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Simulation of lamellipodial fragments
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Abstract A steepest descent approximation scheme is derived for a recently
developed model for the dynamics of the actin cytoskeleton in the lamellipodia
of living cells. The scheme is used as a numerical method for the simulation of
thought experiments, where a lamellipodial fragment is pushed by a pipette,
and subsequently changes its shape and position.
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1 Introduction

Lamellipodia are the motility organs of many types of crawling cells. They
are flat structures supported by a network of actin polymers. Crossing actin
filaments are potentially linked by cross-linker proteins. Additionally trans-
membrane linkages like integrins and adhesion complexes connect filaments to
exterior structures like substrate or extra cellular matrix. The actin filaments
abut the membrane at the so called leading edge with their barbed ends. Here
polymerisation takes place balanced by depolymerisation at their opposite
pointed ends. Actin polymerisation triggers protrusive forces at the leading
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edge and thus is hold responsible for the amoeboid movement of a wide variety
of cell types. Part of the protrusive forces are compensated by contractile
forces due to myosin motor proteins which are present in the rear part of the
lamellipodium and within bundles of anti-parallel actin filaments.

The modelling of the dynamic chemo-mechanical behaviour of lamellipodia
has received considerable attention recently. As examples we mention dynamic
simulations based on a Potts model, where the polymer filaments locally may
take one of six orientations (Marée et al (2006)), a two dimensional elastic
continuum model (Rubinstein et al (2005)), and a multiscale model (Kim et al
(2009)).

The philosophy of our recent modeling approach (cp. Oelz et al (2008), Oelz
and Schmeiser (2010b)) is the derivation of continuum models for the lamel-
lipodium, based on models for individual filaments. It combines the effects of
filament bending, polymerization and depolymerization, and of cytoskeleton
proteins cross-linking the network and providing adhesion to the substrate.
The modeling accounts for the reaction kinetics and for the mechanical ef-
fects of the latter. The term nucleation refers to the process by which new
filaments appear at the leading edge of the membrane. There is a controversy
in the literature about whether this happens independent from existing fila-
ments or whether new filaments grow away from existing ones by a process
called dentritic branching which has been been a paradigm during the last
years (cp. Pollard (2007)). Recent studies (cp. Koestler et al (2008)), however,
have indicate that filaments in lamellipodia are not organised in branched ar-
rays. Instead the structure of the pseudo-two-dimensional actin network con-
tains unbranched filaments, a structural principle which is in the centre of the
present modelling approach (cp. Oelz et al (2008)).

The result is a multiphase evolution model for lamellipodia with arbitrary
shape which allows to relate the structure and dynamics of the actin network to
the traction forces and shape changes that constitute the amoeboid movement
of cells. For a more detailed description of the biological phenomena and other
modelling approaches we refer to Oelz et al (2008) and Oelz and Schmeiser
(2010b).

After presenting the model in the remainder of this section, we formulate
a numerical scheme in Sect. 2, namely the steepest descent approximation
scheme based on solving a minimization problem in each time step. In Sect. 3
simulations are presented, which correspond to situations, where cells (Henson
et al (1999)) or cytoplasmic fragments (Verkhovsky et al (1998)), placed on
a flat substrate, assume a preferably circular form, even after deformation by
external mechanical forces.

The model assumes that there is an elastic resistance against bending of
actin filaments, against stretching and twisting of cross-links between the fil-
aments, against polymerization of the barbed ends by the membrane, and
against the stretching of transmembrane linkages (called adhesions) between
filaments and the substrate.
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Fig. 1 The functional framework of the model.

The model assumes that the lamellipodium is two-dimensional and has the
topology of a ring, i.e. it lies between two closed curves. Furthermore, following
experimental evidence that locally the distribution of filament directions is
bimodal (Verkhovsky et al (2003)), it assumes that all actin filaments belong
to one of two families, called clockwise and anti-clockwise filaments. Filaments
of the same family do not cross each other. Crossings of clockwise with anti-
clockwise filaments are transversal. All barbed ends touch the leading edge of
the lamellipodium, i.e. the outer curve of the previous assumption. Filaments
are inextensible.

