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Abstract. We make a contribution to the theory of embeddings of anisotropic
Sobolev spaces into Lp-spaces (Sobolev case) and spaces of Hölder continous
functions (Morrey case). In the case of bounded domains the generalized
embedding theorems published so far pose quite restrictive conditions on the
domain’s geometry (in fact, the domain must be “almost rectangular”). Mo-
tivated by the study of some evolutionary PDEs, we introduce the so-called
“semirectangular setting”, where the geometry of the domain is compatible
with the vector of integrability exponents of the various partial derivatives,
and show that the validity of the embedding theorems can be extended to this
case. Second, we discuss the a-priori integrability requirement of the Sobolev
anisotropic embedding theorem and show that under a purely algebraic con-
dition on the vector of exponents, this requirement can be weakened. Lastly,
we present a counterexample showing that for domains with general shapes
the embeddings indeed do not hold.
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Introduction

For a bounded C0,1-domain Ω ⊂ Rn, the Sobolev space W 1,p(Ω) with p ≥ 1
consists of functions u ∈ Lp(Ω) with first order distributional derivatives in
Lp(Ω), i.e.,

W 1,p(Ω) =

{

u ∈ Lp(Ω);
∂u

∂xi

∈ Lp(Ω) for i = 1, . . . , n

}

,

with the norm

‖u‖W 1,p(Ω) =

(

‖u‖p
p +

n
∑

i=1

∥

∥

∥

∥

∂u

∂xi

∥

∥

∥

∥

p

p

)1/p

,

where here and in the following the Lp(Ω)-norm is denoted by ‖·‖p. For
p < n, we have the Gagliardo-Nirenberg-Sobolev inequality

‖u‖q ≤ c ‖u‖W 1,p(Ω) ,

with q = np
n−p

and with a constant c independent of u (see [11] for the original

exposition by S. L. Sobolev). Consequently, the space W 1,p(Ω) is continu-
ously embedded into Lq(Ω):

W 1,p(Ω) →֒ Lq(Ω) .

Moreover, for each 1 ≤ q′ < q the embedding into Lq′(Ω) is compact (see,
e.g., [4]).

For p = n, the space W 1,n(Ω) is continuously and compactly embedded
into each Lq′(Ω) for 1 ≤ q′ <∞, but generally W 1,n(Ω) * L∞(Ω).

Finally, for p > n, the Morrey inequality (see [8], [9] for the original proof)
says that

‖u‖C0,β(Ω) ≤ c ‖u‖W 1,p(Ω)

with β = 1 − n
p

and with a constant c independent of u. Therefore, W 1,p(Ω)
is continuously embedded into the space of β-Hölder-continuous functions:

W 1,p(Ω) →֒ C0,β(Ω) .

For each 1 ≤ β ′ < β the embedding into C0,β′

(Ω) is compact.
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In many applications it is natural to work with the concept of anisotropic
Sobolev spaces, where the various weak partial derivatives of u are integrable
with different exponents, collected in the vector ~p = (p1, . . . , pn) such that
1 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ ∞. However, it is not obvious how to replace the
a-priori integrability requirement u ∈ Lp(Ω) from the definition of W 1,p(Ω).
We shall consider the two “extremal” cases and define

W ~p(Ω) :=
{

u ∈ Lp1(Ω), ∂u
∂xi

∈ Lpi(Ω) for i = 1, . . . , n
}

,

W
~p
(Ω) :=

{

u ∈ Lpn(Ω), ∂u
∂xi

∈ Lpi(Ω) for i = 1, . . . , n
}

,
(1)

with the respective norms

‖u‖W ~p(Ω) =

n
∑

i=1

∥

∥

∥

∥

∂u

∂xi

∥

∥

∥

∥

pi

+ ‖u‖p1
, (2)

‖u‖
W

~p
(Ω)

=
n
∑

i=1

∥

∥

∥

∥

∂u

∂xi

∥

∥

∥

∥

pi

+ ‖u‖pn
. (3)

Obviously, for a bounded Ω, it is W
~p
(Ω) ⊂W ~p(Ω). The assumption that the

components of ~p are ordered, which will always be made in the following, is
not a restriction of generality (if, in the general case, in the above definitions
p1 and pn are replaced by the minimum and, respectively, the maximum of
{p1, . . . , pn}). It is worth pointing out that in the classical textbooks on func-
tion spaces, such as [7], an even more general notion of anisotropy is usual,
considering (nonmixed) partial derivatives of different orders in different di-
rections.

