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Abstract. In this paper we study hyperbolic and parabolic nonlinear partial

differential equation models, which describe the evolution of two intersecting

pedestrian flows. We assume that individuals avoid collisions by sidestepping,
which is encoded in the transition rates of the microscopic 2D model. We

formally derive the corresponding mean-field models and prove existence of

global weak solutions for the parabolic model. Moreover we discuss stability
of stationary states for the corresponding one-dimensional model. Furthermore

we illustrate the rich dynamics of both systems with numerical simulations.
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1. Introduction

The complex dynamics of large pedestrian crowds attracted the attention of re-
searchers in various scientific fields over the last decades. Starting with empirical
observations in the early 1950ties, pedestrian research has become an active area of
research in physics, transportation processes, computer science and applied math-
ematics. Especially understanding and modeling the complex interactions among
pedestrians has gained importance due to the ongoing development of software
packages, which are used increasingly in the design and evaluation of public facili-
ties and environments.
The proposed mathematical models describe the dynamics of large pedestrian flows
on different levels: either microscopically by considering the motion of each individ-
ual or macroscopically by studying the evolution of the overall density distribution.
The most prominent microscopic approaches are the Social Force model developed
by Helbing, see [17] and cellular automata models, see [19]. On the macroscopic
level different nonlinear PDE systems, for example [7], [6], [13], [20], [11], have
been proposed to describe the dynamics of the pedestrian density usually based
on nonlinear conservation laws. More recently also kinetic and multi-scale models
have been used to model for example the interactions of large groups with a certain
number of leaders, see [14]. For a detailed overview on mathematical models for
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pedestrian dynamics we refer to the works of Bellomo and co-workers, in [2] and [3]
and Cristiani and co-workers in [12].
In this work we consider two groups - called red and blue individuals - which move
from the left to the right and the bottom to the top respectively. Each individual
tries to move in its desired direction (either to the right or towards the top), but
steps aside to avoid collisions with the other group. We start with a lattice based
approach and (formally) derive, analyze and simulate the corresponding PDE sys-
tems describing the evolution of these crossing pedestrian flows. The side-stepping
behavior results in the formation of complex patterns on the micro- as well as the
macroscopic level. In the case of bidirectional flows, that is two groups walking
in opposite direction, we observe the formation of directional lanes, see [6]. In
the case of intersecting flows the groups segregate, forming stationary and tran-
sient diagonal patterns at the intersection. Similar patterns have been observed on
the microscopic level by Cividini and co-workers in [9, 10] and in a kinetic model
proposed by Festa and co-workers, Ref [15]. We study the dynamic properties of
solutions to the derived PDE models, which are either parabolic or hyperbolic (in
certain density regimes). While the parabolic PDE model has a perturbed gradient
flow structure, which can be analyzed using similar techniques as proposed in [6],
the PDE system derived by considering the expansion up to order one is hyperbolic
in the x and the y direction only. Hence we study a 1D reduction, which has a
similar structure and behavior as models analyzed by Chertock et al. in [8] and
Appert et al. in [1], and obtain linear stability and local L2 stability in certain
density regimes (namely where the overall density is not too high). We would like
to mention that related results have been shown for classic traffic flow models for
n populations, see [4].
This paper is organized as follows: we introduce the microscopic modeling setup
and the corresponding PDE system in Section 2. Then we show global in time
existence for the full 2D parabolic system in Section 3 and illustrate the behavior
of the model with micro- and macroscopic simulations. In Section 4 we discuss
the dynamics of solutions to a reduced 1D hyperbolic system by studying linear
stability and local L2 stability behavior.

2. Discrete and continuous models for intersecting pedestrian flows

2.1. A stochastic individual based model on a two-dimensional lattice.
We consider an equidistant grid of mesh size h on a periodic box represented by
Ω = [0, Nh]2 ⊆ R2, where x = 0 is identified with x = Nh, and y = 0 with
y = Nh. Each lattice site (xi, yj) = (ih, jh), i, j ∈ {0, . . . N}, can be empty, or it
can be occupied by either a red or a blue individual. We also introduce discrete
times tk = k∆t, k = 0, 1, . . . with time step ∆t. The discrete stochastic processes
rk = (rki,j , i, j = 0, . . . , N), bk = (bki,j , i, j = 0, . . . , N), where rki,j , b

k
i,j ∈ {0, 1} with

the constraint ρki,j := rki,j+bki,j ≤ 1 indicate, if at time tk the site (xi, yj) is occupied

by a red individual (rki,j = 1, bki,j = 0), or by a blue individual (rki,j = 0, bki,j = 1),

or if it is empty (rki,j = bki,j = 0).
The general movement direction for the red individuals is to the right, i.e. in the
positive x-direction, and for the blue individuals upwards, i.e. in the positive y-
direction. Every individual might also step to the side, in particular when a forward
step is inhibited by a member of the other group. For the red individuals this leads
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to the transition probabilities

