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Abstract. We propose a kinetic relaxation-model to describe a generation-
recombination reaction of two species. The decay to equilibrium is studied by

two recent methods [9, 13] for proving hypocoercivity of the linearized equa-

tions. Exponential decay of small perturbations can be shown for the full
nonlinear problem. The macroscopic/fast-reaction limit is derived rigorously

employing entropy decay, resulting in a nonlinear diffusion equation for the

difference of the position densities.

1. Introduction.

1.1. The model. We consider the system

∂tf + v · ∇xf = χ1(v)− ρgf ,
∂tg + v · ∇xg = χ2(v)− ρfg ,

(1)

where f and g depend on position x ∈ T3, the three dimensional torus of volume one,
on velocity v ∈ R3, and on time t ≥ 0. They represent the phase space densities of
chemical reactants A and B, which are produced (with nonnegative velocity profiles
χ1 and χ2, respectively) by the decomposition of a substance C. The density of the
substance C is not subject of our study and is assumed to be fixed. On the other
hand the substances A and B can recombine to form C and thus be eliminated from
our system. Similar models have been used for generation and recombination of
electron-hole pairs in semiconductors [5, 6].

The probability of the reaction is depending on the position density

ρh(x, t) :=

∫
R3

h(x, v, t) dv ,

of the reaction partner. We consider the system (1) subject to initial conditions

f(x, v, 0) = fI(x, v) , g(x, v, 0) = gI(x, v) , (2)
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with nonnegative initial data f0 and g0. Moreover, since we want to describe the
reversible reaction 1A+1B↔1C, we require that

∫
R3(χ1 − χ2)dv = 0. We assume

that the system has been nondimensionalized and that χ1 and χ2 satisfy

(1 + |v|2)χj ∈ L1(R3) ∩ L∞(R3) , χj > 0 ,∫
R3

χjdv = 1 ,

∫
R3

vχjdv = 0 , (3)

∃C, θ > 0 : ∀a ∈ R , ω ∈ S2 , δ > 0 :

∫
|a+v·ω|<δ

χjdv ≤ Cδθ , j = 1, 2 .

The last line will be needed for an L2 averaging lemma with the weight 1/χj . The
largest value to be expected for the exponent is θ = 1, which is achieved, e.g., for
Gaussian distributions, the prototypical examples for the χj , but more generally
also for χj(v) ≤ c(1 + |v|2)−k with k > 1.

Note that, at least formally, the mass difference is conserved:

d

dt

∫
T3

∫
R3

(f − g) dv dx = 0 ,

as can be seen by subtraction of the two equations and subsequent integration.
This is to be expected since by the reaction molecules of A and B are created and
destroyed pairwise. We introduce the unique constant ρ∞ > 0, such that∫

T3

∫
R3

(fI − gI)dv dx = |T3|
(
ρ∞ −

1

ρ∞

)
, (4)

and expect convergence as t→∞ of solutions of (1), (2) to the steady state

f∞(x, v) = ρ∞χ1(v) , g∞(x, v) =
1

ρ∞
χ2(v) ,

satisfying ρf∞ = ρ∞ and ρg∞ = 1/ρ∞. This is supported by the decay properties
of the entropy functional

H(f, g) =

∫
T3

∫
R3

[
f

(
ln

f

ρ∞χ1
− 1

)
+ g

(
ln
ρ∞g

χ2
− 1

)]
dv dx , (5)

which decreases as long as (f, g) is different from (ρ(x)χ1(v), χ2(v)/ρ(x)) for some
ρ(x):

d

dt
H(f, g) =

∫
T3

∫
R3

∫
R3

(χ1χ
′
2 − fg′) ln

(
fg′

χ1χ′2

)
dv′ dv dx ≤ 0 , (6)

where the superscript ′ denotes evaluation at v′. Among these functions (f∞, g∞)
is the only solution of (1) with the same mass difference as the initial data.

Spectral stability of the equilibrium will be investigated by linearization:

∂tf + v · ∇xf = −ρ∞χ1ρg −
1

ρ∞
f ,

∂tg + v · ∇xg = − 1

ρ∞
χ2ρf − ρ∞g ,

(7)

where for simplicity the perturbations have again been denoted by f and g, now
satisfying ∫

T3

∫
R3

(f − g)dv dx =

∫
T3

(ρf − ρg)dx = 0 . (8)

Rigorous results for kinetic equations for chemically reacting species with nonlin-
ear reaction models are scarce in the literature. An example is an existence result
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[14] for a model with quadratic reaction terms under rather weak natural assump-
tions on the initial data, where stability is based on entropy decay. Since existence
of solutions is not the main focus of this work, we shall make rather strong assump-
tions on the data, with the consequence that the existence and uniqueness proof in
the following section is based on weighted L∞ estimates and rather straightforward.

