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Abstract

A kinetic chemotaxis model with attractive interaction by quasistationary chemical signalling
is considered. The special choice of the turning operator, with velocity jumps biased towards the
chemical concentration gradient, permits closed ODE systems for moments of the distribution
function of arbitrary order. The system for second order moments exhibits a critical mass
phenomeneon. The main result is existence of an aggregated steady state for supercritical mass.

1 Introduction

Chemotaxis, the movement of biological agents influenced by gradients of chemical concentrations,
is a ubiquitous process in biological systems. On the other hand, the production or degradation of
chemicals is at the basis of standard signalling mechanisms between individuals. This produces a
nonlinear feedback which, together with chemotactic motility, may drive self-organization processes
in groups of agents.

A typical example, observed in many bacterial and amoeboid species, is aggregation driven by
the production of a diffusible chemical, and chemotactic movement biased towards the direction of
the gradient of the chemical concentration (see the large literature on Dictyostelium discoideum or,
for bacteria, [9]). Since motility usually has a random component, it is a standard question in this
situation, if the attractive mechanism is strong enough to overcome the dispersion caused by the
random motility component.

The type of mathematical models mostly depends on the nature of the motility process. The
standard assumption of Brownian motion with drift, the latter determined by chemotaxis, leads
to a version of the classical Patlak-Keller-Segel (PKS) model [11, 8], where a convection-diffusion
equation for the agent density is coupled with a reaction-diffusion equation for the chemical concen-
tration. For certain bacterial species a description by a velocity jump process is more appropriate,
whence the convection-diffusion equation of the PKS model is replaced by a kinetic transport equa-
tion [10]. The PKS model can typically be recovered as a macroscopic limit [4, 7]. However, some
observed phenomena are only explainable by kinetic models [12].

Three types of long time behavior can be observed in mathematical models. If the random
motion of agents dominates, this leads to dispersion, i.e. the same qualitative behavior as for the
heat equation. For dominating attractive effects, the agent density either has a nontrivial aggregated
long-time limit, or it blows up in finite time, typically in a concentration event. The two-dimensional
parabolic-elliptic PKS model (i.e. with a quasistationary equation for the chemical concentration)
has been thoroughly analyzed with respect to these questions. It shows a critical mass phenomenon:
Among the initial data with finite variance those with the total mass below a critical value lead
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to dispersion and those with supercritical mass to finite time blow-up [1]. At the blow-up time
strong solutions cease to exist, but a continuation by measure solutions is possible as limiting case
of regularized models [6, 13]. The corresponding dichotomy has been shown to exist also in kinetic
transport models [2]. The situation for other versions of the PKS model and, in particular, for
kinetic models is less clear.

Motivated by experimental results for E. coli [9], a linear kinetic model with given aggregated
chemical concentration has been analyzed in [3]. The existence of a nontrivial steady state and its
dynamic stability have been proven (the latter by employing the methodology of [5]). The present
work can be seen as a continuation, where the nonlinear coupling with a quasistationary model
for the chemical is added. The main result is a critical mass phenomenon, but with a dichotomy
between dispersion and the existence of an aggregated steady state. Consider the system

∂tf + v∂xf =

∫
R

(
T [S](v′ → v, x, t)f ′ − T [S](v → v′, x, t)f

)
dv′ , (1)

−D∂2xS = βρf − γS , (2)

a one-dimensional kinetic model for chemotaxis, where the cells with phase space density f(x, v, t)
and macroscopic density and flux,

ρf (x, t) =

∫
R
f(x, v, t)dv and, respectively, jf (x, t) =

∫
R
vf(x, v, t)dv ,

produce the chemoattractant with density S(x, t). The dynamics of the chemoattractant (diffusion,
production, and decay) is assumed to be fast (and therefore modelled as quasistationary) compared
to the dynamics of the cells.

We consider two choices for the turning kernel:

Model A: T [S](v → v′, x, t) = κS(x+ αv′, t) ,

Model B: T [S](v → v′, x, t) = κS(x+ α(v′ − v), t) .

For both models, we assume α, β, γ, κ,D > 0. In Model A, cells decide about reorientation by
scanning the chemoattractant density in the directions of possible post-turning velocities. In Model
B, they scan in the direction of possible velocity changes. Both models have not been derived
systematically from the microscopic behavior of a particular cell type. However, they are reasonable
from a qualitative point of view, and they have the remarkable mathematical property that the
evolution of moments can be computed by solving linear constant coefficient ODEs without solving
the full equations (see Section 3).

