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We present PDE (partial differential equation) model hierarchies for the chemotactically
driven motion of biological cells. Starting from stochastic differential models we derive a
kinetic formulation of cell motion coupled to diffusion equations for the chemoattractants.
Also we derive a fluid dynamic (macroscopic) Keller-Segel type chemotaxis model by
scaling limit procedures. We review rigorous convergence results and discuss finite-time
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blow-up of Keller-Segel type systems. Finally, recently developed PDE-models for the
motion of Leukocytes in the presence of multiple chemoattractants and of the slime mold

Dictyostelium Discoideum are reviewed.
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1. Introduction

Many fundamental processes in biology and physiology depend on the ability of

cells to react to external cues. Especially chemotaxis, the biased locomotion of cells

towards chemical gradients, plays an important role for numerous biological systems.

Chemotaxis models are applied to embryogenesis and wound healing. Moreover they

are used in the modelling and simulation of the immune response system and of

cell aggregation, examples of which will be presented in the sequel. Chemotaxis is

also of major importance in tumor biology. A chemotaxis model was employed e.g.

in 2 to describe tumor induced endothelial cell migration. A further example is 37

where a system of reaction-drift-diffusion equations has been used to simulate tumor

invasion. By quantifying haptotaxis and chemotaxis the authors could show that

the ”therapeutic use of protease inhibitors against tumors expressing high levels of

matrix metalloproteinase could produce an augmentation of invasion”.

In 1970, E. Keller and L.A. Segel derived a model for chemotaxis that should

become one of the best-studied models in mathematical biology 25. Consisting of

an equation for the cell density ρ = ρ(x, t) coupled to the concentration S = S(x, t)

of a chemical (x ∈ R
n, n = 2 or 3 denotes the position variable and t > 0 time) the

cell are attracted to, it reads

∂ρ

∂t
+ ∇ · (χ(ρ, S)ρ∇S) = ∇ · (Dρ(ρ, S)∇ρ) (1.1)

∂S

∂t
= ∇ · (DS(ρ, S)∇S) + g(ρ, S), (1.2)

where the positive function χ(ρ, S) is the so-called chemotactic sensitivity. The pos-

itive functions Dρ(ρ, S) and DS(ρ, S) denote the diffusivities of the cells and the

chemical and g(ρ, S) describes production and degradation of the chemical, depend-

ing on whether g(ρ, S) takes positive or negative values. Actually, equation (1.1)

was already derived by Patlak 34 in 1953, but nevertheless, system (1.1), (1.2) has

mostly become known as the Keller-Segel model for chemotaxis.

This model, originally derived to describe aggregation of the slime mold amoeba

Dictyostelium discoideum (Dd), has been successfully used in various contexts. How-

ever, what we shall call the classical Keller-Segel model, with constant coefficients

χ and Dρ and a linear function g(ρ, S) = αρ−βS, is often not sufficient to describe

biological phenomena in a satisfactory way. Additional information can be incorpo-

rated in ’microscopic’ models describing chemotaxis on the level of individual cells.

This paper reviews a modelling framework, where the movement of an individual cell

is described as a stochastic process depending on a finite number of ’internal degrees
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of freedom’, i.e., quantities describing the internal state of a cell. This leads to high

dimensional partial differential equations for the cell distribution functions, whose

complexity is in general prohibitive for numerical simulations. Therefore, systematic

simplification procedures are required, two of which are presented in the following

section. The first one, here called the ’macroscopic limit’ provides a dimension re-

duction by reducing the position-velocity state space to position space. In terms

of stochastic processes it deals with a scaling limit, where a velocity jump process

is reduced to a Brownian motion with drift. In terms of equations for probability

distributions, kinetic transport equations are reduced to drift-diffusion equations.

The second simplification replaces the dynamics of distributions with respect to

the internal quantities by equations for their expectation values. The methodology,

here termed ’moment expansion’, consists in using heuristic closure assumptions in

moment equations. Applications of these simplification steps lead to model hier-

archies with Keller-Segel type models at the bottom end and, thus, to systematic

extensions based on detailed knowledge on individual cell behaviour.

The remaining sections review several recent mathematical and modelling contri-

butions within this framework, in particular concerning models for cell aggregation

by chemotaxis.

Section 3 deals with rigorous justifications of macroscopic limits, i.e., the deriva-

tion of fluid models of the Keller-Segel type from kinetic transport equations. The

fluid models are diffusive as described above, if the dominant microscopic turning

processes are without directional preference. If, on the other hand, a strong ori-

entation is produced already on the microscopic level, then the macroscopic limit

produces a purely convective fluid model.

The above mentioned classical Keller-Segel model features a description of ag-

gregation in a very distinctive way. Under appropriate conditions, blow up in finite

time occurs, i.e. concentration of the cell density. The derivation of criteria for global

existence vs. blow up of solutions has received a lot of attention. Of particular in-

terest is the continuation of solutions after aggregation to describe the interaction

of aggregates and the dynamics of nonaggregated cells. A recent approach is the

introduction of regularized models possessing global smooth solutions. In section

4 we present, after a short review on results concerning blow-up, models featuring

global existence of solutions.

In the last two sections, we shall discuss extensions of the Keller-Segel model

which are motivated by experimental results. In sections 5, we present a model

for the chemotactically directed migration of neutrophil leukocytes, reproducing

the multistep navigation by memory effects investigated experimentally by E.F.

Foxman, J.J. Campbell and E.C. Butcher in 13. The crucial idea of this model is

that the chemotactic sensitivity is not a constant, but a time-dependent function

that adapts according to the chemical signal.

In section 6, we review a model describing the aggregation of the slime mold

Dictyostelium discoideum. This process is controlled by chemotaxis: certain cells

(”pacemakers”) emit the chemical cAMP in a periodic fashion, and surrounding cells
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relay the signal by secreting it themselves while moving towards the source. Since

the chemical spreads in the form of virtually symmetric wave trains, aggregation

would not be observed if the cell only followed the chemical gradient (chemotactic

wave paradox ): they would actually follow the wave, away from the aggregation site.