The analysis of the decay to equilibrium is complicated by the fact that the en-
tropy dissipation (6) vanishes not only for the equilibrium, but on a larger set of
local equilibria. If exponential decay to equilibrium can still be proven, the system is
called hypocoercive [16]. The authors have been involved in the development of two
different abstract procedures for proving hypocoercivity for linear equations [9, 13],
both based on the construction of suitable Lyapunov functionals (or modified en-
tropies), whose dissipation functionals have appropriate coercivity properties. The
method of [9] is based on a slightly tilted, weighted L2-norm, while [13] works in
a H1 setting and can be extended to higher regularity. In Section 2 we show that
both methods are applicable to a linearized version of (1). Since the estimates of
the existence result already provide neutral stability of the equilibrium, the decay
results can be extended to a local asymptotic stability result with exponential con-
vergence for the full nonlinear model. The decay rates proven by both methods can,
in principle, be computed explicitly. Complete formulas would however be rather
complicated, whence we did not attempt a comparison. An essential difference be-
tween the methods is the weaker assumptions on initial data in [9]. On the other
hand, the method of [13] has the potential to provide strong convergence properties
including derivatives.

In Section 1.3 the macroscopic/fast-reaction limit is carried out formally, leading
to a nonlinear diffusion equation for the difference of the position densities of the
reactants. Similar results have been derived for reaction-diffusion systems [2, 7, 12]
and for coagulation-fragmentation models [3, 4]. A rigorous justification of the limit
is the subject of Section 3. It is based on an analysis of the entropy dissipation
functional (6) and adapts the procedure of [15], where compactness is obtained
from an averaging lemma in weighted L2-spaces. We prove a slightly generalized
version compared to [15].

We note that with the torus we chose the simplest geometric setting. Natural
modifications include bounded domains with specular reflection boundary condi-
tions or whole space problems with confining potentials. We conjecture that our
results can be extended to these situations, however with considerably more techni-
cal effort for the latter (see, e.g., the hypocoercivity results with confining potentials
in [9]).

1.2. Existence of solutions. The entropy decay relation (6) would suggest an
existence result for initial data with bounded entropy. Such a result for a similar
problem has been proven in [14]. The main ingredients are entropy inequalities,
weak L1 compactness and velocity averaging. These ideas might be transferable
to our situation. However, for our purposes we need more information on the
solutions. Under stronger assumptions on the initial data, a global existence result
can be proved easily.

Theorem 1.1. Let (3) hold, let ρ∞ be determined by (4), and let there be positive
constants γ1 < ρ∞ and γ2 such that the initial data fI , gI ∈ L∞(T3 × R3) satisfy

(ρ∞ − γ1)χ1 ≤ fI ≤ (ρ∞ + γ2)χ1 and 1
ρ∞+γ2

χ2 ≤ gI ≤ 1
ρ∞−γ1χ2 .
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Then the initial value problem (1), (2) has a unique global mild solution (f, g) ∈
C([0,∞), L∞(T3 × R3))2 satisfying

(ρ∞ − γ1)χ1(v) ≤ f(x, v, t) ≤ (ρ∞ + γ2)χ1(v) , (x, v, t) ∈ T3 × R3 × [0,∞) ,

and

1
ρ∞+γ2

χ2(v) ≤ g(x, v, t) ≤ 1
ρ∞−γ1χ2(v) , (x, v, t) ∈ T3 × R3 × [0,∞) .

Proof. The mild formulation of the equation for f is given by

f(x, v, t) = fI(x− vt) exp

(
−
∫ t

0

ρg(x+ v(s− t), s)ds
)

+ χ1(v)

∫ t

0

exp

(
−
∫ t

s

ρg(x+ v(τ − t), τ)dτ

)
ds ,

and an analogous equation holds for g. It is easily seen that the set of (f, g) defined
by the estimates of the theorem is mapped into itself by the right hand sides.
This provides the a priori estimate needed for the continuation of a local solution
constructed by Picard iteration.

1.3. Formal macroscopic limit. In this section we formally derive a macroscopic
limit of (1). The limit will be made rigorous in Section 3. Since by (3) the mean
velocities of the equilibrium distributions vanish, we adopt a diffusive (or parabolic)
scaling t→ t/ε2 and x→ x/ε and derive

ε2∂tf + εv · ∇xf = χ1(v)− ρgf
ε2∂tg + εv · ∇xg = χ2(v)− ρfg .

(9)

We substitute the ansatz

f = f0 + εf1 +O(ε2) and g = g0 + εg1 +O(ε2) .

Balancing the leading order terms gives ρg0f0 = χ1 and ρf0g0 = χ2. This is equiv-
alent to the existence of ρ0(x, t) such that

f0(x, v, t) = ρ0(x, t)χ1(v) and g0(x, v, t) =
1

ρ0(x, t)
χ2(v) .

Now we balance the first order terms in ε and derive

v · ∇xf0 = −ρg1f0 −
1

ρ0
f1 ,

v · ∇xg0 = −ρf1g0 − ρ0g1 .