It is suggestive to study the possibilities of extending the classical Gagliardo-

Nirenberg-Sobolev and Morrey inequalities for the spaces W
~p
(Ω) and W ~p(Ω).

This leads naturally to anisotropic generalizations of the embedding theo-
rems, such as presented in [12] for functions defined on the whole Rn and in
[10] for functions defined on bounded domains Ω ⊂ Rn. Best constants and
extremal functions for the Sobolev embedding on Rn were studied recently
in [3]. In the case of a bounded domain, which we will be interested in,
its geometry plays a crucial role. The direct approach leads to embedding
theorems that hold only for functions defined on rectangular domains. The
reason is that the so-called extension theorem, which is used in the classical
case, “mixes” the derivatives, such that the extended function no more be-
longs to the given anisotropic Sobolev space. In [10], a slightly more general
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results are achieved; roughly speaking, the shape of Ω has to be well suited
to include cubes of finite size. But since the definition of the admissible do-
mains is quite technical and not really relevant for applications, we cite the
two key theorems from [10] with validity limited to rectangular domains:

Theorem 1 (Anisotropic Sobolev embedding) Let Ω ⊂ Rn be a rect-
angular domain and ~p = (p1, . . . , pn) with

n
∑

i=1

1

pi
≥ 1 . (4)

Let q(~p) be defined as

q(~p) =
n

∑n
i=1

1
pi
− 1

if
n
∑

i=1

1

pi

> 1

or chosen arbitrarily from the interval [1,∞) otherwise. Then the space

W
~p
(Ω) is continuously embedded into Lq(~p)(Ω).

Theorem 2 (Anisotropic Morrey embedding) Let Ω ⊂ Rn be a rectan-
gular domain. Let ~p = (p1, . . . , pn) satisfy

n
∑

i=1

1

pi
< 1 . (5)

Then the space W ~p(Ω) is continuously embedded into C0,β(Ω) with

0 < β =
α

n/p1 + α
≤ 1 , α = 1 −

n
∑

i=1

1

pi

. (6)

In our exposition, we use these two theorems as a starting point for further
considerations. First, we show that their validity can be extended for non-
rectangular domains which are “compatible” with the vector of exponents
~p:

Definition 1 (Semirectangular restriction) If the set of the n elements
of the vector ~p consists of L distinct values (1 ≤ L ≤ n), let us denote
the multiplicity of each of the values in ~p by ni, i = 1, . . . , L, such that
n1 + . . . + nL = n. We say that a bounded domain Ω ⊂ Rn satisfies the
semirectangular restriction related to the vector ~p, if there exist bounded C0,1

domains Ωi ⊂ Rni, i = 1, . . . , L, such that Ω = Ω1 × . . .× ΩL.
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Let us remark that this is a typical situation in the existence and regularity
considerations of evolutionary PDEs, as for example in [2], [1] and [6]. So-
lution of an evolutionary problem is a function f = f(t, x) of time t ∈ [0, T ]
and space x ∈ Ω ⊂ Rd. Typically, one is able to obtain a-priori information
of the form ∂f

∂t
∈ Lpt and ∂f

∂xi
∈ Lpx, i = 1, . . . , d, but usually pt 6= px. Here

the domain [0, T ] × Ω obviously satisfies the semirectangular condition with
respect to the vector of exponents ~p = (pt, px, . . . , px).

Second, we take a closer look at the integrability assumption of Theo-
rem 1. Indeed, due to the a-priori requirement u ∈ Lpn(Ω), the theorem
reduces to a trivial tautology if pn ≥ q(~p). We show that under an algebraic
condition on the vector ~p, the integrability assumption can be weakened to
u ∈ Lp1(Ω). Notice that in the Morrey case, Theorem 2 poses just the
minimal condition u ∈ L1(Ω).