As a consequence, the lamellipodium has the organization depicted in
Fig. 1. The model will be presented in nondimensional form (see Oelz and
Schmeiser (2010b) for details of the scaling). The index α ∈ S1 is used for
labelling filaments, where the torus S1 will occasionally be represented by the
interval [−π, π). Thus, all functions of α are assumed 2π-periodic in the follow-
ing, which is a consequence of the ring topology. The position along filaments
is given by the arclength parameter s ∈ [−L, 0], where the maximal length of
filaments is given by L > 0. Hence we define the Lagrange parameter domain

B := S1 × [−L, 0] .

For any time t ≥ 0, F+(t, α, s) and F−(t, α, s) with

F± : [0,∞) × B → R
2 ,

describe the positions of the clockwise and, respectively, anti-clockwise fila-
ments.
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The fact that filaments of the same family do not cross, implies that
F±(t, ·) : B → R

2 has to be one-to-one. The shape of the lamellipodium
at time t is given by

Ω(t) = F+(t, B) ∪ F−(t, B) .

Its boundary consists of an inner and an outer curve: ∂Ω(t) = ∂Ωin(t) ∪
∂Ωout(t). The facts that s is an arclength parameter and that all barbed ends
touch the leading edge of the membrane, is translated into the two constraints

|∂sF
+| = |∂sF

−| = 1 ,

∂Ωout(t) = {F+(t, α, 0) : α ∈ S1} = {F−(t, α, 0) : α ∈ S1} .
(1)

Filaments polymerize at the barbed ends (s = 0) with given polymerization

speed v±(t, α). Since filaments are assumed inextensible, σ = s+
∫ t

0
v±(t′, α)dt′

can be interpreted as a Lagrangian variable, i.e. as a label for monomers, along
the clockwise (resp. anticlockwise) filament with label α. Correspondingly, the
material derivative

D±
t := ∂t − v±∂s (2)

is used here and in the following. Depolymerization at the pointed ends is a
stochastic process with prescribed distribution. The length distributions

η± : [0,∞) × B → R+

are considered as given. They are nondecreasing functions of s, which we in-
terpret as the number density of filaments in each index element dα, whose
length at time t is bigger than −s.

The model assumes that each clockwise filament crosses each anti-clockwise
filament at most once. Crossings of filaments only occur in Ωc(t) = F+(t, B)∩
F−(t, B) ⊂ Ω(t). In terms of the filament labels, this set can also be repre-
sented by

C(t) =
{

(α+, α−) ∈ (S1)2 : ∃ s±(t, α+, α−) such that

F+(t, α+, s+(t, α+, α−)) = F−(t, α−, s−(t, α+, α−))
}

.
(3)

Consistent with the assumption that two given filaments cross at most once,
we assume that for each (α+, α−) ∈ C(t), s+(t, α+, α−) and s−(t, α+, α−) are
unique. Defining the sets of potential binding sites for cross-linkers

B±(t) := {(α±, s±(t, α+, α−)) : (α+, α−) ∈ C(t)} ⊂ B ,

the maps (α+, α−) 7→ (α±, s±(t, α+, α−)) from C(t) to B±(t) are invert-
ible. Combining one of them with the other’s inverse gives an invertible map
(α+, s+) 7→ (α−(t, α+, s+), s−(t, α+, s+)) from B+(t) to B−(t).

We complete the description of the geometry of crossings by defining the
angle

ϕ(t, α+, α−) = arccos
[

∂sF
+(t, α+, s+(t, α+, α−)) · ∂sF

−(t, α−, s−(t, α+, α−))
]

,
(4)
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between crossing filaments. This will be compared to an equilibrium angle ϕ0

determined by the properties of cross-linking molecules. Permitting also obtuse
angles 0 ≤ ϕ, ϕ0 ≤ π, we allow for cross-linkers sensitive to the orientation of
actin filaments.

The stochastic building and breaking of cross-links can be described as
a macroscopic friction effect with friction coefficient µS [ϕ − ϕ0] as well as a
resistance against cross-link twisting with the macroscopic coefficient µT [ϕ −
ϕ0], both possibly depending on the deviation ϕ − ϕ0 from the equilibrium
angle. When writing these macroscopic stiffness parameters as functions on
the B-domains, it has to be taken into account that they only contribute
on B±, and the number of crossings per unit length |∂α∓/∂s±| has to be
considered:

µS
± =

{

µS
∣

∣

∣

∂α∓

∂s±

∣

∣

∣
in B±(t) ,

0 in B \ B±(t) ,
µT
± =

{

µT
∣

∣

∣

∂α∓

∂s±

∣

∣

∣
in B±(t) ,

0 in B \ B±(t) .
(5)

The building and breaking of connections to the substrate by adhesion molecules
leads to a macroscopic friction effect with a constant friction coefficient µA.
This assumes uniform distributions of possible adhesion sites across the sub-
strate and along the filaments.