Due to (3) the solvability condition
∫
R3 v · ∇x(f0 − g0)dv = 0 is satisfied, and we

obtain

f1 = −ρ0χ1v · ∇xρ0 + ρ1χ1 ,

g1 =
1

ρ30
χ2v · ∇xρ0 −

ρ1χ2

ρ20
,

where the second terms on the right hand side constitute the general solution of the
homogeneous problem. Note that ρf1 = ρ1, ρg1 = −ρ1/ρ20. Now we substitute this
into the limit of the conservation equation

∂t(ρf − ρg) +∇x ·
(

1

ε

∫
R3

v(f − g)dv

)
= 0 ,
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to obtain

∂t

(
ρ0 −

1

ρ0

)
= ∇x ·

[(
D1ρ0 +

D2

ρ30

)
∇xρ0

]
,

where we have introduced the positive definite symmetric matrices

D1 =

∫
R3

v ⊗ v χ1 dv and D2 =

∫
R3

v ⊗ v χ2 dv .

This can be written as the nonlinear diffusion equation

∂tm = ∇x · (D(m)∇xm) ,

for the new unknown

m = ρ0 −
1

ρ0
,

where we have introduced the diffusion matrix

D(m) =

(
D1ρ(m)2 +

D2

ρ(m)2

)
1√

m2 + 4
, with ρ(m) =

1

2

(
m+

√
m2 + 4

)
.

The unknown m is the zeroth order approximation of the difference of the position
densities of f and g.

2. Long time properties. In this section we study decay to equilibrium for solu-
tions of (1) and of the linearized problem (7), (8). In order to estimate the decay
towards the equilibrium quantitatively we introduce the L2 scalar product, weighted
with the steady state measure,

〈F1, F2〉 =

∫
T3

∫
R3

(
f1f2
ρ∞χ1

+
g1g2ρ∞
χ2

)
dv dx , with Fj =

(
fj
gj

)
. (10)

Throughout this article we denote by ‖·‖w the norm induced by this scalar product.
At this point we introduce some notation for function spaces. The subscripts

t, x, v will indicate spaces of functions of t ∈ (0,∞), x ∈ T3, v ∈ R3, and the
superscripts χ1, χ2 will indicate the weights 1/χ1, 1/χ2. The superscript w (meant
to abbreviate w = (χ1, χ2)) will be used for spaces of pairs of functions, where the
weight 1/χ1 is used for the first component and 1/χ2 for the second. Thus, 〈·, ·〉 is
a scalar product on

L2,w
x,v = L2,χ1

x,v × L2,χ2
x,v = L2(T3 × R3,dxdv/χ1)× L2(T3 × R3,dx dv/χ2) .

The orthogonal projection onto the null space of the linearized collision operator

LF =

(−ρ∞χ1ρg − 1
ρ∞
f

− 1
ρ∞
χ2ρf − ρ∞g

)
, with F =

(
f

g

)
, (11)

that is the space of local equilibria, is given by

ΠF :=
ρf − ρg
ρ2∞ + 1

(
ρ2∞χ1

−χ2

)
. (12)

Straightforward computations yield

−〈LF, F 〉 =

∫
T3

(∫
R3

(
(f − ρfχ1)2

χ1ρ2∞
+

(g − ρgχ2)2ρ2∞
χ2

)
dv +

(
ρf
ρ∞

+ ρgρ∞

)2
)

dx,
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and

‖(1−Π)F‖2w

=

∫
T3

(∫
R3

(
(f − ρfχ1)2

χ1ρ∞
+

(g − ρgχ2)2ρ∞
χ2

)
dv +

ρ∞
ρ2∞ + 1

(
ρf
ρ∞

+ ρgρ∞

)2
)

dx ,

implying the estimate

−〈LF, F 〉 ≥ min{ρ∞, 1/ρ∞} ‖(1−Π)F‖2w , (13)

called microscopic coercivity in [9]. This gives a quantitative estimate of the decay
towards the local equilibrium introduced by the linearized collision operator. In the
spatially homogeneous situation such an estimate is enough to prove exponential
decay to equilibrium for the linearized equation.

For spatially non homogeneous situations we expect the densities to become con-
stant as these are the only local equilibria that also annihilate the transport part of
the equation. The complete relaxation mechanism can be seen as a combination of
local relaxation in the velocity direction by the collision operator and an interplay
between mixing by the transport operator and confinement in our bounded spatial
domain. In the following we will study two recent methods ([9, 8] and [13]) to esti-
mate the decay in the spatially non-homogeneous situation. Both rely on properties
of the linearized collision operator that we will verify in the sequel. The microscopic
coercivity property (13) is needed in both approaches.

2.1. Coercivity in a weighted L2-space. In this section we apply the abstract
convergence theory of [9]. This approach uses a modified L2 entropy functional
to quantify the mixing effect of the transport. We start by writing the linearized
equation (7) in the abstract form

dF

dt
+ TF = LF , (14)

with F = (f, g)T , with the transport operator

TF = T

(
f

g

)
:=

(
v · ∇xf
v · ∇xg

)
, (15)

and with the linearized collision operator L given in (11). The following result for
abstract linear ODEs in Hilbert spaces has been proven in [9].