T i,j→i+1,j
r (r, b) = α(1− ρi+1,j),

T i,j→i,j−1
r (r, b) = α(1− ρi,j−1)(γ0 + γ1 bi+1,j),

T i,j→i,j+1
r (r, b) = α(1− ρi,j+1)(γ0 + γ2 bi+1,j),

(1)

with

T i,j→i,jr = 1− T i,j→i+1,j
r − T i,j→i,j−1

r − T i,j→i,j+1
r

and T i,j→m,nr = 0 for all other (m,n). The nonnegative parameters α, γ0, γ1, γ2

satisfy

αmax{1, 2γ0 + γ1 + γ2} ≤ 1 , (2)

such that T i,j→i,jr ≥ 0 always holds. Since individuals can only jump into a cell if
it is not occupied, all transition probabilities T i,j→m,nr have the factor (1− ρm,n).
The assumption that the blue individuals have the same behavior as the red ones,
leads to

T i,j→i,j+1
b (r, b) = α(1− ρi,j+1),

T i,j→i−1,j
b (r, b) = α(1− ρi−1,j)(γ0 + γ1 ri,j+1),

T i,j→i+1,j
b (r, b) = α(1− ρi+1,j)(γ0 + γ2 ri,j+1),

(3)

The sidestepping probability can be asymmetric, with γ1 > γ2 describing a tendency
to sidestep against the general movement direction of the other group. Note that
all individuals refuse to move backwards.
The stochastic process is completed by prescribing when the jumps are carried out.
We use the somewhat artificial assumption of complete synchronization, where all
individuals use the same information on the present state for making the next move.
This means that all individuals use the transition probabilities T i,j→m,nr (rk, bk) and

T i,j→m,nb (rk, bk) to determine their positions at time tk+1.

2.2. A discrete compartment model. A related model is based on the assump-
tion that each grid point (xi, yj) represents a compartment, possibly containing
many individuals. Now rki,j , b

k
i,j ∈ [0, 1] denote the fractions of the total avail-

able space in a compartment occupied at time tk by red and, respectively, blue
individuals (again with the obvious restriction rki,j + bki,j ≤ 1). We postulate the
deterministic dynamics given by

rk+1
i,j =

(
1− T i,j→i+1,j

r (rk, bk)− T i,j→i,j−1
r (rk, bk)− T i,j→i,j+1

r (rk, bk)
)
rki,j

+ T i−1,j→i,j
r (rk, bk)rki−1,j + T i,j+1→i,j

r (rk, bk)rki,j+1 (4)

+ T i,j−1→i,j
r (rk, bk)rki,j−1 ,

bk+1
i,j =

(
1− T i,j→i,j+1

b (rk, bk)− T i,j→i−1,j
b (rk, bk)− T i,j→i+1,j

b (rk, bk)
)
bki,j

+ T i,j−1→i,j
b (rk, bk)bki,j−1 + T i−1,j→i,j

b (rk, bk)bki−1,j (5)

+ T i+1,j→i,j
b (rk, bk)bki+1,j ,

with the transition rates (1), (3).
In principle, a connection could be made between the two models by passing to
expectation values in the stochastic model, but the expected transition rates will
not satisfy (1), (3) because of the expected strong local correlations.
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2.3. The macroscopic PDE model. A continuous model, both in position and
time, can be obtained from (4), (5) by interpreting rki,j and bki,j as approximations
for the values r(xi, yj , tk) and b(xi, yj , tk) of continuous functions, and formally
passing to the limit h,∆t → 0 (similarly to [6]). We assume that position and
time have already been non-dimensionalized and make the additional assumption
α = ∆t/h. Assumption (2) can then be interpreted as a CFL-condition. Division
of (4), (5) by ∆t and passing to the limit leads to