We observe that the rescaling

t→ αt , v → v

α
√
γ/D

, x→ x√
γ/D

, f → f
αγ2

κβD
, S → S

√
γ/D

κ
,

eliminates all parameters, i.e., (1), (2) becomes

∂tf + v∂xf =

∫
R

(
T [S](v′ → v, x, t)f ′ − T [S](v → v′, x, t)f

)
dv′ , (3)

−∂2xS = ρf − S , (4)

with

Model A: T [S](v → v′, x, t) = S(x+ v′, t) ,

Model B: T [S](v → v′, x, t) = S(x+ v′ − v, t) .
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We consider the Cauchy problem with initial conditions

f(x, v, 0) = fI(x, v) ≥ 0 for x, v ∈ R . (5)

The solution S of (2) is defined as the convolution product of the decaying fundamental solution of
−∂2x + id with ρ:

S[ρ](x, t) =
1

2

∫
R
e−|x−y|ρ(y, t)dy . (6)

The initial datum is assumed to possess moments of up to second order:∫
R
ρI dx =

∫
R

∫
R
fI dv dx = M <∞ ,∫

R
|x|2ρI dx =

∫
R

∫
R
|x|2fI dv dx <∞ ,∫

R

∫
R
|v|2fI dv dx <∞ . (7)

We choose a reference frame such that the first order moments vanish initially:∫
R
jI dx =

∫
R

∫
R
vfI dv dx = 0 ,∫

R
xρI dx =

∫
R

∫
R
xfI dv dx = 0 . (8)

We shall show that for Model A the (x- and v-) moments of f up to any fixed order satisfy closed
systems of linear, constant coefficient ODEs. The system of second order moments exhibits a
critical mass phenomenon. If the total mass M is below a critical value, the second order moments
grow indefinitely with time, whereas for large enough mass they converge to finite values. The
corresponding system for Model B always produces growing second order moments. Therefore
we shall concentrate on model A after this observation. It turns out that also the higher order
moment systems exhibit a critical mass phenomenon, however with the critical mass increasing
with the moment order. Since stationary solutions may be the limits when time tends to infinity
of the solutions to the Cauchy problem associated to (1)-(2), this suggests a mass dependent decay
behavior of the steady state. However, a precise characterization is still open.

The plan of the paper is the following. Global in time solutions to the Cauchy problem are
determined in Section 2 for models A and B. The long term behavior of their moments is studied
in Section 3 and proven to depend on the total mass of the solution. A formal asymptotics of the
solution to Model A is performed for large mass in Section 4. The existence of a smooth steady
state for Model A with supercritical mass (of the second order moment system) is proven in Section
5.

2 The Cauchy problem

Theorem 1 Given fI ∈ L1
+(R2) and M =

∫
R2 fI(x, v)dx dv, there is a unique solution

f ∈ C([0,∞), L1
+(R2)) to the Cauchy problem associated to Model A, i.e.,

∂tf + v∂xf = QA(f) , f(t = 0) = fI , (9)

with

QA(f)(v, x) = S[ρf ](x+ v)ρf (x)−Mf(x, v) , S[ρ](x) =
1

2

∫
R
ρ(y)e−|x−y|dy , (10)

where ρf (x, t) =
∫
R f(x, v, t)dv.
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Proof. For every T > 0, let

XT :=

{
ρ ∈ C

(
[0, T ];L1

+(R)
)

:

∫
R
ρ(x, t)dx = M, ∀ t ∈ [0, T ]

}
,

equipped with the natural norm ‖ · ‖XT , and let RA(ρ) =
∫
R f dv, where f is the solution of

∂tf(x, v, t) + v∂xf(x, v, t) = ρ(x, t)S[ρ](x+ v, t)−Mf(x, v, t) , (11)

f(x, v, 0) = fI(x, v) . (12)

It can be computed explicitly as

RA(ρ)(x, t) = e−Mt

∫
R
fI(x−vt, v)dv+

∫ t

0
e−Ms

∫
R
S[ρ](x+v(1−s), t−s)ρ(x−vs, t−s)dv ds. (13)

For ρ ∈ XT nonnegativity of RA(ρ) is obvious, and the mass conservation property follows by
integration of (13) with respect to x, implying R : XT → XT .

The idea is to show that RA is a contraction with respect to ‖ · ‖XT . First we observe that∫
R S[ρ](x, t)dx = M for ρ ∈ XT and that ρ 7→ S[ρ] as a map from L1(R) to L1(R) is Lipschitz with

Lipschitz constant 1. This implies for ρ1, ρ2 ∈ XT , after a change of variables,

‖RA(ρ1)−RA(ρ2)‖XT ≤
∫ T

0
e−Ms

∫
R2

(
ρ1(ξ, t− s)|S[ρ1]− S[ρ2]|(η, t− s)

+S[ρ2](η, t− s)|ρ1 − ρ2|(ξ, t− s)
)
dξ dη ds

≤ 2(1− e−MT )‖ρ1 − ρ2‖XT .