We compute the circumference C[F+] = C[F−] of the lamellipodium, given
by either one of the two equivalent formulations

C[F±] :=

∫

S1

|∂αF±(t, α, 0)| dα . (6)

The parameter κM > 0 represents the resistance of the membrane against
stretching beyond an equilibrium circumference C0. The bending elasticity of
actin filaments is denoted by κB.

The model is given by the two force-balance equations

κB∂2
s (η±∂2

sF±) − ∂s(η
±λ±∂sF

±) + η± µA D±
t F±

± ∂s

(

η+η−µT
± (ϕ − ϕ0) ∂sF

±⊥
)

± η+η−µS
±

(

D+
t F+ − D−

t F−
)

= 0 . (7)

The terms in the first row correspond to standard linear models for the de-
formation of beams. The first term corresponds to bending, the second to
stretching (just the right amount such that |∂sF

±| = 1 holds), and the third
to friction caused by adhesion to the substrate. All these terms are evalu-
ated at (t, α, s) and none of them generates any coupling in α, i.e., between
different filaments. The terms in the second line describe the effects of cross-
linking. Note that, in the equation for F+, the derivatives of F− have to be
evaluated at (t, α−(t, α, s), s−(t, α, s)) and vice versa, employing the mapping
between B+(t) and B−(t). The last term represents the macroscopic effect of
the resistance against stretching of cross-links.
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The solutions of the equations (7) have to satisfy the boundary conditions

κB∂s(η
±∂2

sF±) − λ±∂sF
± ± µT

±(ϕ − ϕ0)∂sF
±⊥

= ±λ±
edgeν − κM (C± − C0)+ ∂α

(

∂αF±

|∂αF±|

)

, for s = 0 ,

−κB∂s(η
±∂2

sF±) + η±λ±∂sF
± ∓ η+η−µT

±(ϕ − ϕ0)∂sF
±⊥ = 0 , for s = −L ,

η±∂2
sF± = 0 , for s = −L, 0 .

(8)
The Lagrange parameters λ±(t, α, s) and λ−

edge(t, α) = λ+
edge(t, α

+(t, α, 0))
have to be determined such that the constraints (1) are satisfied.

The weak formulation of (7), (8) is given by
∫

S1

[

κM
(

C± − C0

)

+

∂αF±

|∂αF±|
· ∂αδF± ± λ±

edgeν · δF±

]

s=0

dα

±

∫

C(t)

(

µS(DtF
+ − DtF

−) · δF± − µT (ϕ − ϕ0)∂sF
±⊥ · ∂sδF

±
)

η+η− d(α+, α−)

+

∫

B

(

κB∂2
sF± · ∂2

sδF± + µAD±
t F± · δF± + λ±∂sF

± · ∂sδF
±
)

η± d(α, s) = 0 ,

(9)
with the test functions δF± : B 7→ R

2 . The first integral corresponds to
the leading edge and contributes to the first boundary condition in (8). The
remaining boundary conditions are the natural conditions modelling the ab-
sence of a linear force acting on the pointed ends and of a moment of mo-
mentum at either end. From the second and the third integral, the system (7)
is derived. For that purpose the integration domain C(t) has to mapped to
B. Noting that in the second integral F± and δF± and their derivatives are
evaluated at (t, α±, s±), we employ the transformations (α+, α−) 7→ (α, s) =
(α±, s±(t, α+, α−)), which yields the additional coefficients in (5).

2 Numerical scheme

In this section we will present an approximation scheme for solutions of the ini-
tial value problem associated to the system (7), (8), (1). It is derived from the
usual steepest descent approximation scheme for gradient flows. (cp. De Giorgi
et al (1980); De Giorgi (1993); Ambrosio et al (2005)). Let

A :=
{

G : B → R
2 : |∂sG| ≡ 1

}

, (10)

then we define the set of admissible network configurations A as

A :=
{

(G+, G−) ∈ A × A : {G+(α, 0) : α ∈ S1} = {G−(α, 0) : α ∈ S1}
}

,
(11)

which represents the set of all network configurations that satisfy the con-
straints (1).