Several authors have proposed resolutions to this paradoxon (for instance Höfer et

al. 20, or Rappel 44), and it is often assumed that cells become either desensitized

at the wave peak or that some sort of polarity is established that prevents the cells

from turning around and following the wave. However, it has been demonstrated

in several experiments that Dd cells are able to distinguish between temporarily

rising or decreasing concentrations of the chemoattractant (see for instance Wessels

et al. 49 or Geiger et al. 14). Hence, we shall look at a kinetic model for chemotaxis

that takes into account the ability of cells to react to temporal changes in the

chemoattractant concentration. We shall see that in the limit this leads to a Keller-

Segel model where the chemotactic sensitivity depends on the temporal derivative

of the chemoattractant concentration.

2. A modelling framework

In the following, we consider cells moving on a surface or in three-dimensional space,

and characterize the state of an individual cell by stochastic processes: its position

x(t) ∈ Ω ⊆ R
n, its velocity v(t) ∈ V ⊆ R

n, and some internal state ζ(t) ∈ Z ⊆ R
k,

where n = 2 or 3, k ∈ N and time t > 0. The components of ζ are for instance

concentrations of chemicals inside the cell or quantifications of other cell properties.

We assume that inside every cell, ζ(t) evolves according to

ζ̇ = η(x, ζ, t) , ζ(t = 0) = ζ0 (2.1)

Usually, the dependence of η on x and t will not be explicit but through external

fields Si(x, t), i = 1, .., N or their position gradients ∇Si(x, t). Depending on the

kind of external stimulus, these fields can be temperature, light, the electric field or,

in the cases considered here, concentrations of chemoattractants. Then these fields

are typically described by reaction-diffusion equations,

δi
∂Si

∂t
= ∆Si + gi(S1, ..., SN , ρ). (2.2)

Here, the functions gi describe the reaction of Si with the other chemicals and its

production or consumption by the cells, whose total number density is given by

ρ(x, t) =

∫

Z

p(x, ζ, t)dζ . (2.3)

We shall discuss two stochastic mechanisms for the description of individual cell

movement. If the cell’s movement is driven by drift and by a Brownian motion, we

can describe the cell path by the stochastic differential equation (SDE)

dx = uc(x, ζ, t)dt + σ(x, ζ)dB , x(t = 0) = x0 (2.4)
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where σ(x, ζ)2 is the variance, uc is the (chemotactic) drift velocity of the cell and

dB = dB(t, ω) is the Brownian motion in R
n. We shall assume for the following

that η, uc and σ are deterministic functions independent of the random variable ω.

Associated to the SDE (2.1), (2.4) there is a linear partial differential equation, the

Fokker-Planck equation for the phase space density p(x, ζ, t),

∂p

∂t
+ ∇x · (puc) + ∇ζ · (pη) = ∇x · (D∇x p), (2.5)

p(t = 0) = pI ≤ 0 , (2.6)

where the diffusion coefficient D is given by D = σ2

2 . With the initial condition

pI = δx0,ζ0
the function p(x, ζ, t) for any time t can be interpreted as the probability

density of a single cell. It can also be regarded as the density of an ensemble of cells

starting from an initial density pI. Here we adhere to the second interpretation

and point out that birth and death processes have been neglected. We shall always

consider boundary conditions such that the total number of cells

M =

∫

Z×Ω

p(x, ζ, t)dζdx (2.7)

is constant in time, an assumption that is justified in the examples we are going to

investigate later. Also, all the equations presented in this paper are already non-

dimensionalized, and the number of parameters is reduced as far as possible. Note

that no diffusion in the ζ-directions occurs in (2.5) due to the fact that we did

not include a Brownian motion term in the state equation (2.1) for the internal

variables.

Stochastic models for the motion of single cells and their connection to cell pop-

ulation models have been studied frequently in the literature. Dickinson and Tran-

quillo 8 present a general set of SDEs which govern the time evolution of the spatial

distribution of bound and free receptors and the orientation and position of the

cell. The authors use the so-called adiabatic elimination of fast variables to derive

corresponding Fokker-Planck equations. This approach is used to describe chemo-

taxis and haptotaxis (taxis towards greater concentrations of adhesion molecules),

see also 9. In 45, the Keller-Segel model for chemotaxis is rigorously derived from an

interacting stochastic many-particle system, where the interaction between the par-

ticles is rescaled in a moderate way as the population size tends to infinity. Ionides

et al. 24 derive SDE models for the velocity of cells, and compare model predictions

to data from experiments with human skin cells migrating in electric fields. Model

parameters are estimated by using sequential Monte Carlo methods. A macroscopic

model for the swarming of ants is derived rigorously from a stochastic process in

Morale et al. 27.

The second class of stochastic models for cell movement are so-called velocity-

jump models, where it is assumed that a cell moves with constant velocity in a

straight line, stops after a certain time, chooses a new direction, continues running

and so on. The generic example for this type of movement is the erratic motion
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(”run and tumble”) of bacteria like E. coli. Typically, the tumbling time intervals

are much shorter than the running periods, and it can be assumed that the turning

events (and thus, changes of the cell’s velocity v), are governed by a Poisson process.

The cell’s position changes subject to

dx = v dt , (2.8)

and new velocities are chosen after stochastically determined run times according

to a probability distribution on V that can depend on the cell’s previous or future

velocity, its position x and its internal state ζ. The phase space density P (x, v, ζ, t)

(now on the larger state space also including velocity v) satisfies the Master equation

(kinetic transport equation in the context of gas dynamics or solid state/plasma

physics)

∂P

∂t
+ v · ∇xP + ∇ζ · (Pη) = Q(P ), (2.9)

where the turning operator Q(P ) is defined by

Q(P ) :=

∫

V

[

T (v′ → v, x, ζ, t)P ′ − T (v → v′, x, ζ, t)P
]

dv′, (2.10)

with P ′ = P (x, v′, ζ, t). The turning kernel T (v′ → v, x, ζ, t) > 0 describes velocity

changes from v′ to v, and usually depends on position x and time t through the

external fields Si or ∇Si.