Theorem 2.1. Let L and T be closed linear operators in the Hilbert space H. Let
L be symmetric and T be antisymmetric. Let Π denote the orthogonal projection to
the null space of L and define

A := (1 + (TΠ)∗TΠ)−1(TΠ)∗ ,

where ∗ denotes the adjoint with respect to the scalar product in H. Let positive
constants λm, λM , and CM exist, such that

−〈LF, F 〉 ≥ λm‖(1−Π)F‖2 , (16)

‖TΠF‖2 ≥ λM‖ΠF‖2 , (17)

ΠTΠ = 0 , (18)

‖AT(1−Π)F‖+ ‖ALF‖ ≤ CM‖(1−Π)F‖ . (19)
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Then there exist positive constants C and λ, depending on λm, λM , CM , such that
the semigroup generated by L− T satisfies

‖e(L−T)t‖ ≤ Ce−λt .

Remark 1. The approach of [9] relies on the Lyapunov (or modified entropy)
functional

H0[F ] :=
‖F‖2

2
+ δ〈AF, F 〉 ,

with a small positive constant δ. Its time derivative along solutions of (14) is

d

dt
H0[F ] = 〈LF, F 〉 − δ〈ATΠF, F 〉 − δ〈AT(1−Π)F, F 〉+ δ〈TAF, F 〉+ δ〈ALF, F 〉

=: −D[F ] . (20)

The first term on the right hand side suggests that the microscopic coercivity as-
sumption (16) is one of the necessary ingredients. Since the operator ATΠ can be
interpreted as the application of the map z 7→ z

1+z to (TΠ)∗TΠ, the second condi-

tion (17), called macroscopic coercivity, is also plausible. As a consequence of (16)
and (17), the sum of the first two terms in the entropy dissipation (20) is coercive:

−〈LF, F 〉+ δ〈ATΠF, F 〉 ≥ λm‖(1−Π)F‖2 +
δλM

1 + λM
‖ΠF‖2 ,

which, for δ small enough, controls the remaining three terms, if the operators
appearing there are bounded and act only on the microscopic part (1−Π)F of the
distribution. For the operator A the latter is guaranteed by the algebraic condition
(18), called parabolic macroscopic dynamics (see Section 1.3). The final condition
is the boundedness of the auxiliary operators (19). Boundedness results of the same
form for A and TA hold as a consequence of (18) (see Lemma 1 of [9]). The former
shows the equivalence of H0[F ] to ‖F‖2 for δ small enough. An upper bound for
δ, guaranteeing coercivity of H0[F ] and of the dissipation D[F ] can be computed
explicitly in terms of λm, λM , CM .

Theorem 2.1 will be applied with L given by (11), T given by (15), and with
H = L2,w

x,v equipped with the scalar product (10) and the norm ‖·‖w. The projection
Π is then given by (12). It is easily seen that L is symmetric and T is antisymmetric.
Because of (13), i.e. λm = min{ρ∞, 1/ρ∞}, it remains to verify (17)–(19). A
straightforward calculation shows that (17) is equivalent to∫

T3

∇xutrFD0∇xuF dx ≥ λM
∫
T3

u2Fdx ,

with uF = ρf−ρg satisfying
∫
T3 uF dx = 0 by (8). Thus, by the positive definiteness

of D0 = (ρ2∞ + 1)−1(ρ2∞D1 +D2), (17) is a consequence of the Poincaré inequality
on T3. Since

TΠF =
v · ∇xuF
ρ2∞ + 1

(
ρ∞χ1

−χ2

)
,

and since the application of Π involves an integration with respect to v, the assump-
tions (3) imply (18). The linear collision operator L is easily seen to be bounded.
For the verification of (19) it is thus sufficient to prove the boundedness of AT or,
equivalently, of its adjoint (AT)∗ = −TA∗ = −T2Π(1 + (TΠ)∗TΠ)−1. The equation
G = (1 + (TΠ)∗TΠ)−1F implies

uG −∇x · (D0∇xuG) = uF .
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The norm ‖T2ΠG‖ w is equivalent to the L2(T3)-norm of ∇2
xuG, whose bound-

edness in terms of the L2(T3)-norm of uF (and therefore in terms of ‖F‖w) is a
consequence of elliptic regularity. This proves (19) and completes the verification
of the assumptions of Theorem 2.1.

Theorem 2.2. Let (3) hold, let (fI , gI) ∈ L2,w
x,v , and let

∫
T3

∫
R3(fI − gI)dv dx = 0.

Then the solution of (7) subject to f(t = 0) = fI , g(t = 0) = gI , satisfies

‖(f, g)(·, ·, t)‖2w = ‖f(·, ·, t)‖2L2(dv dx/χ1)
+ ‖g(·, ·, t)‖2L2(dv dx/χ2)

≤ Ce−2λt ,
with positive constants C and λ.

Since the maximum principle estimates of Theorem 1.1 already imply a stability
(but not asymptotic stability) result for the nonlinear problem, the decay result can
be extended to a local result for the nonlinear case by the same method.

Theorem 2.3. Let (3) hold and let fI and gI satisfy the assumptions of Theorem
1.1 with γ1 and γ2 small enough. Then the solution of the initial value problem (1),
(2) satisfies

‖f(·, ·, t)− ρ∞χ1‖2L2(dv dx/χ1)
+ ‖g(·, ·, t)− χ2/ρ∞‖2L2(dv dx/χ2)

≤ Ce−2λt ,
with positive constants C and λ.