Let τ > 0 be the constant size of the time steps and tn = nτ , n =
0, 1, ..., the discrete times. By F±

n (α, s) we denote discrete approximations
for F±(tn, α, s). We also use the abbreviations η±

n (α, s) = η±(tn, α, s) and
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v±n (α) = v±(tn, α). As an approximation of C(tn−1) we define Cn−1 as the set
of pairs (α+, α−), such that s±n−1(α

+, α−) ∈ [−L, 0] exist, satisfying

F+
n−1(α

+, s+
n−1) = F−

n−1(α
−, s−n−1) . (12)

The angle ϕn−1(α
+, α−) is defined by (4) in terms of ∂sF

±
n−1(α

±, s±n−1). We
also define µS

n−1 = µS [ϕn−1 − ϕ0] and µT
n−1 = µT [ϕn−1 − ϕ0].

Starting with initial data (F+
I , F−

I ) ∈ A, we define the sequence (F+
n , F−

n )
by the recursive scheme

(F+
0 , F−

0 ) = (F+
I , F−

I ) and (F+
n , F−

n ) = argmin(G+,G−)∈A Un[G+, G−] .
(13)

Mathematically, the scheme (13) assumes that the filament positions min-
imize a potential energy functional containing contributions from elastic and
dissipative effects,

Un[G+, G−] :=U+,n
bending[G

+] + U−,n
bending[G

−] + Un
scl[G

+, G−] + Un
tcl[G

+, G−]

+ Umem[G+, G−] + U+,n
adh [G+] + U−,n

adh [G−] ,
(14)

where

Umem[G+, G−] := κM

(

C[G+] + C[G−]

2
− C0

)2

+

,

U±,n
bending[G] :=

κB

2

∫

B

|∂2
sG|2η±

n d(α, s) ,

Un
scl[G

+, G−] :=
1

2τ

∫

Cn−1

µS
n−1

∣

∣G+
(

α+, s+
n−1 − v+

n τ
)

−

− G−
(

t, α−, s−n−1 − v−n τ
)
∣

∣

2
η+

n η−
n d(α+, α−) ,

Un
tcl[G

+, G−] :=
1

2

∫

Cn−1

µT
n−1

(

arccos

(

∂sG
+

|∂sG+|
(α+, s+

n−1) ·
∂sG

−

|∂sG−|
(α−, s−n−1)

)

− ϕ0

)2

η+
n η−

n d(α+, α−) ,

U±,n
adh [G] :=

1

2τ

∫

B

µA
∣

∣G
(

α, s − v±n τ
)

− F±
n−1 (α, s)

∣

∣

2
η±

n d(α, s) .

(15)
In the following Lemma we take the convergence of the discrete aproxima-

tions F±
n (., .) to a solution F±(tn, ., .) as a given. For rotationally symmetric

solutions the proof was given in Oelz and Schmeiser (2010a). We then define
consistency of the numerical method as the formal convergence of the discre-
tised problem to the original one and state

Lemma 1 The one-step scheme defined by (13)–(15) is a consistent method

for solving (9) subject to the initial conditions F±(t = 0) = F±
I .
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Proof The positions F±
n have to satisfy the variational equations

δUn[F+
n , F−

n ](δF+, δF−) = 0 (16)

for all admissible variations (δF+, δF−), where δUn is the variation of the total
energy (14). Admissibility conditions for the variations are a consequence of the
constraints (1). Since this leads to rather inconvenient equations, a Lagrange
multiplier approach is used instead, with the additional Lagrangian functionals

U±,n
ext [G±] =

1

2

∫

B

λ±
(

|∂sG
±|2 − 1

)

η±
n d(α, s) ,

and

Uedge[G
+, G−] =

∫

S1

λedge(α
+)(G+(α+, 0) − G−(α̂(α+), 0)) · ν(α+) dα+ ,

where ν(α+) is the unit outward normal vector along the barbed ends of
the clockwise filaments (i.e. orthogonal to ∂αG+(α+, 0)) and α̂(α+) is such
that (G+(α+, 0)−G−(α̂(α+), 0)) is parallel to ν(α+) (cp. Oelz and Schmeiser
(2010b) for more details).

The variational equation now becomes
(

δUn[F+
n , F−

n ] + δU+,n
ext [F+

n ] + δU−,n
ext [F−

n ] + δUedge[F
+
n , F−

n ]
)

(δF+, δF−) = 0 ,
(17)

where δF+ and δF− are unrestricted test functions. We claim that (17) is
consistent with (9) in the limit τ → 0. This will be shown by computing the
variation and by carrying out the limit for each energy contribution individu-
ally after substituting Fn(α, s) = F (t, α, s), Fn−1(α, s) = F (t− τ, α, s) with a
smooth function F .