Equations (2.5) and (2.9) are posed on (n + k)- and, respectively, (2n + k)-

dimensional phase spaces. In most situations, this complexity is prohibitive for

numerical simulations, and most of the details contained in the solutions is not

required. In the following, two typical simplification steps will be outlined, leading

to dimension reductions. The first observation is that (2.5) and (2.9) are closely

connected: If the turning operator in (2.9) satisfies certain assumptions specified

below, then (2.5) can be derived as a scaling limit of (2.9), replacing 2n by n in

the dimensionality of the description. A second simplification step will replace the

(n+k)-dimensional equation (2.5) by k+1 equations on the n-dimensional position

space. The possibility to carry out the two simplifications in different orders leads

to 4 steps described in the 4 paragraphs below.

Macroscopic limit 1. Key requirement for the passage from (2.9) to (2.5) is that

the turning processes are predominantly without directional bias. We assume that

the turning operator Q(P ) in (2.10) can be written as

Q(P ) = Q0(P ) + εQ1(P ) ,

where ε is a small, dimensionless parameter representing the ratio between biased

and nonbiased contributions to the turning process. We require that the leading

order turning operator Q0(P ) has a one-dimensional kernel (fixing x, ζ and t) such

that

Q0(P ) = 0 ⇔ P (x, v, ζ, t) = p(x, ζ, t)F (v;x, ζ, t), (2.11)
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where the normalized equilibrium distribution F satisfies
∫

V

F dv = 1 and

∫

V

vF dv = 0. (2.12)

The second relation states that the mean flux of the limit equilibrium distribution

vanishes, i.e., that the leading order turning processes describe undirected motion

of cells. As a consequence, when introducing macroscopic variables, a parabolic

scaling, x → x/ε and t → t/ε2, of space and time is appropriate. Additionally, we

rescale η → ε2η. Thus, equation (2.9) becomes

ε2
∂P

∂t
+ εv · ∇xP + ε2∇ζ · (Pη) = Q0(P ) + εQ1(P ). (2.13)

Defining the functions

R =
P − pF

ε
, where p(x, ζ, t) =

∫

V

P (x, v, ζ, t) dv (2.14)

and dividing by ε, we can write equation (2.13) as

ε
∂P

∂t
+ v · ∇xP + ε∇ζ · (Pη) −Q1(P ) = Q0(R). (2.15)

In the (formal) limit ε→ 0, it follows from (2.13) thatQ0(P0) = 0. As a consequence

of (2.11), this means that P → P0 = p0F . Denoting R0 := limε→0 R and letting

ε→ 0 in (2.15), we deduce

Q0(R0) = vF · ∇x p0 + (v · ∇xF −Q1(F )) p0. (2.16)

Now we integrate (2.13) with respect to v and divide by ε2:

∂p

∂t
+ ∇x ·

∫

V

vR dv + ∇ζ · (pη) = 0, (2.17)

where we used the fact that, due to
∫

Q(P )dv = 0, conservation of the total number

of cells is a property of the model. As ε→ 0, we obtain

∂p0

∂t
+ ∇x ·

∫

V

vR0dv + ∇ζ · (p0η) = 0. (2.18)

From (2.16), it follows that the function R0 can be written as

R0 = Γ · ∇x p0 + γp0, (2.19)

where

Q0(Γ) = vF and Q0(γ) = v · ∇xF −Q1(F ). (2.20)

Note that R0 is not uniquely determined, as we can always add a function which

is in the kernel of Q0. However, the second term in (2.18) is not influenced by this

fact, and we obtain
∫

V

vR0dv = −D∇x p0 + ucp0,
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with

D = −

∫

V

v ⊗ Γdv and uc =

∫

V

vγdv. (2.21)

As a consequence, we can write (2.18) as

∂p0

∂t
+ ∇x · (p0uc) + ∇ζ · (p0η) = ∇x · (D∇x p0), (2.22)

which is exactly the Fokker-Planck equation (2.5).

Note that the solvability of the inhomogeneous equations (2.20) is crucial for a

rigorous justification of the limit process ML1 in figure 1.

Remark 1. If assumption (2.12) is not satisfied (which means that directed instead

of random movement is dominating), the correct scaling is hyperbolic, i.e. x→ x/ε

and t → t/ε, and η → εη. Performing the corresponding macroscopic limit then

leads to a convection equation for p0,

∂p0

∂t
+ ∇x · (p0uc) + ∇ζ · (p0η) = 0, (2.23)

where the chemotactic velocity uc is now given by

uc =

∫

V

vF dv. (2.24)

Moment expansion 1. The second simplification step is of a more heuristic nature

using certain ad hoc assumptions. We start with the Fokker-Planck equation (2.5)

and aim for a model in terms of the position density of cells and of the average

values of the internal quantities,

ρ(x, t) =

∫

Z

p(x, ζ, t)dζ , (ρz)(x, t) =

∫

Z

ζ p(x, ζ, t)dζ . (2.25)

Integration of (2.5) with respect to ζ1, ... ζk gives

∂ρ

∂t
+ ∇x ·

∫

Z

pucdζ = ∇x ·

∫

Z

D∇x p dζ, (2.26)

where we used the biologically reasonable boundary condition (pη)(x, ζ, t) = 0 for

ζ ∈ ∂Z. On the other hand, multiplying (2.5) by ζi and integrating again gives

∂(ρzi)

∂t
+ ∇x ·

∫

Z

pζiucdζ −

∫

Z

pηidζ = ∇x ·

∫

Z

D∇x (pζi)dζ. (2.27)

In order to to write the k+1 equations (2.26) and (2.27) in a self-consistent way, we

have to make closure assumptions for the fluxes and for the reaction terms. These

are by no means unique, and instead of the ad hoc choices proposed here, evidence

from experiments and/or numerical simulations on the distributions of the internal

variables might be used. An example is contained in Section 5.

A simple way to achieve closure is to replace the internal variable ζ by its mean

value z in the drift velocity uc, in the diffusivity D, and in the reaction term η in all
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%(x, t), z(x, t)

21

1

2

Fig. 1.

the integrals in (2.26) and (2.27). This leads to the fluid type equations in position

space

∂ρ

∂t
+ ∇x · (ρuc) = ∇x · (D∇x ρ) (2.28)

and

∂(ρzi)

∂t
+ ∇x · (ρziuc) = ∇x · (D∇x (ρzi)) + ρηi, (2.29)

where D, uc and η are evaluated at ζ = z. If the chemotactic velocity is of the form

uc = χ(ρ, S)∇S (independent of z), equation (2.28) becomes equation (1.1) of the

Keller-Segel model.