Proof. We start by writing the problem in terms of the unknown F = (f−ρ∞χ1, g−
χ2/ρ∞)T . Then we proceed as above producing the entropy decay relation (20),
however with LF replaced by

Q(f, g) =

(
χ1 − ρgf
χ2 − ρfg

)
.

This difference is given by

Q(f, g)− LF = −
(

(ρg − 1/ρ∞)(f − ρ∞χ1)

(ρf − ρ∞)(g − χ2/ρ∞)

)
,

and, by Theorem 1.1, ρf is close to ρ∞ and ρg close to 1/ρ∞, yielding

‖Q(f, g)− LF‖w ≤ γ‖F‖w ,
with a small constant γ. Therefore the entropy dissipation for the nonlinear equation

d

dt
H0[F ] = −D[F ] + 〈(1 + δA)(Q(f, g)− LF ), F 〉

is a small perturbation of the entropy dissipation of the linearized problem, which
does not destroy its coercivity.

2.2. Coercivity in H1.
When studying coercivity of the collision operator we saw that in L2

w the operator
provides coercivity only with respect to the velocity distribution. The strategy
in [13] is to transfer some of this dissipation effect in the velocity to the spacial
variable by using the mixing effect of the transport operator. This method was
mainly inspired by discussions with C. Villani (see [16]) and results by Y. Guo (see
for example [11] or the references in [13]).
The regularizing effect of the transport operator can be quantified by looking at
the time evolution of mixed derivative terms. The weights are in principle the same
as in the previous section, however on the level of derivatives it is much simpler to
use a standard L2-norm and rescale the equation to get rid of the weights. This
also leads to a much cleaner notation and facilitates frequent applications of partial
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integration. To make the distinction from the weighted norms more obvious we
denote the standard L2-norm in x and v by ‖ · ‖L2 .

We rescale the linearized equation by replacing

f → 1√
χ1ρ∞

f and g →
√

ρ∞
χ2
g (21)

and derive the rescaled equation

dF

dt
+ TF =

(− 1
ρ∞
f −√χ1

∫ √
χ2g dv

−ρ∞g −
√
χ2

∫ √
χ1f dv

)
=: L̃F .

We denote the standard L2 scalar product in x and v and acting component-wise
on the entries of F = (f, g)T by (·, ·) and write the orthogonal (with respect to the

L2 scalar product) projection on the kernel of L̃ as

Π̃

(
f

g

)
=

ρ∞
ρ2∞ + 1

∫
R3

√
χ1ρ∞f −

√
χ2

ρ∞
g dv

(√
χ1ρ∞

−
√

χ2

ρ∞

)
.

The rescaled collision operator naturally inherits the microscopic coercivity estimate

−
(
L̃F, F

)
≥ min{ρ∞, 1/ρ∞}

∥∥(1− Π̃)F
∥∥2
L2 , (22)

with the same constant. Now we are in the position to calculate the time evolution
of derivatives.
For any ν > 0 we have, using the divergence theorem and the periodic boundary
conditions in x,

d
dt

(
∇vF,∇xF

)
= −‖∇xF‖2L2 + 2

(
∇xL̃F,∇vF

)
≤ −‖∇xF‖2L2 + C(ν)

∥∥L̃(1− Π̃)∇xF
∥∥2
L2 + ν ‖∇vF‖2L2 .

(23)

where the gradients have to be applied component-wise to F = (f, g)T . We used

integration by parts in the equality and Cauchy-Schwarz as well as the fact that L̃
acts locally in x,

∇xL̃F = L̃∇xF = L̃(1−Π)∇xF ,

in the estimate. A simple computation shows that L̃ is bounded in L2 and thus the
second term in the right hand side of (23) can be compensated by

d
dt‖∇xF‖

2
L2 ≤ −2 min{ρ∞, 1/ρ∞}

∥∥(1− Π̃)∇xF
∥∥2
L2 , (24)

which is again a consequence of locality of L̃ and the microscopic coercivity. Thus
by combining (23) and (24) the transport operator provides some control of the
x-derivatives, if the last term in (23) can be controlled by coercivity properties of
the collision operator in the velocity derivatives (cf. (28)).

We introduce the Sobolev space H1 with the (unweighted) norm

‖F‖2H1 = ‖F‖2L2 + ‖∇xF‖2L2 + ‖∇vF‖2L2 ,

where again the norms as well as the derivatives are understood component-wise in
the entries of F = (f, g)T .
Following [13], the Lyapunov functional

H1[F ] := ‖F‖2H1 + δ (∇xF,∇vF )
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is constructed, which is, for δ small enough, equivalent to the square of the H1-norm
but uses the mixing of derivatives to get a coercivity estimate also for the spatially
non-homogeneous situation. Exponential decay of H1[F ] is then derived from

d
dtH

1[F ] ≤ −τH1[F ] , (25)

and convergence in H1 follows from the equivalence mentioned above. Since the
essential mixing effect of the transport operator is quantified by means of (23) this
approach is suitable only for proving coercivity in spaces of differentiable functions.
On the one hand this is a restriction of the method, which, on the other hand,
can also be employed to prove convergence of higher derivatives. This allows to
use embedding theorems and lends itself to studying nonlinear equations in the
perturbative regime. In the model we study here, however, we have good a priory
bounds already and thus there is no need to go beyond first order derivatives as we
will see in the proof of Theorem 2.5.