1. For the resistance against stretching the membrane, we obtain

lim
τ→0

δUmem[F±
n ]δF± =

= κM
(

C[F±] − C0

)

+

∫

S1

∂αF±(s = 0)

|∂αF±(s = 0)|
· ∂αδF±(s = 0) dα . (18)

2. The bending energy of the filaments gives

lim
τ→0

δU±,n
bending[F

±
n ]δF± = κB

∫

B

(

∂2
sF± · ∂2

sδF±
)

η± d(α, s) . (19)

3. The variation of the energy contribution by stretching the cross-links is
given by

δUn
scl[F

+
n , F−

n ]δF± =

= ±
1

τ

∫

Cn−1

(

F+
n

(

α+, s+
n−1 − v+

n τ
)

− F−
n

(

α−, s−n−1 − v−n τ
))

·

· δF±(α±, s±n−1 − v±n τ) η+
n η−

n µS
n−1 d(α+, α−) .
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Using (12), the term in parentheses can be written as

F+
n (α+, s+

n−1 − v+
n τ)−F+

n−1(α
+, s+

n−1 − v+
n τ) + F+

n−1(α
+, s+

n−1 − v+
n τ)−

− F+
n−1(α

+, s+
n−1) + F−

n−1(α
−, s−n−1) − F−

n−1(α
−, s−n−1 − v−n τ)+

+ F−
n−1(α

−, s−n−1 − v−n τ) − F−
n (α−, s−n−1 − v−n τ) .

Therefore passing to the limit τ → 0 gives

lim
τ→0

δUscl[F
+
n , F−

n ]δF± = ±

∫

C(t)

µS(D+
t F+−D−

t F−)·δF± η+η− d(α+, α−) .

(20)
4. For the computation of the variation of the twisting energy we use the

identity
(

δ x
|x|

)

|x|=1
= (x⊥·δx)x⊥ (with the orthogonal vector (x1, x2)

⊥ = (−x2, x1)).

We obtain

δ arccos

(

∂sF
+
n

|∂sF
+
n |

·
∂sF

−
n

|∂sF
−
n |

)

δF± = −
(∂sF

±⊥
n · ∂sF

∓
n )(∂sF

±⊥
n · ∂sδF

±)

sinϕn

= ∓∂sF
±⊥
n · ∂sδF

± ,

where ∂sF
±
n and ∂sδF

± are evaluated at (α±, s±n−1). This implies

lim
τ→0

δUn
tcl[F

+
n , F−

n ]δF± = ∓

∫

C(t)

µT (ϕ−ϕ0)(∂sF
±⊥·∂sδF

±)η+η− d(α+, α−) ,

(21)
where now ∂sF

± and ∂sδF
± are evaluated at (t, α±, s±).

5. The variation of the stretching energy of the adhesions is straightforward
and reads

δU±,n
adh [F±

n ]δF± =
1

τ

∫

B

µA
(

F±
n (α, s − v±n−1τ) − F±

n−1(α, s)
)

· δF±
(

α, s − v±n−1τ
)

η±
n d(α, s) .

In the limit τ → 0, a material derivative occurs similarly to the stretching
of the cross-links:

lim
τ→0

δU±
adh[F

±
n ]δF± =

∫

B

µAD±
t F± · δF± η± d(α, s) . (22)

Adding the contributions (18)–(22) completes the proof.
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Fig. 2 Initial data and solution at time t = 0.12 min with the number values of of the
spatial grid in µm.
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Fig. 3 Linearly decreasing pushing force: solutions at times t = 0.2min and t = 0.6min .
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Fig. 4 Linearly decreasing pushing force: solutions at times t = 0.8min and t = 1.5min
(almost quasi-equilibrium situation).
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Fig. 5 Constant pushing force: solutions at times t = 0.2min and t = 0.6min.
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Fig. 6 Constant pushing force: solutions at times t = 0.8min and t = 1.5min.

3 Simulations

For the purpose of numerical computations, we add an additional component
to the energy functional. It is meant to be a rough model for outer forces
acting on the lamellipodium.

