift ‘in the directions of
the field gradients’ (actually the last statement is rigorously true only for
the rotationally symmetric case below). The first order mobility u® depends
on the electric field and its derivatives (which is indicated by the brackets).
The higher rank mobility fz maps the tensor V,.€ to vectors, which appears
in formula (3.13). Note that, if the field gradients are O(«), the continuity
equation (3.11) simplifies into a usual drift-diffusion equation:

88_7; — V.- (np(€)E) —aV, - (D(E)Vun) =0. (3.14)
An open question in general is the positive-definiteness of the diffusion tensor
D. It will be proven in a particular case below.

The continuity equation (3.11) simplifies if the SHE diffusion matrix D is
a scalar (which for instance happens for spherically symmetric band diagrams
and rotationnally invariant collision operators). Then, the operator Qg, its
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equilibrium distribution Mg, and the zero-th order mobility u° only depend
on the magnitude of the electric field E = |£|. In this case, we denote
Mg = Me. We compute

Qe(Ff) =u(€-Vy)n+n <y(e : VI)E?2 + w%%E; + 2V, - 8) , (3.15)
with
2(e) = p°NMpg + Daé\gE : (3.16)
y(e) = g—’gNME + D% + % (D%‘{f) ,
w(e) = %N,
ule) = z+ %(DME) , (3.17)

and e = £/F. Again, denote by U, Y, W and Z the solutions of problem
(3.3) associated with the right-hand sides u, y, w, and z, and by U, YW
and Z, the integrals

U=-— Da—Uds,
R(e.) Of

and so on. The continuity equation (3.11) is now
on
ot E "2

—aV, - (D(E)Vn) =0, (3.18)

V. (pel)E) — av,- (nms)lvf—?)

with p®, D, and fi given by (3.12) and
1 E* _10E

D = UERE+ ()DMEdsId,
R(ee
OMg
n(E) = D de .
) R(e.) OF c

In this case, the drift is a combination of two drifts, one parallel to the field
and the other parallel to the gradient of its magnitude.
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4 Interaction with phonons of small energy

We apply the above procedure to a collision operator derived in [13], [12]
as an approximation for the interaction of electrons with phonons of small
energy.

The scaled SHE collision operator () deduced there is given by:

Q(F) = % lS(s) (aa—f + F>l , (4.1)
with
S(e) = /B /B §(eo(k) — 2)3(eo(K) — )4 (k, K)dK d

Here ®,(k, k') stands for the appropriately scaled transition matrix (cf. [12]
and section 2).

In the following we shall deal with several examples sharing two basic
assumptions. The first assumption is that ()., is a relaxation time operator
with

Dok, K) = B(e. (k).

Then,

where N is the density-of-states (2.3) and the SHE-diffusion matrix D is
given by

3
4(2m)2/3®(£)N(e)

D(e) = /B d(ec(k) — €)Vie. @ Ve dk .

The diffusion matrix still depends on the properties of the band diagram.
The second assumption is a spherically symmetric band diagram: We
suppose that B is a ball, possibly with infinite radius and

ec(k) = EC(|k|2) )

with a strictly monotone function .. We denote by ~ the inverse function of
Z., defined on R(e.):

[E[* = v(ec(k))

12



We obtain

. - 2 2 _ 2/3_ 7

The examples mentioned above are

(i) Parabolic band diagram: We assume that the band diagram is that of a
free particle

7=/ (2mpPh

with € € R(e.) = [0,00). Then,

€

N=yc, S=¢d), D:@[d.
Two subcases are particularly interesting:
(i-a) Lyumkis case [9]: & = 1. Then,
N=ye, S=e, D=c¢ld, (4.2)
(i-b) Chen case [3]: ® = \/z. Then,
N=+ye, S=¢? D=\/ld, (4.3)

(i) Kane’s band diagram [7]: This is a correction to the parabolic band
approximation which accounts for non-parabolicity effects close to the bottom
of the conduction band. Tt is given by

1

v = @ e(1+a'e), e€]0,00), (4.4)

where a* is the so-called 'non-parabolicity’ coefficient. In this case,

N = yJe(l+a*)(l+2a%),
S = e(14+a%) (1422 )*d(e),
D — e(1+ae) Id.