Thus, for T < ln 2
M the map RA is a contraction on XT . This proves local solvability. As a

consequence of the uniform bound in L1(R2) the solution can be extended indefinitely in time steps
of length T .

Theorem 2 Given fI ∈ L1
+(R2) and M =

∫
R2 fI(x, v)dx dv, there is a unique solution

f ∈ C([0,∞), L1
+(R2)) to the Cauchy problem associated to Model B, i.e.,

∂tf + v∂xf = QB(f) , f(t = 0) = fI , (14)

with

QB(f)(v, x) =

∫
S[ρf ](x+ v − v′)f(x, v′)dv′ −Mf(x, v) , S[ρ](x) =

1

2

∫
R
ρ(y)e−|x−y|dy , (15)

where ρf (x, t) =
∫
R f(x, v, t)dv.

Proof. A solution f to the Cauchy problem associated to Model B is directly obtained as the limit
of the increasing sequence (fj) defined by f0 = 0 and fj+1 given from fj as the solution to

∂tfj+1(x, v, t) + v∂xfj+1(x, v, t) =

∫
S[ρfj ](x+ v − v′, t)fj(x, v′, t)dv′ −Mfj+1(x, v, t) , (16)

fj+1(x, v, 0) = fI(x, v) ,

where ρfj =
∫
fjdv. fj+1 is explicitly given from fj by

fj+1(x, v, t) = e−MtfI(x−vt, v)+

∫ t

0
eM(s−t)

∫
R
S[ρfj ](x+v(s−t+1)−v′, s)fj(x+v(s−t), v′, s)dv′ ds.

(17)
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Consequently it can be proven by induction that (fj) is nonnegative, and non decreasing since
f0 = 0 ≤ f1 and fj−1 ≤ fj imply 0 ≤ S[ρfj−1

] ≤ S[ρfj ] and fj ≤ fj+1 by (17). Moreover, denoting
by mj(t) =

∫
fj(x, v, t)dxdv and integrating (16) with respect to (x, v) ∈ R2, it holds

m′j+1 = m2
j −Mmj+1 ,

so that it can be proven by induction that

mj(t) ≤M, j ∈ N. (18)

And so, by the monotone convergence theorem, (fj) converges in L1 to a nonnegative function f . It
implies that the limit in L1 of

( ∫
S[ρfj ](x+v−v′, t)fj(x, v′, t)dv′

)
is
∫
S[ρf ](x+v−v′, t)f(x, v′, t)dv′.

And so, f is a solution of (14). Conservation of mass from (14) implies that
∫
f(x, v, t)dxdv = M .

The limit of (17) implies that f ∈ C([0,∞), L1
+(R2)). f is the unique nonnegative solution of (14)

since its construction makes it minimal among the nonnegative solutions of (14). Indeed, if there
were another nonnegative solution f̃ , then f ≤ f̃ and

∫
f(x, v, t)dxdv =

∫
f̃(x, v, t)dxdv = M would

imply that f̃ = f .

3 Evolution of moments

The closedness of the equations for the moments for Model A relies on the following result

Lemma 1 Let 0 ≤ n ≤ N , let ρ ∈ L1
+(R) have finite moments up to order N , i.e.,∫

R
|x|kρ(x)dx <∞ , k = 0, . . . , N ,

and let S be the bounded solution of ∂2xS = S − ρ, i.e.,

S(x) =
1

2

∫
R
e−|x−y|ρ(y)dy .

Then also S has finite moments up to order N , and with

Rk :=

∫
R
xkρ(x)dx , Sk :=

∫
R
xkS(x)dx , k = 0, . . . , N ,

the following relations hold:

a) Sk = Rk + k(k − 1)Sk−2 , k = 0, . . . , N ,

b)

∫
R

∫
R
xN−nvnS(x+ v)ρ(x)dx dv =

n∑
k=0

(
n

k

)
(−1)n−kSkRN−k 0 ≤ n ≤ N.

Proof. The result can be shown by straightforward computations. We multiply the differential
equation for S by |x|k and xk, and use∫

R
|x|k∂2xS dx = k(k − 1)

∫
R
|x|k−2S dx , and

∫
R
xk∂2xS dx = k(k − 1)Sk−2 ,

to show the boundedness of the moments of S and a). Then b) is a consequence of the substitution
y = x+ v and of the binomial theorem.
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If we concentrate on moments of order N , then the lemma implies

SN = RN + LOT ,

and ∫
R

∫
R
xN−nvnS(x+ v)ρ(x)dx dv = ((−1)n + δn,N )R0RN + LOT ,

where LOT (Lower Order Terms) stands for terms only depending on moments of order lower than
N . Now we introduce moments of solutions f of (3), (4) with respect to x and v:

Am,n(t) :=

∫
R

∫
R
xmvnf(x, v, t)dv dx .