Moment expansion 2. The simplification steps might also be carried out in reverse

order to produce the commuting diagram of Figure 1.

We start again with the full master equation (2.9) for the velocity jump model

and try to obtain a model in terms of the position-velocity space density of cells

and the position-velocity dependent mean values of internal quantities,

f(x, v, t) =

∫

Z

P (x, v, ζ, t) dζ, (ẑf)(x, v, t) =

∫

Z

ζ P (x, v, ζ, t) dζ . (2.30)

We proceed as before: integration of (2.9) with respect to ζ1, ... ,ζk yields

∂f

∂t
+ v · ∇x f =

∫

Z

Q(P )dζ, (2.31)

whereas multiplication of (2.9) by ζ and integration gives

∂(ẑf)

∂t
+ v · ∇x (ẑf) −

∫

Z

Pηdζ =

∫

Z

Q(ζP )dζ. (2.32)

Keeping in mind that Q(P ) is defined by (2.10), we approximate the right hand

side of (2.31) by Q̄(f), where

Q̄(f) =

∫

V

[

T (v′ → v, x, ẑ(x, v′), t)f ′ − T (v → v′, x, ẑ(x, v), t)f
]

dv′, (2.33)



July 11, 2005 13:48 WSPC/INSTRUCTION FILE
chaldolmarkoelzschmeisor

10 F. Chalub, Y. Dolak-Struß, P.A. Markowich, D. Oelz, C. Schmeiser, A. Soreff

and the right hand side of (2.32) by Q̄(ẑf). Note that we replaced the internal

variable in the turning rate by its mean value at the velocity before turning. As in

(2.29), we finally approximate
∫

Z

P (x, v, ζ)η(x, ζ)dζ ∼ f(x, v)η(x, ẑ(x, v)) (2.34)

to obtain from (2.31), (2.32) the closed model

∂f

∂t
+ v · ∇x f = Q̄(f) (2.35)

and

∂(ẑf)

∂t
+ v · ∇x (ẑf) − fη = Q̄(ẑf). (2.36)

Equation (2.35) is a kinetic transport equation sharing the left hand side with the

Boltzmann equation of gas dynamics. In the context of chemotaxis, an equation

of type (2.35) (without internal dynamics) was first derived from a velocity jump

process by Stroock 46 in 1974. Othmer et al. 30 discussed position and velocity

jump models for various biological applications and investigated the corresponding

macroscopic equations.

Macroscopic limit 2. To complete the commuting diagram in Fig. 1, we will

now investigate the macroscopic limit of system (2.35), (2.36). Obtaining a drift-

diffusion equation as macroscopic limit of an kinetic equation like (2.35) has been

investigated by several authors, for a detailed discussion of appropriate approaches

to this problem see Section 3. We now assume that Q̄(f) can be written as Q̄0(f)+

εQ̄1(f), where for every velocity independent ẑ(x, v, t) = z(x, t), Q̄0 has a one-

dimensional kernel:

Q̄0(f) = 0 ⇔ f(x, v, t) = ρ(x, t)F̄ (v;x, z(x, t), t) ,

satisfying (2.12). As before, we rescale space and time (diffusion scaling) as well as

the function η, to obtain

ε2
∂f

∂t
+ εv · ∇x f = Q̄0(f) + εQ̄1(f) (2.37)

ε2
∂(ẑf)

∂t
+ εv · ∇x (ẑf) − ε2fη = Q̄0(ẑf) + εQ̄1(ẑf). (2.38)

The limiting equations Q̄0(f0) = Q̄0(ẑ0f0) = 0 as ε→ 0 then have solutions

f0(x, v, t) = ρ0(x, t)F̄ (v;x, z0(x, t), t) ,

(ẑ0f0)(x, v, t) = ρ0(x, t)z0(x, t)F̄ (v;x, z0(x, t), t) .

Following the procedure introduced in the last section, we obtain the macroscopic

equations

∂ρ0

∂t
+ ∇x · (ρ0 uc) = ∇x · (D∇x ρ0) , (2.39)

∂(ρ0z0,i)

∂t
+ ∇x · (ρ0z0,iuc) = ∇x · (D∇x (ρ0z0,i)) + ρ0ηi . (2.40)
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The chemotactic velocity uc and the diffusion coefficient D are again given by (2.21)

(but, like γ and Γ, depending on z0 now). Note that system (2.39-2.40) is exactly

the same as (2.28-2.29).

The two paths from the master equation (2.9) to the fluid model (2.28-2.29) visit

two different intermediate models: the Fokker-Planck equation (2.5), which will be

the starting point of the leukocyte modelling in Section 5, and the kinetic model

(2.35-2.36), which is at the basis of the Dd model of Section 6.

3. Rigorous macroscopic limits of kinetic models

This section contains rigorous justifications of the ’macroscopic limit 2’ (ML2 in

Figure 1). We shall restrict our attention to situations without internal variables

and consider the convergence of solutions of the kinetic equation (2.35) to solutions

of a Keller-Segel type model (whose parameters can be directly computed from the

turning kernel T ) when ε tends to zero. We shall present two results: one on the

diffusive and one on the purely convective limit (see Remark 1 above).

The proof of the main theorem on the diffusive limit is spread in different ref-

erences (see 4,22,5), and here we only show its main features and omit technical

details.

To fix notation, we consider

ε2
∂fε

∂t
+ εv · ∇xfε = Qε[Sε, ρε]fε , x ∈ R

n, v ∈ V, t > 0, (3.1)

fε(t = 0) = f I , (3.2)

with the turning operator

Qε[Sε, ρε]f(v) =

∫

V

(Tε(v
′ → v)[Sε, ρε]f(v′) − Tε(v → v′)[Sε, ρε]f(v)) dv′ (3.3)

depending on a chemoattractant density Sε and the macroscopic cell density ρε.