(14 2a%e)?d(e)

The coefficients have the same behaviour near the origin as in the parabolic
case but their behaviour for large ¢ is very different.
(ii-a) Lyumkis case [9]: ® = 1. Then, as ¢ — 0o, we have

1

N~e2, S~4(a*)Per, D~—Id.
g”, (a)’e", 1o
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(ii-b) Chen case [3]: & = /e, Then, as e — 0o, we have

1 1
—Id.

da ([

N~e?, S~4(a)3?, D~

Going back to the general case, we write
Qe(F) = (E"DEF'Y + (S(F' + F)) = (DgF' + SF)',
where primes denote derivatives with respect to ¢ and

De =E"DE +S.

Hypothesis 2: (i) The energy range R(z.) is an interval [0,e*| with £*
being finite or infinite.
(11) N, D, S and the entries of D are C* functions. N and S are positive,
D is positive definite on (0,¢*), and N, S, and D vanish on OR(c.), i.e. at
0 if e* =00 and at 0 and * if * is finite.

(1ii) If e* = oo, the integral I(c) = OED%(u)du diverges as € — oo. Further-
more the integral
J= / exp(—1(2))N(e)de , (4.5)
0

converges.

These hypotheses match the physical requirements. The coefficients van-
ish on OR(g.) because this set is a set of critical values of the energy band
diagram e.. The divergence of I(€) in the case e* = 0o is a non-runaway
hypothesis, which guarantees that the field will not drag too many particles
to too large energies. This hypothesis is similar to the non-integrability of
the scattering frequency required for the high-field diffusion approximation
of the Boltzmann equation [11]. Tt is easy to check that these hypotheses are
satisfied in the Chen and Lyumkis examples above, for both the parabolic
and the Kane dispersion relations.

Assuming hypothesis 2, we can define

Ule,e') = exp (— /:, l%(u)du) , &, €]0,e"]. (4.6)

Theorem 4.1 Suppose Hypothesis 2 is satisfied. Then the solutions F of

Qe(F) =0, (4.7)



which are bounded on [0,e*] and such that DgF" — 0 as e — 0 are given by
F =nMg withn € R and

Mc(e) = AU(0,¢), (4.8)

where A 1s such that

*

/0 Me()N(e)de = 1.
The requirement DgF' — 0 as ¢ — 0 is the energy boundary condition
(2.4) at e = 0 € OR(e.). It is easily checked that the equilibrium distribution
also satisfies Dg M — 0 as € — ¢*.
Proof: We solve (DgF' + SF)' = 0, or DgF' + SF = C, where C' is a
constant. At ¢ = 0, we require that F is bounded and that D¢ F’' — 0 as
e — 0. This imposes the choice C' = 0. Then F is given by (4.8) and it is
an easy matter to check that it satifies all the requirements of the theorem.

Example 4.1 Parabolic band diagram, Lyumkis case (4.2): In this case
straightforward computations show that

2 1
Mg(e) = —mgme ', Tp=1+E". (49)
E

The zeroth-order moblity u° is given by

2
\/7TTE -

The zeroth-order drift velocity v%(€) saturates at high field, a standard fea-
ture of mobility models in the literature [14]:

W(E) = (4.10)

2
lim [v° = —.

Example 4.2 Parabolic band diagram, Chen case (4.3): In this case,

e\
Me(e) = Ae™® (1 + ﬁ) .
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and
A = ma(E?), a(k) = /Oooe_“ <1 + %)K\/ﬂdu.

The mobility is given by

with

b(/{):/oooe“ (1+%>nﬁdu.

As F (and, thus, k) tends to infinity and e is kept fixed, the equilibrium
distribution can be approximated by the Druyvenstein distribution

91/4 2
Me(€) ~ p g P (_E> ’

and we have

I'(3/4) I(1/4)
a(k) ~ K o1/4 b(k) ~ k! o7/4
and therefore,
['(1/4 1
MO(g) ( / )

T BAT(3/4) T E’
Again, the velocity v° saturates as £ — oo.