With the help of Lemma 1 and with

−
∫
R

∫
R
xN−nvn(v∂xf)dv dx = (N − n)AN−n−1,n+1 ,

we can derive differential equations for the moments. The first and obvious one is mass conservation:

Ȧ0,0 = 0 =⇒ A0,0 = M .

As a consequence, the turning operator of Model A after elimination of the unknown S by (6), can
now be written as

QA(f)(x, v) = S[ρf ](x+ v)ρ(x)−Mf(x, v) .

For the first order moments, we obtain

Ȧ1,0 = A0,1 , Ȧ0,1 = −MA0,1 =⇒ A1,0 = A0,1 = 0 ,

because of (8). For the moments of order two it gets more interesting:

Ȧ2,0 = 2A1,1 ,

Ȧ1,1 = A0,2 −MA1,1 −MA2,0 ,

Ȧ0,2 = 2MA2,0 −MA0,2 + 2M2 .

Application of the Routh-Hurwitz criterion to the characteristic polynomial of the coefficient matrix
shows that for M < 2 at least one positive eigenvalue exists, whereas for M > 2 all eigenvalues have
negative real parts. Thus, in the latter case all solutions converge to the steady state

(A2,0, A1,1, A0,2) =

(
2M

M − 2
, 0,

2M2

M − 2

)
.

For the higher order moments we only concentrate on the highest order terms on the right hand
sides:

ȦN−n,n = (N − n)AN−n−1,n+1 + ((−1)n + δn,N )MAN,0 −MAN−n,n + LOT ,

for 0 ≤ n ≤ N . This is a linear ODE system with constant coefficients and an inhomogeneity only
depending on lower order moments. This shows that all moments can be computed recursively.
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If the coefficient matrices of all systems up to order N only have eigenvalues with negative real
parts, then all moments of order up to N have finite limits as t→∞. We have already shown above
that for N = 2 this property holds, iff M > 2.

The characteristic polynomial of the order N coefficient matrix can be written as

pN (λ) = −λ(−M − λ)N +MN !

N−1∑
n=0

(−M − λ)n

n!
+ (−1)NMN ! ,

and the determinant of the coefficient matrix is thus given by

pN (0) = (−1)NMN !qN (M) , qN (M) = 1 +
N−1∑
n=0

(−1)N−n
Mn

n!
.

As we know already and can also be seen from q2(M) = 2−M , the 2nd-order coefficient matrix has
a zero eigenvalue for M = 2. The same is true for 3rd order (q3(M) = M −M2/2 = (2−M)M/2)
but, surprisingly, not for 4th order. The function q4(M) = 2−M +M2/2−M3/6 has a unique zero
M4 ∈ (2, 3).

Conjecture: The functions qN have unique positive zeroes MN , building an increasing sequence,
which tends to infinity. The N th-order linear system above is stable, iff M > MN .

If the conjecture is true then, for every fixed M > 0, only a finite number of moments tends
to a bounded value as t → ∞. This would indicate an M -dependent decay of the equilibrium
distribution with stronger decay for larger values of M .

The essential parts of the conjecture can be proved:

Lemma 2 For fixed N , and M large enough, all roots of pN have negative real parts.

Proof. First we look for eigenvalues, which remain bounded as M →∞. For fixed λ,

pN (λ)

MN
= (−1)N−1(λ+N) +O(M−1) ,

which provides a first root

λ0 = −N +O(M−1) .

Next we look for roots λ = −M − µ with µ bounded as M →∞. It is straightforward to show

pN (−M − µ)

N !M
= rN (µ) +O(M−1) , with rN (µ) = (−1)N +

N∑
n=0

µn

n!
.

Denoting the roots of rN by µ1, . . . , µN ∈ C (multiple roots allowed), we found N more roots of pN :

λj = −M − µj +O(M−1) , j = 1, . . . , N .

Obviously, all the N + 1 roots we found have negative real parts for large enough M .

Lemma 3 For fixed M , and N large enough, there exists at least one positive root of pN .
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Proof. For fixed λ and M ,

pN (λ)

N !M
≈ e−M−λ + (−1)N , as N →∞ .

Therefore, for N large enough there exists λ > 0 such that sign(pN (λ)) = (−1)N . On the other
hand,

lim
λ→∞

pN (λ)(−1)N−1 =∞ ,

completing the proof.