The chemoattractant density solves a quasistationary approximation of the reaction

diffusion equation (1.2) with a simple model for production of the chemoattractant

by the cells, namely the Poisson equation

−∆Sε = ρε :=

∫

V

fεdv , x ∈ R
n, t > 0. (3.4)

We impose the following assumptions on the turning kernel:

• When Sε → S0 and ρε → ρ0 as ε→ 0, then

Tε(v → v′)[Sε, ρε] = T0(v → v′)[S0, ρ0] + εT1(v → v′)[S0, ρ0] + o(ε)

where the convergence Tε → T0 is made precise in reference 4.

• There exists a velocity distribution 0 < F (v) ∈ L∞(V ), independent of x, t, S

and ρ such that the detailed balance equation T0(v
′ → v)[S, ρ]F (v) = T0(v →

v′)[S, ρ]F (v′) and the properties (2.12) hold. The turning rate T0[S, ρ] is bounded
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and there exists a constant γ > 0 such that T0[S, ρ]/F ≥ γ, ∀(v, v′) ∈ V × V ,

x ∈ R
n, t > 0.

Theorem 3.1. Let the initial condition be given by

f I(x, v) = ρI(x)F (v) ∈ L1
+(Rn × V ) ∩ Lp

(

R
n × V,

dx dv

F p−1

)

,

for a p > n. Let us also suppose that

φS
ε [S, ρ] ≥ γ(1 − εΛ(||S||W 1,∞))FF ′ ,

∫

V

φA
ε [S, ρ]2

FφS
ε [S, ρ]

dv′ ≤ ε2Λ(||S||W 1,∞) ,

where

φS
ε :=

Tε(v → v′)[S, ρ]F (v′) + Tε(v
′ → v)[S, ρ]F (v)

2
,

φA
ε :=

Tε(v → v′)[S, ρ]F (v′) − Tε(v
′ → v)[S, ρ]F (v)

2
.

Then, there is t∗ > 0, independent of ε, such that

ρε → ρ0 in L2
loc(R

n × (0, t∗)) ,

Sε → S0 in Lq
loc(R

n × (0, t∗)) , 1 ≤ q <∞ ,

∇Sε → ∇S0 in Lq
loc(R

n × (0, t∗)) , 1 ≤ q <∞.

Here ρ0 and S0 denote the time-local solution of the Keller-Segel model

∂ρ0

∂t
+ ∇ · (uc[ρ0, S0]ρ0) = ∇ · (Dρ(ρ0, S0)∇ρ0)

−∆S0 = ρ0 .

where uc[ρ0, S0] and Dρ(ρ0, S0) are given by

uc[ρ0, S0] = −

∫

V

vΘ[S0, ρ0](x, v, t) dv , with Q0[S0, ρ0](Θ) = Q1[S0, ρ0](F )

Dρ(ρ0, S0) = −

∫

V

v ⊗ κ[S0, ρ0](x, v, t) dv , with Q0[S0, ρ0](κ) = vF .

For an appropriate choice of the turning kernel we may obtain the classical

Keller Segel model with constant χ and Dρ (see 4).

Proof. (Sketch) After having performed the formal limiting procedure in the pre-

vious section we prove local in time, uniform in ε a priori bounds (i.e., the existence

of a ε-independent time t∗ such that):

fε ∈ L∞ (0, t∗;Xp) , Xp = L∞

(

0, t∗;L1
+(Rn × V ) ∩ Lp

(

R
n × V,

dx dv

F p−1

))

Sε ∈ L∞
(

0, t∗;W 1,q(Rn) ∩C1+α(Rn)
)

, 1 ≤ q <∞ , 0 < α <
p− n

p
,

rε :=
fε − ρεF

ε
∈ L2

(

R
n × V × [0, t∗);

dx dv dt

F

)

.
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The next step consists in proving the strong convergence of Sε and ∇Sε. For this

we prove compactness in position and time using results from potential theory

(particularly from elliptic regularity) and the uniform a priori bounds. The last part

consists in proving the strong convergence of ρε, which follows from compensated

compactness.

Examples of turning kernels, which satisfy assumptions of the previous theorem,

can be found in the references 4,22,23,5,6. Generalizations of Theorem 1 allow for more

general (parabolic) models for the chemoattractant dynamics 22,23.

Memory effects have been taken into account in 10 in a kinetic model satisfying

the following assumptions.

• The turning kernel T : R+ ×R → R+ depends on the local value of the chemoat-

tractant concentration S as well as on its time derivative along an incoming path,

i.e. T [S](v′ → v, x, t) = T (S(x, t), St(x, t) + v′ · ∇S(x, t)).

• T is smooth, monotonically decreasing in its second argument and satisfies

0 < α ≤ T ≤ β, (3.5)

with positive constants α and β.

The null space of a turning operator Q[S] with these assumptions is spanned by

F (v;x, t) =
T0(x, t)

T (S(x, t), St(x, t) + v · ∇S(x, t))
,

1

T0
=

∫

V

dv′

T (S, St + v′ · ∇S)
,

satisfying F > 0 and
∫

V
F dv = 1, but the mean velocity

uc =

∫

V

vF dv = χ(S, St, |∇S|)∇S, χ(S, St, |∇S|) =
T0

|∇S|

∫

V

v1dv

T (S, St + v1|∇S|)
(3.6)

does not vanish in general.

In contrast to the parabolic scaling used above, a hydrodynamic scaling is now

appropriate:

ε
∂fε

∂t
+ εv · ∇xfε = Q[S]fε , (3.7)

fε(t = 0) = f I (3.8)

For the macroscopic limit ε→ 0, the following convergence result holds:

Theorem 3.2. Let the initial condition be well prepared, i.e.

f I(x, v) = ρI(x)F I(v;x), with Q
∣

∣

t=0
(F I) = 0.

Furthermore, assume that f I(x, v) is smooth and f I(x, v) = 0 for x /∈ K, K compact,

and that S(x, t) is a smooth, given function. Let fε be the solution of problem (3.7),

(3.8) for t < t∗. Then,

fε → ρ0F in L∞
loc((0, t

∗), L1(Rn × V )),
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and there exists a positive constant Ct∗ depending on the data such that

sup
0<t<t∗

‖fε − ρ0F‖L1(Rn×V ) ≤ Ct∗ε.