To control remainder terms in the time evolution of H1[F ] and quantify the
coercivity of the linearized reaction operator on the level of velocity-derivatives
structural assumptions are needed. We will verify these in the sequel. To get decay
of the velocity derivatives it is essential that the linearized reaction operator can be
split, L̃ = K− Λ, into a “loss” part

Λ

(
f

g

)
=

(
f/ρ∞
ρ∞g

)
,

which is (in our case trivially) coercive,

(ΛF, F ) ≥ min
{
ρ∞,

1
ρ∞

}
‖F‖2L2 , (26)

and a “gain” part

K

(
f

g

)
=

(
−√χ1

∫ √
χ2g dv

−√χ2

∫ √
χ1f dv

)
,

which is regularizing in v as long as
√
χ1 and

√
χ2 are regular. Indeed, for ∇v

acting component-wise in the two functions, Cauchy-Schwarz together with Young
inequality lead to

∀δ > 0: ∃C > 0 : |(∇vKF,∇vF )| ≤ δ ‖∇vF‖2L2 + C ‖F‖2L2 , (27)

where C depends on ‖∇v
√
χ1‖L∞v and ‖∇v

√
χ2‖L∞v .

Since the method relies on H1 type estimates, coercivity in H1 of the loss part
is necessary. In our case the same estimate as in (26) results in

(∇vΛF,∇vF ) ≥ min
{
ρ∞,

1
ρ∞

}
‖∇vF‖2L2 , (28)

where in general negative terms of lower order derivatives are allowed but not needed
in this case.

Properties (26)–(28) together with (22) and the boundedness of L̃ ensure that we
can use the main theorem from [13] to derive convergence for the linearized problem.
If resorting to the equation before rescaling the result can be formulated as follows:

Theorem 2.4. Let
√
χ1,
√
χ2 ∈ W 1,∞

v and (fI/
√
χ1, gI/

√
χ2) ∈ H1. Then the

solution (f, g) of the linearized problem (7) subject to initial conditions f(t = 0) =
fI , g(t = 0) = gI exists globally and converges exponentially to the equilibrium
distribution. For

∫
T3

∫
R3(fI − gI)dv dx = 0 the equilibrium is zero and we have

‖f/√χ1(·, ·, t)‖2H1(dv dx) + ‖g/√χ2(·, ·, t)‖2H1(dv dx) ≤ C exp(−τt) ,



KINETIC REACTION MODEL 11

where C and τ depend on the L2 bound on L̃ and the constants in the estimates
(22), (26)–(28). The constant C also depends on the norm of the initial data.

Convergence in higher order Sobolev spaces can be derived straightforwardly
provided the estimates (27), (28) can be generalized to higher order derivatives, as is
easily verified for our model. This feature is useful mainly in applying the results to
the nonlinear system in a perturbative setting. Control of the bilinear contribution
in the interaction is given by applying the chain rule, the Hölder inequality, and
using Sobolev embedding to lower the exponents in the norm to two again (see [13]
for details).

Here however we want to give a stronger result – in the sense that less regularity
is necessary – by using the a priori bounds of Theorem 1.1.

Theorem 2.5. Let the assumptions of Theorem (2.4) hold. Moreover let fI and
gI satisfy the assumptions of Theorem 1.1 with γ1 and γ2 small enough. Then
the solution of (1) with initial data (fI , gI) exists globally in time and converges
exponentially to the unique stationary state, more precisely∥∥ (f(·, ·, t)− ρ∞χ1) /

√
χ1

∥∥2
H1(dv dx)

+ ‖ (g(·, ·, t)− χ2/ρ∞) /
√
χ2‖2H1(dv dx) ≤ Ce

−τt ,

with positive constants C and τ showing the same dependencies as in Theorem 2.4
and τ also depending on γ1 and γ2.

Proof. After rescaling

f → ρ∞χ1 + 1√
χ1ρ∞

f and g → χ2

ρ∞
+
√

ρ∞
χ2
g

the new unknown f obeys the bound (cf. Theorem 1.1)

−γ1
√
χ1

1√
ρ∞
≤ f ≤ γ2

√
χ1

1√
ρ∞

, (29)

and in the same way we obtain for the rescaled g

−γ2
√
χ2

1√
ρ∞(ρ∞+γ2)

≤ g ≤ γ1
√
χ2

1√
ρ∞(ρ∞−γ1) . (30)

F = (f, g)T is the solution of the rescaled equation

∂tF + TF = L̃F +B(F, F ) ,

with the bilinear contribution given by

B(F, F ) := −
( 1√

ρ∞
f
∫ √

χ2g dv
√
ρ∞g

∫ √
χ1f dv

)
.