Combination of the existence theorem 1 with the previous results leads to the propagation of
moments:

Corollary 1
Let the assumptions of Theorem 1 hold and let (1 + |x|N + |v|N )fI ∈ L1(R2) for an N ≥ 1.
Then the solution f of (9), (10) satisfies (1 + |x|N + |v|N )f ∈ L∞loc(R+; L1(R2)).
If N ≥ 2 and M > 2, then (1 + |x|2 + |v|2)f ∈ L∞(R+; L1(R2)).

For Model B, the computations are similar but a little more involved. As for Model A, A0,0 = M
and A1,0 = A0,1 = 0 hold. The 2nd order moments satisfy the closed ODE system

Ȧ2,0 = 2A1,1 ,

Ȧ1,1 = A0,2 −MA2,0 ,

Ȧ0,2 = 2M (M +A2,0 −A1,1) . (19)

By their definition and by the Cauchy-Schwarz inequality, for nonvanishing initial data fI their
initial values satisfy A2,0(0)A0,2(0) > A1,1(0)2 and A2,0(0), A0,2 > 0. A straightforward computation
gives

d

dt
(A2,0A0,2 −A2

1,1) = 2MA2,0(M +A2,0) .

This guarantees that A2,0 and A0,2 remain positive for all times.
It is also easily seen that the Jacobian of the right hand side of (19) has at least one positive

eigenvalue. The only steady state has negative A2,0- and A0,2-components and can therefore never be
reached. Thus, all solution components tend to infinity exponentially, meaning that the chemotactic
effect is not strong enough to prevent dispersion. For this reason we concentrate on Model A for
the rest of this work.

4 Formal asymptotics for large mass

With the rescaling f →Mf , S →MS, Model A takes the form

∂tf + v∂xf = M (S[ρf ](x+ v)ρ− f) , (20)

with M now taking the role of an inverse Knudsen number.
The rescaled version of the steady states for the moments are

A2,0,∞ =
2

M − 2
, A1,1,∞ = 0 , A0,2,∞ =

2M

M − 2
, (21)
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which suggests an equilibrium state concentrating with respect to x as M →∞.
As M →∞, formally f(x, v, t)→ f0(x, v, t) = ρ0(x, t)S[ρ0](x+ v, t). Mass conservation gives

∂tρ0 − ∂x(xρ0) = 0 .

Obviously, we have ρ0(x, t)→ δ(x) as t→∞ and, thus,

lim
t→∞

f0(x, v, t) =
1

2
e−|v|δ(x) .

This is in agreement with the limit as M →∞ in (21).

5 Stationary solutions

In this section we first prove in Theorem 3 the existence of even nonnegative L1solutions to the
stationary problem, then their C∞ regularity in Theorem 4.

Theorem 3 For any M > 2 there is an even nonnegative L1(R2) solution f of

v∂xf(x, v) = ρf (x)S[ρf ](x+ v)−Mf(x, v) ,

∫
R2

f(x, v)dx dv = M . (22)

Proof. As a consequence of Lemma 1, it holds that∫
R
S[ρ](x+ v)dv =

∫
R
ρ(y)dy ,

∫
R
vS[ρ](x+ v)dv =

∫
R
ρ(y)(y − x)dy , (23)

∫
R
v2S[ρ](x+ v)dv =

∫
R
ρ(y)((y − x)2 + 2)dy . (24)

Let j ∈ N∗ and Mj = M(1− e−2j − 1/j). Our first goal is to prove the existence and uniqueness of
an even function fj ∈ L1

+(R2), such that

fj(x, v) = 0 , for |x| > j, or |v| < 1

j
, or |v| > 4j , (25)

v∂xfj(x, v) = ρfj (x)S[ρfj ](x+ v)−Mfj(x, v) , |x| < j ,
1

j
< |v| < 4j , (26)

fj(−j, v) = fj(−j,−v), fj(j, v) = fj(j,−v), (27)∫
R2

fj(x, v)dxdv ∈ [Mj ,M ]. (28)

Let K be the convex set

K :=

{
ρ ∈ L1

+(R) : ρ even, ρ(x) = 0 if |x| > j ,

∫
R
ρ(x)dx ∈ [Mj ,M ]

}
.

Let the map T be defined on K by T (ρ) =
∫
R F dv, where the restriction of F to R+ × R is the

solution of

F (x, v) = 0 , for x > j , or |v| < 1

j
, or |v| > 4j , (29)

v∂xF (x, v) = ρ(x)S[ρ](x+ v)−MF (x, v) , 0 < x < j ,
1

j
< |v| < 4j , (30)
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F (0, v) = eMj/v
(
F (j,−v)−

∫ 0

−j/v
eMτρ(j + τv)S[ρ](j + τv + v)dτ

)
, v > 0 , (31)

and F is extended by parity w.r.t. (x, v) to R− × R. Equations (30), (31) imply that

F (j, v) = F (j,−v). (32)

Denote by Xj the space of nonnegative L1
((
−4j,−1

j

))
functions with the weight |v|.