Here, ρ0 is the solution of (2.39) for t < t∗, with D0 ≡ 0 and the chemotactic

velocity is given by (3.6).

Proof. Using the Hilbert expansion for fε, i.e, fε = f0+εf1+. . . , the proof is based

on an estimate of the remainder rε = fε − (f0 + εf1) solving a problem of the form

(3.7) with vanishing initial data and an O(ε2)-inhomogeneity in the transport equa-

tion. The non-negativity of the chemotactic sensitivity χ in the limiting equation is

a consequence of the assumption that T is decreasing in its second argument.

Remark 2. The estimation of the remainder rε is based on similar arguments as

in 43. In 10, more general initial conditions are considered (i.e., Q(f I) = 0 is not

assumed to hold), which leads to an initial layer problem.

The above proof relies on the Hilbert expansion of fε to derive the limiting

equations. An alternative approach for obtaining correction terms is the so-called

Chapman-Enskog expansion, based on the micro-macro-decomposition

fε(x, v, t) = ρε(x, t)F (v;x, t) + εf⊥
ε (x, v, t),

∫

V

f⊥
ε dv = 0 . (3.9)

By applying the corresponding projections to the kinetic equation (3.7) leads to

a system for the new unknowns ρε and f⊥
ε . The Chapman-Enskog expansion now

consists in computing approximations for an equation for the macroscopic variable

ρε after elimination of the microscopic variable f⊥
ε . At leading order, the purely

convective limit equation of the above theorem is obtained. The O(ε)-correction,

however, provides a diffusion term (see also section 6). For details, we refer the

reader to 10.

4. Global existence and blow up for models of chemotaxis

In this section we state some results on global existence and local in time blow up,

mostly without proofs. Complete proofs can be found in the references.

For the classical Keller-Segel model with chemoattractant production by the

cells, the behaviour strongly depends on the space dimension. Generically, blow up

in finite time does not occur in 1D and always occurs in 3D. Here we shall shortly

discuss the situation in 2D which is characterized by a threshold phenomenon. We

also consider several regularizations leading to global existence. We concentrate on

simple models of the form

∂ρ

∂t
+ ∇x · (ρuc[ρ, S]) = ∇x · (D0∇xρ) , (4.1)

−∆S = ρ . (4.2)
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with ρ(x, 0) = ρI(x) ≥ 0, and decay conditions for S in the limit |x| → ∞. We define

the constant total mass M :=
∫

Rn ρ
Idx. D0 is a positive constant and χ(ρ) > 0.

Blow up and global existence have been studied for many particular cases. We

refer to 16,15,28,29 and references therein. We collect four global existence results:

Theorem 4.1. For n = 2, if one of the conditions below is satisfied:

• Subcritical total mass12: uc = χ0∇S with χ0 > 0 and M < 8πD0/χ0, or

• Quorum sensing 118: uc = χ(ρ)∇S and there is a threshold ρ̄ > 0 such that

χ(ρ) = 0 for ρ ≥ ρ̄ or, more generally,

• Quorum sensing 248: χ(ρ) → 0 sufficiently fast as ρ→ ∞, or

• Finite sampling radius19: uc = χ0

◦

∇ρ S with
◦

∇ρ S(x) = 1
πR

∫

|ω|=1
ωS(x +

Rω)dω, R > 0,

then the model (4.1–4.2) has global weak solutions.

The threshold given in the first result has recently been proven to be sharp:

Theorem 4.2. 12 For n = 2, χ(ρ) ≡ χ0 > 0, M :=
∫

R2 ρ
Idx < ∞, if M >

8πD0/χ0, then solutions of the Keller-Segel model (4.1–4.2) blow up in finite time.

Proof. We present the proof of Theorem 4.2 here since it conveys significant insight

into the dynamics of the Keller-Segel model. We solve Equation (4.2):

S(x, t) = −
1

2π

∫

R2

log |x− y|ρ(y, t)dy ,

then, multiply Equation (4.1) by |x|2 and integrate by parts. We find

1

2

d

dt

∫

R2

|x|2ρdx = 2D0M + χ0

∫

R2

ρ∇S · xdx .

We also have
∫

R2

ρ∇S · xdx = −
1

2π

∫

R2×R2

ρ(x, t)ρ(y, t)
x− y

|x − y|2
· xdx dy =

(exchanging x and y!) = −
1

4π

∫

R2×R2

ρ(x, t)ρ(y, t)dx dy = −
M2

4π
.

Finally,

1

2

d

dt

∫

R2

|x|2ρ(x, t)dx = 2M
(

D0 −
χ0

8π
M

)

.

IfM > 8πD0/χ0, then
∫

R2 ρ(x, t)dx becomes 0 in finite time which implies ρ(x, t0) =

δ(x) for some t0 ∈ (0,∞).

Remark 3. The difficulty in the issue of global existence is that the production of

the chemoattractant by the cells produces an attractive force, just as in models for

gravitational interaction of particles. This is completely different from the situation
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when the chemoattractant is consumed by the cells and (4.2) has to be replaced

by +∆S = ρ. This creates a repulsive interaction, just as in models for charged

particles (compare, e.g., to the drift-diffusion system of semiconductors 26). In the

latter case time-global smooth solutions are know to exist 7.

We outline a proof. Consider a function F(s) such that F ′′(s) ≥ 0, F ′′ 6≡ 0 and

set

G(s) :=

∫ s

0

s′F ′′(s′)ds′ .

Then, we multiply (4.1) by F ′(s) and integrate by parts:

d

dt

∫

Rn

F(ρ)dx = −D0

∫

Rn

|∇ρ|2F(ρ)dx + χ0

∫

Rn

ρF ′′(ρ)∇ρ · ∇Sdx =

= −D0

∫

Rn

|∇ρ|2F ′′(ρ)dx − χ0

∫

Rn

ρG(ρ)dx ≤ 0 .

Finally, if we chose F(s) = sα with α > 1, we immediately conclude the existence

of a global bound for the Lα(Rn)-norm, i.e., there is no concentration of mass in ρ.