Lastly, to our best knowledge, no counterexample exists in the literature
showing that the statement of Theorems 1 and 2 does not hold for general
shapes of Ω. We fill this gap in the last section.

The semirectangular embeddings

The key ingredient is the slight generalization of the classical extension the-
orem (see [4]), which we give below. Let us recall from Definition 1 that for
a given ~p, we denote the number of its distinct entries by L and the multi-
plicity of each distinct value by ni, i = 1, . . . , L, such that n1 + . . .+nL = n.
Then we are able to extend Theorems 1 and 2 for domains satisfying the
semirectangular restriction (or simply “compatible domains”), i.e., of the
type Ω = Ω1 × . . .× ΩL, where each Ωi is a bounded C0,1 domain in Rni of
arbitrary geometry.

Theorem 3 Let ~p be the vector of exponents with the corresponding multi-
plicities n1, . . . , nL. Let Ω = Ω1 × . . . × ΩL be a domain compatible (in the
sense of Definition 1) with ~p and for each i = 1, . . . , L let Ω̃i be a rectangular
extension of Ωi, i.e., Ωi ⊂ Ω̃i. Denote Ω̃ = Ω̃1 × . . .× Ω̃L. Then there exists
a bounded linear operator

E : W
~p
(Ω) →W

~p
(Ω̃)

such that Eu = u almost everywhere in Ω and

‖Eu‖
W

~p
(Ω̃)

≤ C ‖u‖
W

~p
(Ω)

, (7)
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the constant C depending only on ~p, Ω and Ω̃.

Proof: We construct the “partial” extension operator E1, which extends the
functions from Ω to Ω̃1 ×Ω2 × . . .×ΩL, the rest is then achieved inductively.
Let us denote Ω2...L = Ω2 × . . . × ΩL. We refer to the classical proof [4]
for the details of the construction of E1; we only need to observe that the

extended function E1u belongs to the space W
~p
(Ω̃1 × Ω2...L) and check the

boundedness of E1. The key point is the fact that the extension of u can
be written explicitely as E1u(x, y) =

∑s
i=1 ξi(x)u(ψi(x), y) for some s ∈ N,

where x ∈ Ω̃1, y ∈ Ω2...L, with each ξi ∈ C∞
0 (Ω̃1) and each ψi being a

C1 diffeomorphism mapping Ω̃1 into Ω1. Moreover, the functions ξi and ψi

depend only on Ω1 and Ω̃1. From this we can immediately infer the inequality

‖E1u‖W
~p
(Ω̃1×Ω2...L)

≤ C ‖u‖
W

~p
(Ω)

,

the constant C being independent of u.

Now it is easy to prove the semirectangular Sobolev and, resp., Morrey
embedding theorems.

Theorem 4 Let Ω ⊂ Rn be a domain satisfying the semirectangular restric-
tion with respect to a vector of exponents ~p, such that

n
∑

i=1

1

pi
≥ 1 .

ThenW
~p
(Ω) equipped with the norm (3) is continuously embedded into Lq(~p)(Ω).

Theorem 5 Let Ω ⊂ Rn be a domain satisfying the semirectangular restric-
tion with respect to a vector of exponents ~p, such that

n
∑

i=1

1

pi

< 1 .

Then the space W ~p(Ω) equipped with the norm (2) is continuously embedded
into C0,β(Ω) with

0 < β =
α

n/p1 + α
≤ 1 , α = 1 −

n
∑

i=1

1

pi
.
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Proof: We use the extension operator E described in Theorem 3 to extend

our functions from Ω onto the rectangular domain Ω̃. For W
~p
(Ω̃) and, resp.,

W p~p(Ω̃) we apply the embeddings from Theorems 1 and, resp., 2.

Notice that for the isotropic case L = 1 and p1 = . . . = pn, the statements
of the above two theorems reduce to the classical embeddings without any
restriction on the domain geometry. On the other hand, in the “totally
anisotropic” case L = n and pi 6= pj if i 6= j, the only compatible domain Ω
is an n-dimensional rectangle.