Example 4.3 Kane’s band diagram (4.4), Lyumkis case (4.2): In this case,

2+ Vou+1\’
u?2 —V2u +1

X exp (20 arctan(v2u — 1) + 20 arctan(v/2 u + 1)) ,
with

1+ 2a*e vV E
U= —F, o=—.
VE 82 a*

16



A straightforward but lengthy asymptotic analysis for large fields gives

(2a%e +1)°

ME (6) ~ CE_6/5 exp l_ 10a* E2
«

] , as EF — oo, ¢ fixed,
po(&) ~ cBP,

where ¢ denotes (possibly different) constants depending only on a*. Thus,
the velocity v° decays as E~'/® after going through a maximum.

Example 4.4 Kane’s band diagram (4.4), Chen case (4.3): The large field
behaviour is now given by

(2a*e + 1)°

-1
Mcg(e) ~ cE™ exp [— a2 E?

1
(a*e — 1—())] , as F — oo, ¢ fixed,

/,Lg(g) ~ CE_7/6 .

The qualitative behaviour is as above with the velocity decay given by F~'/6.

We note that for parabolic band diagrams, equilibria Mg have faster
decay at large energy in the Chen case than in the Lyumkis case. In the
Lyumkis case, D and S are comparable. Also the equilibrium Mg differs
from the Maxwellian at lattice temperature over the whole energy range.
Actually, the equilibrium is a Maxwellian with a field-modified temperature
Tg. In the Chen case, D is negligable compared to S at large energy and
the equilibrium is just the lattice Maxwellian with a polynomial weight, the
degree of which increases as the field increases. The same comments hold for
the Kane band diagram in both the Lyumkis and Chen cases.

We now investigate the solvability of inhomogeneous equations with the
operator (Q¢. As for the selection of the equilibria, the regularity questions
are important. We separately check the case €* finite and £* infinite.

Theorem 4.2 Suppose that R(e.) = [0,&*] with e* finite and that Hypothesis
2 holds. Let g be a given integrable function on [0,£*] such that the functions

*

f@)/oag(u)du and f(&_)/: g(u)du,

are integrable at € = 0 and €*, respectively. Then, the equation
Qe(F) =g, (4.11)

17



admits a bounded solution F such that DgF" — 0 as e — {0,e*}, if and only

if
/ gde =0.
0

This solution is unique under the additional constraint

/ FNde=0.
0

Proof: Equation (4.11) is written
(DeF'+ SF)' =g, (4.12)
Integration of (4.12) gives
DeF' +SF=r+C, (4.13)
where (' is a constant and

r(e) = /0E g(u)du .

For F' to be bounded at 0 with DgF” — 0 as ¢ — 0, we obviously need to
choose C' = 0. Then, the general solution of (4.13) is

Fe) = /0 U, e) (Dig) (u)du + C M, (4.14)

where U, defined in (4.6), is solution of the homogeneous equation, Mg is
the equilibrium (4.8) and C'is an arbitrary constant. We now examine under
which condition the solution (4.14) satisfies the requirements of the theorem
near ¢ = ¢*. Define

5(2) :/:*g(u)du, G:/Oa*g(u)du:r—l-s. (4.15)

We write, for an arbitrary g9 € (0,£*),
Fe) = — [ Ulme) (i) (u)du
€0 Dg

+G [ Ulu,e) (Dig) (u)du + C' M; . (4.16)

18



The first term F; at the r.h.s. of (4.16) is obviously bounded and such that
D¢F| — 0 as € = ¢*. The second term F; is a solution of the equation

DgF,+SF:G,

which satisfies these requirements only if G = 0. .

To handle the case £* = oo, we need additional hypotheses:
Hypothesis 3: (i) If ¢* = oo, we assume that S is monotone in the
neighbourhood of oo, such that

2 (5) @ = o,

as € — oo and that the integral
0 /1
5 (5)®

/OO Ul(u, &)

€0

diverges.
(i1) In addition

and

as € — Q.