∂tr + ∂x((1− ρ)r) + (γ2 − γ1)∂y((1− ρ)br) = 0 ,

∂tb+ ∂y((1− ρ)b) + (γ2 − γ1)∂x((1− ρ)br) = 0 .
(6)

The second terms on the left hand sides correspond to the motion in the walking
direction (to the right and, respectively, upwards), while the third terms correspond
to the side-stepping behavior. A natural regularization is obtained by carrying out
the Taylor expansions to the next order with respect to position in the right hand
sides of (4), (5), to the next order, leading to

∂tr +∇ · Jr = 0 ,

∂tb+∇ · Jb = 0 ,
(7)

where the flows of red and blue individuals are given by

Jr :=


(1− ρ)r + ε [∂x(r(1− ρ))− 2((1− ρ)∂xr)]

−(γ1 − γ2)(1− ρ)br − ε [(γ1 + γ2) ((1− ρ)∂y(rb) + br∂yρ)
+2γ0 ((1− ρ)∂yr + r∂yρ) + 2(γ1 − γ2)(1− ρ)r∂xb]

 ,

and

Jb :=


−(γ1 − γ2)(1− ρ)br − ε [(γ1 + γ2) ((1− ρ)∂x(rb) + br∂xρ)

+2γ0 ((1− ρ)∂xb+ b∂xρ) + 2(γ1 − γ2)(1− ρ)b∂yr]

(1− ρ)b+ ε [∂y(b(1− ρ))− 2((1− ρ)∂yb)]

 ,

with ε = h/2. This regularization is related to ’modified equations’ as used in
numerical analysis to understand the qualitative behavior of numerical schemes.
However, we have neglected the Taylor expansion with respect to time, which cor-
responds to a smallness assumption on the parameter α (which can be interpreted
as a Courant number).

3. Global existence of the parabolic problem

In this Section, we prove global in time existence for the second order parabolic
problem. We consider the system (7) on Ω×(0, T ), where w.l.o.g. Ω = [0, 1]× [0, 1].
We assume the system to be supplemented with periodic boundary conditions and
for simplicity set

γ := γ1 = γ2.

All arguments also hold in the case γ1 6= γ2, where γ1− γ2 is sufficiently small. For
details see Remark 2. In a similar fashion to [6] we define the entropy functional

E := ε

∫
Ω

r(log r − 1) + b(log b− 1) dx dy

+ ε

∫
Ω

1

2
(1− ρ)(log(1− ρ)− 1) dx dy +

∫
Ω

rVr + bVb dx dy,

(8)

where the potentials Vr(x, y) = −x and Vb(x, y) = −y correspond to the motion of
the red and blue individuals to the right and the top respectively. As we shall see
below, this functional is not an entropy in the strict sense that it is decaying for
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all times for any solution. Instead it increases at most linearly in time, which still
allows us to prove global existence of weak solutions. Introducing the corresponding
entropy variables

u := ∂rE = ε log r− ε

2
log(1− ρ) +Vr and v := ∂bE = ε log b− ε

2
log(1− ρ) +Vb,

allows us to write system (7) as

(
∂tr
∂tb

)
=

(
∇ 0
0 ∇

)
·

M(r, b)


∂xu
∂yu
∂xv
∂yv

+ ε


r
2∂xρ
γ0r∂yρ
γ0b∂xρ
b
2∂yρ


 , (9)

where

M := M(r, b) = (1− ρ)


r 0 0 0
0 2r(γ0 + γb) 0 2γrb

2γrb 0 2b(γ0 + γr) 0
0 0 0 b

 .

Note that system (9) has a similar structure as the PDE model for bidirectional
flow studied by Burger et al. in [6]. Hence we can use similar arguments to prove
existence which we briefly state in the following.

We start by showing that the entropy is growing at most linearly in time.

Lemma 1. Let r, b : Ω → R2 be a sufficiently smooth solution to system (9) for
1
8 < γ0 < 1 satisfying

0 ≤ r, b and ρ ≤ 1.

Then there exists a constant C ≥ 0 such that

dE

dt
+D0 ≤ C, (10)

where

D0 = ε2C0

∫
Ω

(1− ρ)|∇
√
r|2 + (1− ρ)|∇

√
b|2 + |∇

√
1− ρ|2 + |∇ρ|2 dx dy,

for some constant C0 > 0.