The Sobolev case: Discussion of the integrability as-
sumption

To show that the question whether the a-priori assumption u ∈ Lpn(Ω) in
Theorems 1 and 4 can be weakened is not trivial, let us consider the following
example: For a function u ∈W 1,1(Ω2) with Ω2 being a rectangle in R2, define
ũ ∈W ~p(Ω3) with ~p = (1, 1,∞) and Ω3 = Ω2 × (0, 1) such that

ũ(x1, x2, x3) = u(x1, x2) for each (x1, x2, x3) ∈ Ω3 .

Now, if the assertion of theorem 1 held also for W ~p(Ω), it would assert that
ũ ∈ L3(Ω3) and, straightforwardly, u ∈ L3(Ω2). This would mean that
W 1,1(Ω2) is a subset of L3(Ω2), a contradiction. Notice that here the case
pn > q(~p) occurs and the contradiction is due to the lowest two exponents
p1 = p2 = 1. In the forthcoming analysis we show that such argument
can always be applied when pn > q(~p). On the other hand, the Lpn(Ω)-
integrability assumption can be weakened to Lp1(Ω)-integrability in cases
when pn ≤ q(~p).

Definition 2 For 1 ≤ k ≤ n we define

qk(~p) =

{

k
Pk

i=1 1/pi−1
if
∑k

i=1 1/pi > 1 ,

∞ else ,

and q(~p) = min{q1(~p), . . . , qn(~p) = q(~p)}.

Lemma 1 Let ~p = (p1, . . . , pn) satisfy

n
∑

i=1

1

pi

> 1 .

Then one of the following two cases holds:

7



A) q1(~p) > . . . > qn(~p) and pk+1 < qk(~p) for all k = 1, . . . , n − 1, and,
consequently, q(~p) = q(~p) = qn(~p).

B) There exists an index K, 2 ≤ K ≤ n−1, such that q1(~p) > . . . > qK(~p) ≤
. . . ≤ qn(~p) and, thus, q(~p) = qK(~p) ≤ pK+1.

Proof: Since q1(~p) = ∞, the sequence {qk(~p)} always starts decreasing. A
simple computation shows that qk(~p) > qk+1(~p) is equivalent to qk(~p) > pk+1.
If this is true for all k = 1, . . . , n − 1, Case A holds. If not, there exists a
smallest K ≥ 2 such that qK(~p) ≤ qK+1(~p). Again a simple computation
shows that this is equivalent to qK+1(~p) ≤ pK+1 ≤ pK+2, where the second
inequality is due to the ordering of the components of ~p. This, however,
implies qK+1(~p) ≤ qK+2(~p), showing that, if the sequence {qk(~p)} starts to
increase, it continues to do so. This completes the proof.

Lemma 1 gives us a direct evidence that in the ’strong’ version of Case
B, where pK+1 > qK(~p) for some K, we cannot expect the space W ~p(Ω)
to be embedded into Lq(~p)(Ω). Indeed, note that the sharp inequality im-
plies q(~p) > qK(~p) and consider, for a function u ∈ W (p1,...,pK)((0, 1)K), its
’extension’ ũ to W ~p((0, 1)n) given by

ũ(x1, . . . , xn) = u(x1, . . . , xK) for (x1, . . . , xK , . . . , xn) ∈ (0, 1)n .

If the space W ~p((0, 1)n) was embedded into Lq(~p)((0, 1)n), we would have
u ∈ Lq(~p)((0, 1)K) for each u ∈ W (p1,...,pK)((0, 1)K), which is false since the
latter space can be expected to be embedded at most into LqK(~p)((0, 1)K).
For the following, remember that W ~p(Ω) is equipped with the natural norm

‖u‖W ~p(Ω) =

n
∑

i=1

∥

∥

∥

∥

∂u

∂xi

∥

∥

∥

∥

pi

+ ‖u‖p1
.

Theorem 6 Let ~p and Ω be as in Theorem 4. Then, in Case A of Lemma
1, the space W ~p(Ω) is continuously embedded into Lq(~p)(Ω) = Lq(~p)(Ω). In
Case B, W ~p(Ω) is continuously embedded into every Lq(Ω) with q < q(~p).