Theorem 4.3 Suppose that R(e.) = [0,00] and that Hypotheses 2 and 3 (i)
hold. Let g be an integrable function on [0,e*] such that

Dj(g) [ stwydu,

is integrable at 0. Then, the equation (4.11) admits a locally bounded solution
F such that DgF" — 0 ase — 0, SF — 0 and DgF’ — 0 as e — oo if and

only if
/ gde = 0.
0
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If, in addition, hypothesis 3 (ii) is satisfied, and if

()@ [ swa

is integrable at 0o, then, [;° NFde is finite and the solution is unique under
the additional constraint

/OOFNde:O.
0

Proof: The proof starts like that of theorem 4.2. To satisfy the requirements
at ¢ = 0, the solution must be given by (4.14). We now investigate the
behaviour of F' at co. For g9 > 0 arbitrary, formula (4.16) is true provided
that s and G are defined by (4.15) with £* = co. We have

/E Ulu,e) (Dig> (u)du = Ulgyg, €) /E U(u, &) <Dig> (u)du .

€0 €0

An integration by parts gives:

/E: Ul(u, &) <Dig> (uw)du = %U(s,so) - 5(150)

—/ U(u,eg)% (%) (u)du,

Because of hypothesis 3 (i) and classical comparison arguments, we have

/8: Ulu, 50)% (%) (uw)du = o </8: Ul(u,eo) (Dig> (u)du) ,

and both integrals diverge as ¢ — 0o. We deduce that F5 (see definition in
the proof of theorem 4.2) is such that SF; — G as ¢ — 0co. Since s — 0, we
also deduce SF; — 0 thus proving SF' — 0 if and only if G = 0. Then, we
also have DgF' = s — SF — 0, ending the existence part of the proof.

We now suppose that hypothesis 3(ii) is satisfied and investigate the in-
tegrability of NF', which is that of

K= /°° N(e) (/ U(u, ) (Dig) (u)du) d

20




We write
K = /E:O (Dig> (u) U(u, &) </uoo U(so,s)N(s)d5> du .

By an integration by parts and hypothesis 3(ii), we have:

oo ND © g (ND
/u Uleg,e)N(e)de = ( 5 g) (u)U (&g, u) —|—/u 2% < S 8) (e) U(eo, €)de .
By hypothesis 3(ii) and classical comparison arguments, we obtain

/uoo Ul(eg,e)N(e)de ~ <N§8> (u)U (g9, u) -

Then, the behaviour of K is similar to that of

o= [ (%)

which converges due to the hypothesis of theorem 4.3. .

It is a simple matter to check that, in the above examples (Lyumkis
and Chen coefficients with parabolic or Kane band diagram), the functions
(3.16)—(3.17) satisfy the requirements of theorem 4.3. We shall now discuss
the computation of the transport coefficients of the continuity equation (3.18)
in the Lyumkis example (4.2) for a parabolic band and show that the resulting
p.d.e. is parabolic. We recall

N()=+e, S(e)=¢e, D(e)=cld, eeR()=1[0,00), (4.17)

2 2
Mp(e) = ———=e~/"r | u(E) = . with Ty =1+ E?.

We now compute the term

© JF§ o0
/Oeagodez—/o F-de,

in (3.6). The equation (3.10) can be written as

i) = 2o (H) Gm - (7))
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2 eps € _
V.- (n€ 2 - — ¢/Te
el )ﬁTé”( \ 7T TE>6
1 2 € e\?2 b5e
e-e. () v (o G )
o TE 7TTE ( 7TTE + TE 2TE ¢

+E-V, <n3(DME)> .

Os

Lemma 4.1 Suppose that N, D and S are given by (4.17) and that g sat-
isfies the hypotheses of theorem 4.3 and in particular, that [;° g(e)de = 0.
Then the unique solution of problem (3.3) satisfies

_/oo OF / Fd€—TE/OOG(U)/UOOQ(UTE)CZUCZU,

with
2 oo e !
Glu) == [~ =t
() VTlo ViFu+ i
Proof: Integration of Qz(F) = g gives
oF F 1 oo
o) e _ 41
Tt =@ = g [ (s (4.18)

The explicit computation of the solution gives
F(0) = TE/ G(u)r(uTg)du
0
with
2

Gu) = NG /:O\/l_)e“_“dv =

Then, integration of (4.18) gives

/OooFdezTE/Ooo%Aoog(vTE)dvdu.