Now using (25) the time evolution of the modified H1 norm can be estimated by

d
dtH

1[F ] ≤ −τH1[F ] + C‖F‖H1‖B(F, F )‖H1 , (31)

for some positive constant C representing the equivalence of H1 and the squared
H1-norm. Using the multiplicative structure of B(F, F ) we infer from the bounds
(29), (30), the normalization of χ1 and χ2 as well as Cauchy-Schwarz, that

‖B(F, F )‖H1 ≤ γ‖F‖H1 ,

with a constant γ that becomes arbitrarily small as γ1 and γ2 decrease. Together
with (31) and the equivalence of H1 with the square of the H1-norm this proves
exponential decay of H1[F ]. Rewriting the result in the original scaling leads to the
statement of the theorem.
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3. Rigorous macroscopic limit. Our next goal is to validate the macroscopic
limit carried out formally in Section 1.3. We start from the rescaled system (9),
subject to initial conditions, where the data satisfy the assumptions of Theorem
1.1. The results of Theorem 1.1 remain valid with the ε-independent L∞-bounds.
We start by exploiting entropy decay.

Lemma 3.1. Let the assumptions of Theorem 1.1 hold, let (f, g) be the solution
of (2), (9) for ε > 0, and define the micro-macro decompositions f(x, v, t) =
ρf (x, t)χ1(v) + εf⊥(x, v, t), g(x, v, t) = ρg(x, t)χ2(v) + εg⊥(x, v, t). Then (f⊥, g⊥)

is bounded uniformly in ε in L2,w
t,x,v and

√
ρfρg − 1 = O(ε) in L2

t,x.

Proof. The proof is based on the entropy decay relation

ε2

2

d

dt
H(f, g) =

∫
T3

∫
R3

∫
R3

χ1χ
′
2

(
1− fg′

χ1χ′2

)
ln

fg′

χ1χ′2
dv′dvdx .

Since the entropy is uniformly bounded in ε and t, using (
√
a− 1)

2 ≤ 1
4 (a− 1) ln a,

we derive ∫ ∞
0

∫
T3

∫
R3

∫
R3

χ1χ
′
2

(√
fg′

χ1χ′2
− 1

)2

dv′dvdxdt = O(ε2) .

Using the micro-macro decomposition and expanding the square we find

I(t) :=

∫
T3

∫
R3

∫
R3

χ1χ
′
2

(√
fg′

χ1χ′2
− 1

)2

dv′dvdx =

∫
T3

(ρfρg + 1) dx

− 2

∫
T3

∫
R3

∫
R3

χ1χ
′
2
√
ρfρg

√(
1 +

εf⊥

ρfχ1

)(
1 +

εg⊥′

ρgχ′2

)
dv′dvdx . (32)

Now we use the identity√
(1 + εa)(1 + εb) = 1 +

εa

2
+
εb

2
− ε2(a− b)2

4(
√

(1 + εa)(1 + εb) + 1 + εa/2 + εb/2)

with a = f⊥/(ρfχ1), b = g⊥
′
/(ρgχ

′
2). Since 1 + εa = f/(ρfχ1), 1 + εb = g′/(ρgχ

′
2),

the estimates from Theorem 1.1 can be used to obtain 1 + εa, 1 + εb ≤ ρ∞+γ2
ρ∞−γ1 , with

the consequence√
(1 + εa)(1 + εb) ≤ 1 +

εa

2
+
εb

2
− ε2(ρ∞ − γ1)(a− b)2

8(ρ∞ + γ2)

Using this in (32), we obtain

O(ε2) = I(t) ≥
∫
T3

(
√
ρfρg − 1)2dx+

ε2(ρ∞ − γ1)

4(ρ∞ + γ2)3

∫
T3

∫
R3

(
f⊥2

χ1
+
g⊥2

χ2

)
dv dx ,

completing the proof.

With this basis we now follow the procedure of [15]. In particular, we use an
averaging lemma, which can be proved similarly to Lemma 3.2 in [15]. We give the
short proof for completeness.

Lemma 3.2. Let χ satisfy (3), let f and h lie in uniformly, with respect to the

small parameter ε, bounded subsets of L2,χ
t,x,v and let ε ∂tf + v · ∇xf = h. Then ρf

is bounded uniformly in ε in L2
t

(
H
θ/(2+θ)
x

)
.
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Proof. We represent f by the Fourier transform with respect to t and by the Fourier
series with respect to x:

f(x, v, t) =
∑
ξ∈T3∗

∫
R
f̂(ξ, v, τ)ei(tτ+x·ξ)dτ ,

with the lattice T3∗ dual to the torus T3, implying

zf̂ = −iĥ , with z = ετ + v · ξ .
For each λ > 0, we introduce a smooth, nonnegative real function ψλ(z) ≤ 1,
satisfying ψλ(z) = 0 for |z| ≤ λ and ψλ(z) = 1 for |z| ≥ 2λ. Now we estimate, using
(3),

|ρ̂f | ≤
∣∣∣∣∫

R3

ψλ
z
ĥdv

∣∣∣∣+

∣∣∣∣∫
R3

(1− ψλ)f̂ dv

∣∣∣∣
≤
(∫

R3

ψ2
λ

z2
χdv

)1/2

‖ĥ‖L2,χ
v

+

(∫
R3

(1− ψλ)2χdv

)1/2

‖f̂‖L2,χ
v

≤ 1

λ
‖ĥ‖L2,χ

v
+
√
C

(
2λ

|ξ|

)θ/2
‖f̂‖L2,χ

v
.