Proof: Case A: We define ~pk = (pk
1, . . . , p

k
n) by pk

i = min{pi, pk}, i.e., ~pk =
(p1, . . . , pk, . . . , pk), k = 1, . . . , n. We shall prove by induction that for every

k = 1, . . . , n, W ~pk

(Ω) →֒W
~pk

(Ω) and that, consequently (by Theorem 4),

‖u‖
q(~pk) ≤ c ‖u‖

W ~pk
(Ω)

for all u ∈W ~pk

(Ω) . (8)
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For k = n, this amounts to the statement of the theorem.
The claim is obviously satisfied for k = 1. Now assume it holds for

a certain k. We construct a sequence {qk
l }l≥0 by qk

0 = q(~pk) and qk
l+1 =

q(p1, . . . , pk, q
k
l , . . . , q

k
l ). The solution of this recursion can be explicitely

given:

qk
l =

(

1

qk(~p)
+

(

1 −
k

n

)l+1(
1

pk
−

1

qk(~p)

)

)−1

.

Since pk < qk(~p) (lemma 1), the sequence is strictly increasing and liml→∞ qk
l =

qk(~p). By a second induction we claim that

W (p1,...,pk,qk
l
,...,qk

l
)(Ω) →֒ W

(p1,...,pk,qk
l
,...,qk

l
)
(Ω) ,

as long as qk
l ≤ pk+1. Actually, since qk

0 = q(~pk) ≤ pk+1, (8) implies the above
for l = 0. Again, the induction proceedes, repeatedly applying Theorem 4,
in a bootstrapping way.

Eventually, qk
l+1 becomes bigger than pk+1 since pk+1 < qk(~p) (Lemma 1).

Then we obviously have W ~pk+1

(Ω) →֒ W
~pk+1

(Ω), and the induction step (and
therefore the proof for Case A) is completed.

Case B: We start in the same way as in Case A and prove (8) for k =
1, . . . , K−1. Then, for q < q(~p) = qK(~p), we construct the sequence {qK

l }l≥0

as above and stop the second iteration process as soon as qK
l+1 > q.

Counterexamples for a domain with general shape

We present an example showing that the generalized Sobolev and Morrey
embeddings cannot be easily extended for cases where the semirectangular
condition is not met. Namely, we consider the two-dimensional setting with
~p = (p1, p2) such that p1 6= p2. In this case the semirectangular condition
states that the domain Ω must be rectangular. We show that the embeddings
fail on non-rectangular domains.

We start with the Sobolev case. Let us consider, for r > 1, the domain
Ωr ⊂ R2,

Ωr = {(x1, x2) : −1 < x2 < 1, |x2|
r < x1 < 1} . (9)
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A simple calculation shows that for 0 < γ < 1/r the function u(x1, x2) = x−γ
1

satisfies the relations

∂u

∂x1
∈ Lp1(Ωr) ,

∂u

∂x2
∈ Lp2(Ωr)

with

1 ≤ p1 <
r + 1

r + rγ
, 1 ≤ p2 ≤ ∞ .

Now, for 0 < ε < 1 − rγ, we set

p1 =
r + 1

r + rγ + ε
, p2 =

r + 1

1 − rγ − ε
.

Then we have 1
p1

+ 1
p2

= 1 and, due to Theorem 1, q(p1, p2) <∞ can be chosen

arbitrarily high. However, it is easy to check that u belongs to Lq(Ω) only if
q < r+1

rγ
, while the integrability assumption of Theorem 2 is not violated if

we assume rγ < 1/2 and ε < 1 − 2rγ, since then max{p1, p2} <
r+1
rγ

. Note

that Ωr ∈ C0,1 for each r > 1; moreover, when r is an even integer, the
boundary of Ωr is analytic close to the origin, where the problem arises. The
strength of the allowed singularity tends to zero and the upper integrability
bound r+1

rγ
tends to infinity as r → ∞, when Ωr approaches the rectangle

Ω∞ = (0, 1) × (−1, 1).
We can use the same construction also for the Morrey case. Namely, with

the choice

1 < p1 <
r + 1

r + rγ
, p2 = ∞ ,

the assumptions (6), (5) of Theorem 2 are satisfied, but u is obviously not
Hölder continous.
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