The solution F ∈ L1
+(R+ × R) of (29)–(31) exists and is unique, because the map

γ ∈ Xj → F (j,−v) , −j < v < −1

j
,

where F is the solution of (29), (30) and

F (j, v) = γ(v), v < 0, F (0, v) = eMj/v

(
γ(−v)−

∫ 0

−j/v
eMτρ(j + τv)S[ρ|(j + τv + v)dτ

)
, v > 0,

is a contraction. Indeed, for any (γ1, γ2) ∈ X2
j with images (F1(j,−v), F2(j,−v))−4j<v<− 1

j
, we have

∫ −1/j
−j

|v| |F1(j,−v)− F2(j,−v)|dv =

∫ −1/j
−4j

|v| |γ1(v)− γ2(v)|e2Mj/vdv

≤ e−M/2

∫ −1/j
−j

|v| |γ1(v)− γ2(v)|dv .

Due to the exponential form of (30), F is nonnegative. Hence, T (ρ) is nonnegative. Moreover, T (ρ)
is even since F is even. Equation (30) holds on (−j, j) ×

(
(−4j,−1/j) ∪ (1/j, 4j)

)
since F , ρ and

Sρ are even functions. Integrating it on (−j, j)×
(
(−4j,−1/j)∪ (1/j, 4j)

)
and using (29) and (23),

implies that

M

∫
R2

F dx dv = M2 −
∫
R
ρ(x)

∫
|v|∈(0,1/j)∪(4j,∞)

S[ρ](x+ v)dv dx .

Moreover, ∫
|v|∈(0,1/j)∪(4j,∞)

S[ρ](x+ v)dv ≤
(
e−2j + 1/j

) ∫ j

−j
ρ(y)dy , |x| < j .

And so, T maps K into K. We claim that T is compact with respect to the L1 topology. Indeed,
let (ρn) be a sequence in K, i.e., such that∫

R
ρn(x)dx ∈ [Mj ,M ] , n ∈ N .

By definition of K, the sequence (T (ρn)) =
(∫

R Fndv
)

satisfies∫
R
T (ρn)(x)dx ∈ [Mj ,M ] .

Moreover,

|∂xFn(x, v)| < jM
(
ρn(x) + Fn(x, v)

)
, |x| < j ,

1

j
< |v| < 4j ,
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so that ∫ j

−j
|∂xT (ρn)(x)|dx ≤ 2M2j .

The Sobolev space W 1,1((−j, j)) being compactly imbedded in L1((−j, j)), there is a subsequence
(T (ρnk)) of

(
T (ρn)|(−j,j)

)
converging in L1((−j, j)). Consequently the map T is compact.

T is continuous with respect to the L1 topology. Indeed, let (ρn) be a sequence in K that
converges to ρ in L1(R). By the previous compactness argument, there is a subsequence (T (ρnk))
of (T (ρn)) converging in L1 to some σ =

∫
R F (x, v)dv. F solves (30) since (ρn) converges to ρ in

L1(R) and (S[ρn]) converges to S[ρ] in C([−j, j]). Moreover, the solution F of (30), (31) is unique.
Indeed, if there were two solutions, their difference G would satisfy

v∂xG(x, v) = −MG(x, v) , |x| < j ,
1

j
< |v| < 4j , (33)

G(±j, v) = G(±j,−v) . (34)

Multiplying (33) by G, integrating the resulting equation over [−j, j] × {1/j < |v| < j} and using
(34) implies that

∫
R2 G

2(x, v)dxdv = 0, i.e. G is identically zero. And so, the whole sequence (Fn)
converges in L1 to F . Thus, there is a fixed point fj of T , i.e. an even solution of (25)–(28).
Prove that there is some constant c such that∫

(1 + x2 + v2)fj(x, v)dxdv < c, j ∈ N∗.

Multiplying (26) by xv (resp. v2, resp. x2), integrating the corresponding equation on
[−j, j]× [−4j,−1

j ] ∪ [1j , 4j] and using Lemma 1 leads to∫
R2

v2fj dx dv −M
∫
R
x2fj dxdv = M

∫
xvfjdxdv + j

∫
R
v2(f(j, v) + f(−j, v))dv

+

∫
R
xρfj (x)

∫
|v|∈[0,1/j]∪[4j,∞)

vS[ρfj ](x+ v)dv dx ,∫
v2fjdxdv − 2

∫
x2fjdxdv = 2M − 1

M

∫
R
ρfj (x)

∫
|v|∈[0,1/j]∪[4j,∞)

v2S[ρfj ](x+ v)dv dx ,

2

∫
xvfjdxdv =

∫
R
ρfj (x)x2

∫
|v|∈[0,1/j]∪[4j,∞)

S[ρfj ](x+ v)dv dx .