Recently, global existence for certain kinetic models has been proven. We shall

state to typical results.

Theorem 4.3. 4 If the turning kernel is such that

0 ≤ T (v′ → v)[S, ρ] ≤ C(1 + S(x+ v, t) + S(x− v, t)) , (4.3)

then there exists a global solution (f, S) of the kinetic model (3.1–3.4).

Remark 4. It is possible to devise a kinetic model for chemotaxis with global

existence of solutions such that the solutions of its drift-diffusion limit blow up in

finite time. For a turning kernel given by

T (v′ → v)[S, ρ] = Ψ(S(x+ v, t) − S(x, t))

with Ψ at most linear, Theorem 4.3 applies and its associated macroscopic limit

is the classical (i.e., with constant coefficients D0 and χ0) Keller-Segel model. For

details, see 4.

For kinetic models such that the chemotactical part Tε−T0 of the turning kernel

vanishes if the cell density becomes sufficiently large, as, for example

Tε(v
′ → v)[S, ρ] = λ(x, t)F (v) + εa(ρ, S)F (v)v · ∇S , (4.4)

with a(ρ, S) = 0 if ρ ≥ ρ̄ , or

Tε(v
′ → v)[S, ρ] = ψ(S(x, t), S(x + εµ(ρ)v, t) , (4.5)

with µ(ρ) = 0 , if ρ ≥ ρ̄ ,

we have:
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Theorem 4.4. 5 Consider the kinetic model for chemotaxis (3.1–3.4) with turning

kernel given by (4.4) or (4.5). For ε small enough, its solution (f, S) exists globally.

Furthermore

||ρ(·, t)||L∞(Rn) ≤ max{||ρI||L∞(Rn), ρ̄} . (4.6)

The second result in Theorem 4.1 can now also be obtained as a corollary 5 of

this theorem (together with theorem 3.1).

Models with prevention of blow up can be used for studying the dynamics of

cell aggregates. The long-time behavior of the Keller-Segel model with χ = (1 − ρ)

coupled to a parabolic equation for S has been investigated for one space dimension

in 42. Dolak and Schmeiser 11 study a similar system with an elliptic equation for

S and a small diffusion constant ε. These models show a very interesting long-

time behavior: starting from almost homogeneous initial conditions, plateau-like

patterns with the cell density varying between 1 and 0 emerge quickly, and seem to

remain stationary for a long time. However, the smaller plateaus are attracted by

the larger ones, and slowly move towards them. When a certain minimum distance

between the plateaus has been reached, the smaller plateau collapses and merges

with the larger one. This coarsening process continues until only one plateau at one

of the domain boundaries is left. The time it takes the plateaus to merge depends

exponentially on the domain length 42 or, if the length remains fixed, on the inverse

of the diffusion constant ε 11. For the latter case, the authors derive an ODE system

describing the movement of the plateau boundaries using the method of exponential

asymptotics, based on a linearization around an approximate steady state.

5. A stochastic model with memory effects for multiple

chemoattractants

In this section we review results from 38 and 39, concerned with the chemotactic

movement of leukocytes in the presence of several different chemoattractants.

Let the cell position x(t) ∈ R
2 and assume the presence of k chemoattractant

substances with concentrations Si(x), 1 ≤ i ≤ k, assumed stationary for simplicity.

Every single cell has receptors which let the cell perceive the directions and

strengths of chemoattractant gradients. Motivated by experimental evidence13 we

assume that each cell has a dynamically changing sensitivity ζi(t) ≥ 0 for the

chemoattractant Si, 1 ≤ i ≤ k. These represent the responsiveness of cells to the

presence of the respective chemoattractant gradient which depends, among other

things, on the absolute number of receptors for the respective chemoattractant and

on the number of “free” receptors, i.e. on the fraction of receptors which are not

bound to a chemoattractant molecule.

To obtain a formula for the chemotactic velocity, we therefore sum up the contri-

butions ζi∇Si. Inclusion of random effects leads to a stochastic differential equation
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of type (2.4) for the evolution of the spatial position of a single leukocyte:

dx = uc(x, ζ) dt+ σ dB, with uc(x, ζ) =

m
∑

i=1

ζi∇Si(x) , (5.1)

where the standard deviation σ > 0 is assumed constant.

Experimental evidence also indicates that the sensitivity for a chemoattractant is

downregulated in situations where the concentration of this chemoattractant is high.

For that reason we assume that for each sensitivity ζi the vector S := (S1, . . . , Sk)T

of chemoattractant concentrations is mapped to some target value in the interval

[ζmin
i , ζmax

i ]. The target values are given by

ζ̂i(S) := ζmin
i +

1

(AS)i + (ζmax
i − ζmin

i )−1
, i = 1, . . . , k, (5.2)

where A = (aij)1≤i,j≤k, aij ≥ 0 is the matrix of downregulation factors. In the case

where sensitivities are only downregulated by their associated chemoattractants, it

is a diagonal matrix. Note that the expression (5.2) can be derived from discrete

random walks (see 41). Observe that ζmin
i and ζmax

i are those levels for the sensitivity

which are reached when downregulation is maximal, respectively minimal.

Experiments show the ability of leukocytes to navigate from one chemoattractant

source to the next. This would be impossible to describe with a standard Keller-

Segel type model, where the sensitivities assume their target values instantaneously.

The main feature of our model is the assumption that the sensitivities adapt to the

target values with a delay. Their dynamics is given by

dζi = η(x, ζ) = κi(ζ̂i(S(x)) − ζi)dt, (5.3)

where κi > 0 is the rate of adaption of the sensitivity ζi.

In 39 a dynamical systems analysis of a deterministic version (with σ = 0) of

(5.1), (5.3) has been carried out for the special case k = 2 of two chemoattractants

whose concentrations are stationary Gaussians. The system exhibits a supercritical

Hopf bifurcation. The bifurcation parameter corresponds to a scaled version of the

relaxation time of the sensitivities. For small values of this parameter, the system

has a stable fixed point between the peaks, i.e. cells migrate to this position, whereas

for slow sensitivity relaxation, the system has a stable limit cycle, i.e., cells keep

moving back and forth between the two chemoattractant peaks, which is the desired

behaviour.