With the optimal choice λ = |ξ|θ/(2+θ), we obtain

|ξ|θ/(2+θ)|ρ̂f | ≤ c
(
‖f̂‖L2,χ

v
+ ‖ĥ‖L2,χ

v

)
,

completing the proof.

Theorem 3.3. Let the assumptions of Theorem 1.1 hold. Then as ε → 0 the
solution (f, g) of (2), (9) converges to (ρχ1, χ2/ρ) in L2,w

t,x,v,loc, when restricting to
subsequences, where ρ ∈ L∞t,x satisfies ρ∞ − γ1 ≤ ρ ≤ ρ∞ + γ2. Furthermore there

exist J1, J2 ∈ (L2
t,x)3 such that

∂t

(
ρ− 1

ρ

)
+∇x · (J1 − J2) = 0 ,

1

ρ
J1 = −D1∇xρ , ρJ2 = −D2∇x

(
1

ρ

)
,

hold in the sense of distributions.

Proof. Because of the boundedness of ρf and ρg and of Lemma 3.1, f and the
function

h :=
χ1 − ρgf

ε
= χ1(1 +

√
ρfρg)

1−√ρfρg
ε

− ρgf⊥

satisfy the assumptions of Lemma 3.2 with χ = χ1 (after even extension to t < 0).

With an analogous argument for g we obtain ρf , ρg ∈ L2
t

(
H
θ/(2+θ)
x

)
uniformly in

ε.
The conservation law

∂t(ρf − ρg) +∇x ·
(∫

R3

v(f⊥ − g⊥)dv

)
= 0 , (33)

the observation∣∣∣∣∫
R3

v(f⊥ − g⊥)dv

∣∣∣∣ ≤√trD1 ‖f⊥‖L2,χ1
v

+
√

trD2 ‖g⊥‖L2,χ2
v

, (34)

and Lemma 3.1 imply ρf − ρg ∈ H1
t

(
H−1x

)
which, after interpolation (see Lemma

3.4 below) with the averaging result gives

ρf − ρg ∈ H
θ

2(1+θ)

t,x uniformly in ε .
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As a consequence, for each 0 ≤ a < b and compact K ⊂ R3, a subsequence of
ρf − ρg converges strongly in L2((a, b) ×K) as ε → 0. Since the same is true for√
ρfρg → 1, it also holds for ρf and ρg individually as a consequence of the L∞

bounds. Another application of Lemma 3.1 completes the proof of the convergence
statement.

For the derivation of the limiting problem, we pass to the limit in (33) in the
distributional sense, denoting the weak limits of

∫
R3 vf

⊥dv and
∫
R3 vg

⊥dv, which
exist because of (34), by J1 and J2, respectively. Now we multiply the equation for
f by v/ε and integrate with respect to v obtaining

ε∂t

∫
R3

vf⊥dv +∇x ·
∫
R3

v ⊗ vfdv = −ρg
∫
R3

vf⊥dv .

By the uniform-in-ε boundedness of
∫
R3 v⊗ vfdv (consequence of Theorem 1.1 and

(3)) and by the strong convergence of ρg, we can pass to the limit, leading to the
desired equation for J1. For J2 we proceed analogously.

For completeness we outline the proof of the interpolation lemma used in the
proof of Theorem 3.3 with γ = θ

2+θ .

Lemma 3.4.

H1
t (H−1x ) ∩ L2

t (H
γ
x ) ↪→ H

γ
1+γ

t,x , ∀ γ > 0 .

Proof. After extension to t ∈ R and using the Fourier transform in both variables,
(t, x)↔ (τ, ξ), the result will be a consequence of the inequality

1 + |τ |
2γ

1+γ + |ξ|
2γ

1+γ ≤ 5

(
1 + τ2

1 + |ξ|2
+ |ξ|2γ

)
, ∀ (τ, ξ) ∈ R× R3 ,

which is equivalent to

1+ |ξ|2+ |ξ|
2γ

1+γ + |ξ|2+
2γ

1+γ + |τ |
2γ

1+γ + |τ |
2γ

1+γ |ξ|2 ≤ 5
(
1 + τ2 + |ξ|2γ + |ξ|2+2γ

)
. (35)

Employing

aα ≤ 1 + aβ , ab ≤ ap

p
+
bq

q
, ∀ a, b, α, β, p, q > 0 , α ≤ β , 1

p
+

1

q
= 1 ,

with p = 1+γ
γ , the left hand side of (35) can be estimated from above by

5 + 3|ξ|2+2γ + τ2 +
γ

1 + γ
τ2 +

1

1 + γ
|ξ|2+2γ ≤ 5

(
1 + τ2 + |ξ|2+2γ

)
,

completing the proof.
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