In the first case we assume that the additional component of the energy
functional is given by

Upush,1[G
±] :=

κP,1

2

∫

S1

(G±
x )2−(∂αG±

y )± dα , (23)

where we refer to the membrane represented by either α 7→ G+(α, 0), which
describes the membrane in the clockwise sense, or α 7→ G−(α, 0) describing
the membrane in the anti-clockwise sense. The subscripts (.)± represent the
modulus of the positive and negative part respectively and the subscripts .x
and .y denote the first and second component respectively of the vector. The
functional (23) models pushing forces from the left which, due to the square
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factor, decrease linearly to become zero at x = 0 and which, by the second
factor, are proportional to the component of the membrane that are directed
towards the left hand side.

In a second numerical experiment we assume that the additional compo-
nent to the energy functional is given by

Upush,2[G
±] :=

κP,2

2

∫

S1

(−G±
x )(∂αG±

y )± dα , (24)

which is meant to model constant pushing forces from the left again acting on
those components of the membrane that are directed towards the left hand
side.

The fact that we can model additional phenomena by adding additional
energy components illustrates the flexibility of the present modelling approach.
In order to do numerical experiments, it is even not necessary to go through
the analysis part above. We rather implement the time step approximation
(13) minimising at every time-step the sum of (14) and either (23) or (24).

The constraints (1) are enforced by choosing an appropriate parametriza-
tion of the functions G− and G+,

G−(α, s) = b−(α) −

∫ 0

s

(

cos(φ−(α, s̃))
sin(φ−(α, s̃))

)

ds̃

for a vector valued function b− = b−(α) ∈ R
2 and a scalar valued function

φ− : B 7→ R and

G+(α, s) = b−(ω(α)) −

∫ 0

s

(

cos(φ+(α, s̃))
sin(φ+(α, s̃))

)

ds̃

for scalar valued functions ω(α) and φ+ : B 7→ R.
All the parameters with their respective interpretations are listed in Ta-

ble 1. Many of them have already been used in Oelz et al (2008) to simulate
the original microscopic model in the special case of rotational symmetry.

We make the simplifying assumption that the polymerization rates v± and
the length distributions η± are time-independent and do neither vary with
respect to the filament index α ∈ S1, nor between clockwise and anti-clockwise
filaments, i.e. v±(t, α) = v =const and η±(t, α, s) = η(s). This allows for
a rotationally symmetric steady state (without pushing forces). Furthermore
the length distribution η(s) is assumed to be uniformly positive with a strictly
positive value at s = −L, i.e. we assume a fraction of filaments to be longer
than L but neglect the mechanical effect of the excess parts.

We compute the macroscopic parameters which describe the effect of the
cross-links, µS [ϕ − ϕ0] and µT [ϕ − ϕ0], using the formulas given in Oelz and
Schmeiser (2010b,a) omitting their possible dependence on the deviation from
the equilibrium angle. Finally we use the same argumentation as in Oelz and
Schmeiser (2010a) to determine the value of µA, the macroscopic friction me-
diated by integrin bonds.
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Table 1 List of parameters and literature sources.

Description Symbol Value Reference
Total number of filaments #F 4400 Koestler et al

(2008)

Number density of filaments
with length ≥ −s.

η±(t, α, s) 1
2π

#F

2
(1.0 + 3/20s)

Equilibrium circumference
of the membrane

C0 8 × 2π µm

Maximal length of filaments L 6 µm
Polymerization rate v±(t, α) 8 µm min−1 c.p. Mogilner and

Edelstein-Keshet
(2002)

Equilibrium angle of cross-
links

ϕ0 70 Mullins et al (1998)

Elasticity of the membrane κM 911.25 pN µm−1 Oelz et al (2008)
Bending elasticity of one fil-
ament

κB 0.07 pN µm2 Gittes et al (1993)

Macroscopic friction medi-
ated by integrin bonds

µA 0.1367 pN minµm−2 Oberhauser et al
(2002); Li et al
(2003); estima-
tion in Oelz et al
(2008); computa-
tion of macroscopic
parameters in Oelz
and Schmeiser
(2010b,a).

Macroscopic friction medi-
ated by cross-linker proteins
at one filament crossing

µS 19.006 pN minµm−1 Schwaiger et al
(2004); Goldmann
and Isenberg
(1993), compu-
tation in Oelz
and Schmeiser
(2010b,a).