Returning to the stochastic system (5.1), (5.3), parameter values are chosen

corresponding to the latter situation described above. We expect the existence of a

stable invariant measure and compare two numerical approaches for its computa-

tion.

On the one hand, the stochastic system is solved straightforwardly by a ’direct

simulation Monte Carlo’ method. The resulting steady state distribution ρ(x) in

position space is depicted in Figure 2(a).

The second approach starts with the Fokker-Planck equation (2.5) for the dis-

tribution function p(x, ζ, t) and performs a simplification as in moment expansion 1
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in Section 2. Observe that the set of possible sensitivity configurations is given by

Z := [ζmin
1 , ζmax

1 ] × . . .× [ζmin
k , ζmax

k ] and define the macroscopic density ρ and the

mean values z of the sensitivities by (2.25). It turns out that a closure assumption

is only needed for the flux term in the z-equation. However, the simple closure used

in Section 2 would be inappropriate here. It is important that at one point between

the chemoattractant peaks cells with stronger sensitivity for one chemoattractant

or the other may exists simultaneously. Therefore the essential dynamic behaviour

would be destroyed by representing sensitivities only by their mean values. As a

consequence, we expand the closure assumption (2.29) using a symmetric, positive

definite covariance matrix C = (cij)k×k as an additional modelling parameter and

introduce the closure

∫

Z

pζiucdζ ∼ ρ



ziuc(z) +

k
∑

j=1

cij∇Sj



 .

Then the system of moments (2.28), (2.29) reads

∂ρ

∂t
+ ∇ ·



ρ

k
∑

j=1

zj ∇Sj



 =
σ2

2
∆xρ , (5.4)

∂(ρzi)

∂t
+ ∇ ·



ρ
k

∑

j=1

(

cij + zizj

)

∇Sj



 =
σ2

2
∆(ρzi) + ρκi(ζ̂i(S) − zi) . (5.5)

For more details see 39. In 38 this system of moments with minor modifications is

used to simulate the experiments published in 13.

Figure 2(b) shows ρ in a steady state computed by discretization of the system

of moments (5.4), (5.5).

The covariance matrix C has been computed by averaging the result of the direct

simulation 2(a). The differences between Figures 2(a) and 2(b) are explained by the

fact that local variations in the (co)variances have been neglected.

6. Modelling of Dictyostelium discoideum

Staying within the framework discussed in the introduction, we assume that the

cell density evolves according to the master equation (2.9), where S is now the

external cAMP concentration, and the components of ζ ∈ R
2 can be interpreted as

the concentration of two internal chemicals, one stimulating the production of the

chemoattractant, the other inhibiting it. We assume that the activating chemical,

ζ1, evolves on a very fast time scale and adapts instantaneously such that

ζ1 = (z̄ + h(S) − ζ2)+. (6.1)

Here, h is a sub-linearly increasing function of S and z̄ ≥ 0 a constant. To ensure

that ζ1 is always positive, we take only the positive part on the right hand side of
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(a) Steady state solution of the stochastic
differential equations.

(b) Steady state solution of the system of
moments.

Fig. 2. Comparison of stationary solutions for ρ(x, t).

(6.1). The other variable, ζ2, evolves slower and aims at restoring the equilibrium

value z̄ of ζ1. We set

ζ̇2 =
1

τz
(h(S) − ζ2). (6.2)

Finally, we assume that S is subject to diffusion as well as natural degradation, and

that its production rate is proportional to the total concentration of ζ1,

St = ∆S + ρζ1 − g(S), (6.3)

where g ≥ 0 is an at least linearly increasing function of S describing its degradation.

This system, first introduced in Othmer and Schaap 32, features a typical activator-

inhibitor mechanism: the activator ζ1 grows quickly, stimulates production of S

until the inhibitor ζ2 becomes large enough to slow down the growth of ζ1 and

thus of S and the degradation term g(S) can dominate. Depending on the choice

of parameters, this system can both imitate the periodic oscillations of pacemaker

cells and the relay behavior of normal cells (see 10).

Furthermore, we assume that the evolution of the cell density P (x, v, ζ1, ζ2, t) is

given by (2.9) and choose a turning kernel satisfying assumption (3.5) from section

2. The fact that it is a monotonically decreasing function of the material derivative

of the chemoattractant, St +v ·∇S, can be interpreted such that a cell encountering

a rising concentration along its path is less likely to change its direction and the

other way round.

Elimination of the equation for ζ1 and applying a moment closure to (2.9) simi-

larly to the one shown in the introduction yields a system for f(x, v, t) and z(x, t),

the mean value of ζ2. Finally, carrying out a Chapman-Enskog expansion according
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Fig. 3. Time sequence of cAMP waves on a square domain.

Fig. 4. Numerical solution of (6.4), showing the cell density at three different time levels.

to section 2 yields the macroscopic system

ρt + ∇x · (ρuc) = ε∇x · (D∇x ρ) (6.4)

(ρz)t + ∇x · (zρuc) = ε∇x · (Dz∇x ρ) +
h(S) − z

τz
(6.5)

St = ∆S +
[

h(S) − z + z̄
]

+
ρ− g(S) (6.6)

The chemotactic velocity is of the form uc = χ∇S, where χ is positive and an

increasing function in St. Note that the diffusion term in (6.5) differs from that

in (2.29), which is due to a different closure assumption. The derivation of system

(6.4–6.6) is presented in detail in 10.

Figure 3 and 4 show numerical solutions of the model. For the simulations,

we assumed that there are two different types of cells: normal cells with a set of

parameters that yield the relay behavior as described above, and pacemakers, with

parameters yielding periodic oscillations of the chemical. As initial condition, we put

two small discs of pacemaker cells onto a lawn of normal, relay-competent cells. In

figure 3, the temporal evolution of the chemoattractant S, spreading in concentric

rings is shown. Figure 4 shows a time sequence of the cell density ρ. In contrast

to numerical experiments where the chemotactic sensitivity is constant (see 10),

aggregation of cells at the sites of the pacemakers can be observed here.
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