u

2 0
— Vit ~tdt
\/7_r /0 +ue

The proof is completed by the observation that G(0) = 2I'(3/2)//7 = 1 and
the computation

G(u) — G(0) /
u u\/_

(Vt+u— Ve tdt = G(u). n
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From the lemma we obtain

o0 0 (1 1
L _ .
/0 Fyde = AnTp— 5 ( ) A, T Ve (n€)

1 1 n
A3\ [TpE Ve + —=E Vo [ —— | |
N N <\/TE>

with

A, = i/“ G(u) /°° @ﬁ—qﬁ/?) e~dv du,
0 u

Ay = / /:°< v—v)e”dvdu
Ay = ﬁ/o /:°< NCER —gv>e“dvdu

Finally, the continuity equation becomes

on

o = Vo (') = ¥, - lﬁ(e)vzn + ﬁvxﬁ
ﬁ(%l m— — A1+ BV, - € (4.19)
<2f A3>8 v E2>]
with
D(&) = \/ﬁ (}(1 + E*)Id + <A2 — %) E® 8)

We conclude this section by showing that (4.19) is parabolic:
Lemma 4.2 The matriz D(E) is positive definite for every £ € R,

Proof: It suffices to prove



It is easily shown that

00 2
/u (U_ﬁ v>e”dv20

and 0 < G(u) < G(0) =T(1/2)/y/m =1 hold. This implies
2 oo [ 2
0< -4, < ﬁ/o /u (U_ﬁ v>e”dvdu

—_ o Ud
1

_ % (r(g) _ %r(m)) v

5 A Relaxation Time Model

In this section, the inelastic operator ;¢ is assumed to be a relaxation-time-
type operator which drives the distribution function towards a Maxwellian
with the lattice temperature. We start with the general form

Qunat(£)(k) = [ s(k, KYF ()M (=) = F(R)M (<))

s

B
where M(e) = e is the Maxwellian with scaled lattice temperature equal
to 1 and s(k, k') is a nonnegative function symmetric in &, k'. Consequently,

in the SHE model, the operator Q(F') reads, for a function F' depending only
on the energy (k),

Q(F)(e) = /71(56)5(6,6’)[1?(6')1\4(6) — M(&')F(e)]de!

and

S(e, ') = /B /B 5(eo(k) — )3(eu(k') — )5k, K')dk' d
In order to obtain a relaxation-time model for inelastic scattering, we take
s(k, k') = H(ec(k))H (e.(K)),
with a given nonnegative function H (to be specified later). This implies

S(e,e') = N(e)H(e)N(e"H(") .
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Consequently we have

0 oF
F) = —[&"DE— NHM NHF(")de'
Q:(r) = o (DSl )+ nmue) [ NirE

—NHF(e) NHM/(£")de'
R(ee)

In this model 7(¢) = 1/H(e) can be interpreted as an energy dependent
relaxation time. To simplify the computations, we assume

H(g) =g Y2, a<l,
and the parabolic band assumptions
R(é‘c) - [0,00), N(S) :\/E, D(g) =cl3.3.

Therefore

oOF

gg> teoet /0°° Fu)udu—eF(E)(1—a). (5.1)

Qr(F) = E*— (
The following lemma shows that the kernel of Qr has dimension 1.

Lemma 5.1 Let E > 0. Then the equation Qg(F) = 0, where the operator
QE is defined by (5.1), has a unique positive solution Fg such that

/Oo Fr(u)u™%du=1.
0

Proof: The result is trivial for £ = 0, with the kernel of ()q spanned by the
Maxwellian. For £ > 0, we first introduce the change of variables

E’(1—a)? \T= L(1— a)
— (== Fp=— " Gp. 2
c ( M- 7)) TR (5:2)
The new unknown G solves the problem
d dG g o0
~ Ay EE) LG = 6nly) / Guly)dy=1. 5.3
() o=t [T Gstan 5:3)

with
op(y) = %exp {— (My> l_a} : (5.4)
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It is readily seen that