Hence,

(M − 2)

∫
v2fj(x, v)ddv = 2M2 − 2

∫
R
ρfj (x)x

∫
|v|∈[0,1/j]∪[4j,∞)

vS[ρfj ](x+ v)dv dx

− 2j

∫
v2(f(j, v) + f(−j, v))dv −M

∫
R
ρfj (x)x2

∫
|v|∈[0,1/j]∪[4j,∞)

S[ρfj ](x+ v)dv dx

−
∫
R
ρfj (x)

∫
|v|∈[0,1/j]∪[4j,∞)

v2S[ρfj ](x+ v)dv dx

≤ 2M2 − 2

∫ j

−j
ρfj (x)x

∫
|v|∈[0,1/j]∪[4j,∞)

vS[ρfj ](x+ v)dv dx

11



and

(M − 2)

∫
x2fj(x, v)ddv = 2M −

∫
R
ρfj (x)x

∫
|v|∈[0,1/j]∪[4j,∞)

vS[ρfj ](x+ v)dv dx

− M

2

∫
R
ρfj (x)x2

∫
|v|∈[0,1/j]∪[4j,∞)

S[ρfj ](x+ v)dv dx

− 1

M

∫
R
ρfj (x)

∫
|v|∈[0,1/j]∪[4j,∞)

v2S[ρfj ](x+ v)dv dx

≤ 2M −
∫ j

−j
ρfj (x)x

∫
|v|∈[0,1/j]∪[4j,∞)

vS[ρfj ](x+ v)dv dx .

Moreover, for M > 2,

|
∫ j

−j
ρfj (x)x

∫
|v|∈[0,1/j]∪[4j,∞)

vS[ρfj ](x+ v)dv dx| ≤
(1

j
+ 12je−2j

)
M

∫ j

−j
ρfj (x)|x|dx

≤ 4M

∫
|x|fj(x, v)dxdv

≤ M − 2

2

∫
x2fj(x, v)dxdv +

8M3

M − 2
.

Finally, ∫
R2

(1 + x2 + v2)fj dx dv ≤
60M3

(M − 2)2
, j ∈ N∗ . (35)

It follows from (35) that a subsequence of (fj) tightly converges to a nonnegative bounded measure
µ. We still denote this subsequence by (fj). The measure µ has its total mass equal to M like every
fj . In order to prove that µ satisfies the first equation of (22), we start from (26) written along the
characteristics, multiply it by a continuous and bounded test function ϕ(x, v), so that∫

fj(x, v)ϕ(x, v)dxdv =

∫
v>0

∫
R

∫ 0

−∞
ρfj (x+ sv)Sρfj (x+ (1 + s)v)eMsϕ(x, v)dsdxdv

+

∫
v<0

∫
R

∫ +∞

0
ρfj (x− sv)Sρfj (x+ (1− s)v)e−Msϕ(x, v)dsdxdv

=

∫
ρfj (x)

(∫
v>0

∫ 0

−∞
Sρfj (x+ v)eMsϕ(x− sv, v)dsdv

)
dx

+

∫
ρfj (x)

(∫
v<0

∫ +∞

0
Sρfj (x+ v)e−Msϕ(x+ sv, v)dsdv

)
dx. (36)

The left hand side of (36) tends to < µ,ϕ > when j → +∞ because of the tight convergence of (fj)
to µ. The right hand side of (36) tends to∫

ρµ(x)
(∫

v>0

∫ 0

−∞
Sρµ(x+ v)eMsϕ(x− sv, v)dsdv

)
dx

+

∫
ρµ(x)

(∫
v<0

∫ +∞

0
Sρµ(x+ v)e−Msϕ(x+ sv, v)dsdv

)
dx

=

∫
v>0

∫
R

∫ 0

−∞
ρµ(x+ sv)Sρµ(x+ (1 + s)v)eMsϕ(x, v)dsdxdv

+

∫
v<0

∫
R

∫ +∞

0
ρµ(x− sv)Sρµ(x+ (1− s)v)e−Msϕ(x, v)dsdxdv

12



when j → +∞, because (ρfj ) tends to ρµ in L∞(R) weak star and

x→
∫
v>0

∫ 0

−∞
Sρfj (x+ v)eMsϕ(x− sv, v)dsdv

(
resp. x→

∫
v<0

∫ +∞

0
Sρfj (x+ v)e−Msϕ(x+ sv, v)dsdv

)
converges in L1(R) to

x→
∫
v>0

∫ 0

−∞
Sρµ(x+ v)e−Msϕ(x− sv, v)dsdv

(
resp. x→

∫
v<0

∫ +∞

0
Sρµ(x+ v)e−Msϕ(x− sv, v)dsdv

)
by the dominated convergence theorem. And so, µ is a nonnegative bounded measure stationary
solution to the problem.
Moreover, integrating (27) between −∞ and x (resp. x and +∞) for v > 0 (resp. v < 0) implies
that