Macroscopic effect of tor-
sional stiffness of cross-
linker proteins at one fila-
ment crossing

µT 0.21495 pN µm Oelz et al (2008);
Goldmann and
Isenberg (1993);
together with com-
putation in Oelz
and Schmeiser
(2010b,a)

Force parameter in Sce-
nario 1

κE,1 154.0 pN µm−2

Force parameter in Sce-
nario 2

κE,2 924.0 pN µm−1

For the numerical computations we use a uniform grid with N = 9 points in
s-direction and M = 32 points in α-direction. The contributions of cross-links
in (15), namely Un

scl[G
+, G−] and Un

tcl[G
+, G−], are not evaluated as integrals

on Cn−1. Instead, using the transformed densities of cross-links (5), they are
evaluated on B+

n−1 := B+(tn−1) and on B−
n−1 := B−(tn−1) and finally the

average of the two values is taken. This special treatment guarantees that the
network stabilizing effect of cross-linkers, which we already observed in Oelz
et al (2008), is not inhibited by the discretization.
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We visualize the lamellipodium by a random sample of the filament length
distribution η combined with the information on the geometry F±

n . This way
we can create a realistic impression of filament shape and density at every point
within the lamellipodium, whereas the numerical computations are done on
the basis of 2 × 32 discrete filaments of length L.

We start with the pushing force initially being switched off. The initial
condition and the lamellipodium after a short period of relaxation is shown in
Fig. 2. In this figure, like in all the following figures, the scaling of the spatial
grid is given in µm.

The linearly decreasing pushing force due to the quadratic potential (23)
is then switched on at t = 0.15 min and initiates a slow movement combined
with a gradual deformation which can be observed at time t = 0.2 min and,
more intensively, at t = 0.6 min (Fig. 3). We observe a horizontal compression
of the lamellipodium since the potential (23) penalizes far left positions of the
membrane. Finally, at t = 0.6 min the pushing force is again switched off and
we observe that the shape of the lamellipodium gradually relaxes towards a
circular shape as shown at t = 1.5 min (Fig. 4).

We remark that the observed deformation is not of elastic nature, although
the shape becomes round again after the applied force ceases to be active. The
round shape is actually not stabilized by the network-dynamics but by the
membrane model which mimics an elastic rubber band and which therefore
generates forces that prefer the circular shape.

We also perform a second numerical simulation in which we change the
characteristics of the pushing force, this time using the linear potential (24)
mimicking constant force, which we switch on and off at the same times as
before. The initial evolution therefore coincides with the one of the previous
setting (Fig. 2). The constant pushing force again triggers a slow movement
to the right, but a deformation which mostly consists in vertical compression
(Fig. 5). This can be easily explained by the fact that the linear potential
(24) is most effectively avoided by reducing the surface components which are
directed towards the left hand side and of course by displacement to the right
against integrin-mediated friction. The relaxation to a roundish shape (Fig. 6)
after switching off the pushing at t = 0.6 min is analogous to the previous
situation.

Apart from the change in shape and the movement, the filaments perform
”lateral flow”, i.e. those pointing in clockwise direction move in clockwise
direction and those pointing in anti-clockwise direction move in anti-clockwise
direction. Two specific filaments are highlighted in all the frames to illustrate
this behaviour.

In fact, in both cases we do not expect a return to a perfect circle because
pushing seems to slightly modify the density of filaments due to a change in
geometry and therefore lateral flow speed. This effect seems to be stronger
in the case of constant force and can be observed in Fig. 6 in terms of a
local difference in density between clockwise and anticlockwise filaments. We
suppose that this implies a slightly inhomogeneous force distribution around
the membrane and thus inhibits the return to a perfect circular shape.
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The comparability of these simulation results with published experiments
is limited to the change in shape and position as a direct response of the lamel-
lipodium to exterior pushing forces. What the simulations do not show is the
subsequent interior reorganisation process leading to self propelled movement
which in experiments with lamellipodial fragments is initiated by the outer
stimulus (Verkhovsky et al (1998)) and which can be observed spontaneously
with keratocytes (Yam et al (2007)).

Contractile forces due to myosin play an essential role in the reorganisation
process (Kozlov (2007)). To capture this effect in a future version of our math-
ematical model the effect of myosin will have to be included. Different ways
of adding the description of myosin seem to be possible, either by adding it as
an additional type of cross-linker exerting a contractile force on the binding
sites or by adding the effect of contractile actomyosin bundles. In the model
these might attach to the interior boundary of the lamellipodium sheet or they
might be linked to its internal structures.

References
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