/OoéE(y)dyzl, lim 6p = 6

0 FE—o00

where ¢ is the Dirac measure.
In order to prove the existence and uniqueness of G, we first investigate
the homogeneous equation

d dG
-4 <yd_y) LG=0. (55)

which can be transformed to the Bessel equation of order zero by the trans-
formation z = 2i,/y. The general solution can thus be written in terms of
the zeroth order Bessel function and the Hankel function Hél) [8]. However,
only the solution

6725\/5

Gooly) = inH" (2i\/y) = 2 /1 ” T s (5.6)

is integrable. This and the positivity of GG, imply uniqueness of Gg. The
asymptotic behaviour of G can be deduced from the behaviour of Hél) [8]:

Gooly) ~ Vry VeV, y— o0,
Gol(y) ~ —Iny, y— 0. (5.7)

We shall also need the asymptotic behaviour of dG ., /dy, given by the deriva-
tives of the right hand sides of (5.7).

The solution of (5.3) is obtained by the variation-of-constants ansatz
GEe(y) = Goo(y)v(y) with the result

Goly) = Gooly) /Oy#/t“’ G (5)0p(5) ds dt (5.8)

tG oo (t)?
From (5.7), we deduce that G is well defined. It remains to check the
integrability of G and the validity of the second equation in (5.3). We
compute

VGEw) = 020 [ s [ i) ds
1
+Goo(y)/y Goo(8)0p(s)ds. (5.9)



It is easily seen from (5.7) that (5.9) tends to zero as y — 0+. The mono-
tonicity of g and G, implies

‘ycf—yE(y)‘ < yf—yf’o(y) /Oy t&ﬁ)? /tOOGoo(s)dsdt
+/OO dp(s)ds. (5.10)

The second term on the right hand side obviously tends to zero as y — oo.
In the first term we use (5.7) and

o0 q et q
/ s'e " ds ~ e " t— o0, (5.11)
¢ aq

which holds for any r € R, a,q > 0, to show
/ Goo(s) ds ~ /mt*e™2VE t—00.
t

As a consequence we have

Sn(t)
1Go(1)?

., (t‘% (5E(t)ez\/z)> _0 (ﬁ% (5E(t)e2ﬁ)> :

as t < y — oo for some § > 0. This estimate is sufficient for showing
that also the first term on the right hand side of (5.10) and, thus, ydGg/dy
tends to zero as y — 0o. Now integration of the differential equation in (5.3)
completes the proof. .

/1t T Gols) ds = O (17155 (1)eY7)

The lemma verifies Hypothesis 1 with

_ FE(€)
Jo* vz Fp(z)dz

ME(ﬁ)

The mobility is given by

E — —=
u(E) Jo Ve Fgpde E(l - a) Joo Gpyttee)/20=e) dy

with the function Gg given by (5.8). The asymptotic behaviour as F — oo
is analyzed in the following:

I5° Frde ( I(1 - O‘)) e I Gry®/ (=9 dy
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Lemma 5.2 As F — oo, Gg(y) (given by (5.8)) converges to G (y) (given
by (5.6)) fory > 0. For all > —1,

lim [y Galy)dy= |y Coly) dy.

E—x

Before proving the lemma, we point out its obvious consequence,
W(E) ~ pE~07 - as B — o0,

Consequently [v(£)] = O(E~*/(=%)) as E — oco. Thus, the velocity saturates
for large fields if @ = 0, it tends to zero for 0 < a < 1 and to oo for a < 0.

Proof: As a first step, we rewrite G as

Gr(y) = CrGu(y) + Hi(y)

with
He() = Guly) /ﬁ [ Gual)in(s) ds
Cp = /Olm/tmaw(s)@(s)dsdtﬂ—/OmHE(y)dy.

The second representation of C'g follows from the fact that both the integrals
of Gg and of G, over R are equal to 1. Since limg_, dg = §, we deduce

lim Hg(y) =0, Yy >0.
E—oco

On the other hand, from the monotinicity of GG, we have the estimate

/y dt

1 tGoo(t) ]

The right hand side of the above inequality is a locally bounded function on
R, whose asymptotic behaviour as y — 0+ is given by |log(y) log(] log(y)|)|-

Therefore 4’ Hy(y) is in L'(0,1) for 8 > —1 and the dominated convergence
theorem yields

|He(y)| < Go(y)

1
lim | y’|Hp(y)|dy = 0.