|v|fj(x, v) ≤M
∫
R
ρfjdx = M2 , (x, v) ∈ R2, j ∈ N .

Consequently the only singular part of the measure µ is a Dirac measure at v = 0. Let us split µ as

µ = g + γδ(v) ,

with g ∈ L1(R2) and γ ∈ L1(R). Equation (27) for µ writes

0 = (ρg + γ)S[ρg + γ](x+ v)−Mg −Mγ δ(v) ,

so that γ = 0. It follows that µ ∈ L1(R2).

Theorem 4 Let M > 2 hold. Then solutions f of (22) as in Theorem 3 satisfy f ∈ C∞(R2).

Proof. The solution of the approximative problem (25)–(28) in the proof of Theorem 3 satisfies

fj(x, v) = fj(−j, v)e−M(x+j)/v +

∫ (x+j)/v

0
ρfj (x− sv)S[ρfj ](x+ v(1− s))e−Msds ,

for v > 0, −j ≤ x ≤ j, and

fj(x, v) = fj(j, v)e−M(x−j)/v +

∫ (x−j)/v

0
ρfj (x− sv)S[ρfj ](x+ v(1− s))e−Msds ,

for v < 0, −j ≤ x ≤ j. The estimates in the proof allow to pass to the limit j →∞, showing that
the problem (22) is solved in the mild sense:

f(x, v) =

∫ +∞

0
ρf (x− sv)S[ρf ](x+ v(1− s))e−Msds , (x, v) ∈ R2. (37)

With the Fourier transform

f̂(ξ, k) =

∫
R

∫
R
f(x, v)e−i(ξ·x+k·v)dv dx ,

a straightforward computation leads to

Ŝ[ρ](ξ) =
ρ̂(ξ)

1 + ξ2
, ξ ∈ R.
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Consequently, (37) is equivalent to

f̂(ξ, k) =

∫ +∞

0
e−Ms ρ̂f (ξ(1 + s)− k)ρ̂f (k − ξs)

1 + (k − ξs)2
ds . (38)

Moreover, ρ̂f (ξ) = f̂(ξ, 0), so that

ρ̂f (ξ) =

∫ +∞

0
e−Ms ρ̂f (ξ(1 + s))ρ̂f (−ξs)

1 + ξ2s2
ds .

Using the boundedness of ρ̂f by M on the right hand side leads to ρ̂f (ξ) = O(|ξ|−1) as |ξ| → ∞.
This can be iterated, giving ρ̂f (ξ) = O(|ξ|−n) for arbitrary n and, therefore, ρf ∈ C∞(R). Actually,
we shall use

|ρ̂f (ξ)| ≤ cn
(1 + ξ2)n

, ∀n ≥ 0 ,

in (38), leading to the estimate

|f̂(ξ, k)| ≤ c2n
∫ +∞

0

e−Ms

(1 + (ξ(1 + s)− k)2)n(1 + (ξs− k)2)n
ds .

Note that

(1 + (ξ(1 + s)− k)2)(1 + (ξs− k)2) ≥ 1 + max{(ξ(1 + s)− k)2, (ξs− k)2} .

Minimizing the right hand side with respect to k and, respectively, with respect to ξ, we obtain

(1 + (ξ(1 + s)− k)2)(1 + (ξs− k)2) ≥ 1 + max

{
ξ2

4
,

k2

(2s+ 1)2

}
≥ 1 +

ξ2

5
+

k2

5(2s+ 1)2
.

This shows that

1 + ξ2 + k2

(2s+ 1)2(1 + (ξ(1 + s)− k)2)(1 + (ξs− k)2)
≤ 1 + ξ2 + k2

(2s+ 1)2(1 + ξ2/5) + k2/5
≤ 5 ,

and, consequentially, for every n ≥ 0 there exists Cn > 0, such that

|f̂(ξ, k)| ≤ 5nc2n
(1 + ξ2 + k2)n

∫ ∞
0

e−Ms(2s+ 1)2nds =
Cn

(1 + ξ2 + k2)n
,

implying f ∈ C∞(R2).
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