E—x

Let us now prove that

lim | y’|Hp(y)|dy = 0.

E—x
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By using the Fubini theorem, we obtain

[ sy = [T

where
Gi(t) = /too VGw(y)dy,  Gaplt) = /too Goo(5)05(s) ds .
Using (5.11) together with the inequality
Gors(t) < 0p(t) /t T Go(s) ds,

we obtain the estimate

G (t)Ga,r(t)

< CstPo5t), t>1,
G2 — " z(t)
where Cj3 and (' only depend on . Besides
/ 5E(t)t’8,dt = Ca’,glEimg, /E2(1 )2 67“1/(1_a)u6’ du .
1 =)

Using (5.11) once more, we finally obtain

lim |y’ |Hp(y)|dy = 0.

E—oc

Noting the consequence limg_, ., Cg = 1 the proof is completed. "

6 Phonon scattering

In contrast to section 4, we now consider the interaction of electrons with
phonons whose energy &, is of the order of magnitude of the thermal energy.
The corresponding scattering operator in the SHE-model is a difference oper-
ator. Its expression, for the parabolic band case with the Lyumkis coefficients
(4.2) is

Q(F)(e) = er\Jele+ey) Fle+ep) +1/ele —ep)s Fle —¢p)
— <\/5(5 +ep) + €y Je(e — ep)+> F(e)
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with €, = e,,/kT.

We shall perform formal asymptotics of order 1 of Qp as E — oo and
E — 0 to compute the value of the mobility p(E) at E' = 0 and its behaviour
as /' — oo.

We start with the limit £ — oco. We introduce the small parameter
§ = (g,/F)?* and the rescaling ¢ = yE?/e,,. Then the equation Qg(F) =0 is
equivalent to

5(% (%—5) +e*\yly+06) F(y +6) +/yly — )+ Fy —9)
= (V=0 + e fyly = 0)4) Flw) = 0.

Expansion around § = 0 and comparing coefficients of ¢ gives

d% [y <Cfl—§ + (e? — 1)F>] =0.

Solving this equation and transforming back to the original variables gives

Mg(g) ~ = (%)m exp (—@5) ,

Note that this asymptotic behaviour with velocity saturation at large fields
is qualitatively the same as that of section 4.

The computation of the low field mobility 1(0) is more subtle. This
is due to the fact that the kernel of the phonon scattering operator @ is
infinite dimensional: It is the set of all functions of the form e~¢P(¢) with P
periodic with period €, [10]. Therefore the limit My of My as E — 0 is not
determined uniquely by the formal limiting equation Q(My) = 0. We only
have My(e) = e °P(e) with an arbitrary e,-periodic P. More information
is obtained by using the fact that all ,-periodic functions R are collision
invariants of @ [10]:

/ Q(F)Rds =0, for arbitrary F'.
0
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We multiply the equation Qg(Mg) = 0 by R, integrate with respect to &,
divide the resulting equation by E? and let E — 0:

/ (eMy)Rde =0, for all ,-periodic R.
0

An integration by parts and substitution of the form of M, shows that this
equation is equivalent to

0= /E”" a(e)(P' — P)R' d= = /E”" la(e)(P' — P)'Rds (6.1)
0 0
with
Z]5p+5e’€p5 0<e<s,.

The second equality in (6.1) is due to a(0) = a(s,). The summation of the
series defining a can be carried out by deriving a differential equation for a.
We obtain

e”® Ep
a(e) = = <6+ = _1>

Equation (6.1) is a weak formulation of the differential equation
[a(P’—P)]':O, in (0,8p),

with periodic boundary conditions. The solution is given by

P = 5y (- emm (14 - )] 0sesen
€p

Note that the periodic continuation of P is in C([0, 00)) but not in C?([0, 00)).
The constant ¢ has to be determined such that the condition

/OOO Vee *P(e)de =1

is satisfied. It is noteworthy that, as opposed to the examples in the previous
sections, My(e) = e “P(e) is not a Maxwellian. The low field mobility is a
function of the scaled phonon energy ¢, and given by

p(0) = [ Mo(e) de = b [Py de.

1—e 2
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