Proof. Using (9) we deduce the following entropy dissipation relation:

dE

dt
=

∫
Ω

(u ∂tr + v ∂tb)dx dy

= −
∫

Ω

M

(
∇u
∇v

)
·
(
∇u
∇v

)
+ ε


r
2∂xρ
γ0r∂yρ
γ0b∂xρ
b
2∂yρ

 · (∇u∇v
)
dx dy

(11)

In terms of the entropy variables u and v, we can rewrite

∂xρ = (r∂xu+ b∂xv + r)
2(1− ρ)

ε(2− ρ)
,

and

∂yρ = (r∂yu+ b∂yv + b)
2(1− ρ)

ε(2− ρ)
.
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Hence, equation (11) becomes

dE

dt
= −

∫
Ω

M

(
∇u
∇v

)
·
(
∇u
∇v

)
+N(r, b)

(
∇u
∇v

)
·
(
∇u
∇v

)
+H(r, b)

(
∇u
∇v

)
dx dy,

(12)

where

N := N(r, b) =
1− ρ
2− ρ


r2 0 rb 0
0 2γ0r

2 0 2γ0rb
2γ0rb 0 2γ0b

2 0
0 rb 0 b2

 ,

and

H := H(r, b) =
1− ρ
2− ρ


r2

2γ0rb
2γ0rb
b2

 .

Hence,

dE

dt
= −

∫
Ω

[
(1− ρ)(r(∂xu)2 + b(∂yv)2) + 2γ0(1− ρ)(r(∂yu)2 + b(∂xv)2)

+ 2γ(1− ρ)rb((∂yu)2 + (∂xv)2 + ∂yv∂yu+ ∂xu∂xv)

]
dx dy

−
∫

Ω

1− ρ
2− ρ

[
r2(∂xu)2 + 2γ0r

2(∂yu)2 + 2γ0b
2(∂xv)2 + b2(∂yv)2

+ rb∂xu∂xv + 2γ0rb∂yu∂yv + 2γ0rb∂xu∂xv + rb∂yu∂yv

]
dx dy

−
∫

Ω

H(r, b)

(
∇u
∇v

)
dx dy,

(13)

As 0 ≤ γ, r, b, ρ ≤ 1, we have

2γ(1− ρ)rb|∂xu∂xv| ≤
1− ρ

2
r(∂xu)2 + 2γ(1− ρ)rb(∂xv)2,

1− ρ
2− ρ

rb|∂xu∂xv| ≤
1− ρ
2− ρ

r2(∂xu)2 +
1− ρ

4
b(∂xv)2,

1− ρ
2− ρ

2γ0rb|∂xu∂xv| ≤ 2γ0
1− ρ

4
r(∂xu)2 +

1− ρ
2− ρ

2γ0b
2(∂xv)2,

by Young’s inequality. The same holds for the term involving y-derivatives. In
order to guarantee that all the mixed terms are controlled by the quadratic terms,
we have to assume that 1

8 < γ0 < 1. Hence, the entropy dissipation (11) reduces to

dE

dt
≤ −

∫
Ω

C̃(1− ρ)(r|∇u|2 + b|∇v|2) +H(r, b)

(
∇u
∇v

)
dx dy,

where C̃ = min(2γ0 − 1
4 ,

1
2 (1− γ0)) > 0.

The linear terms, i.e. the terms arising from the matrix H(r, b), can be controlled
by Young’s inequality resulting in at most linear growth of the entropy functional.
In particular, the first term can be bounded by∫

Ω

(1− ρ)r2

2− ρ
|∂xu| dx dy ≤

∫
Ω

C̃

8
(1− ρ)r(∂xu)2 dx dy +

∫
Ω

2(1− ρ)r2

C̃
dx dy.

As 0 ≤ r, ρ ≤ 1 and the integration is over a bounded domain, we obtain

dE

dt
≤ −

∫
Ω

C̃

2
(1− ρ)(r|∇u|2 + b|∇v|2) + Ĉ dx dy,
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for some constant Ĉ ≥ 0.

Using the definitions of u and v, applying Young’s inequality to estimate the mixed
terms involving the potentials as well as the fact that

r(1− ρ)

∣∣∣∣∇(log
r√

1− ρ

)∣∣∣∣2 + b(1− ρ)

∣∣∣∣∇(log
b√

1− ρ

)∣∣∣∣2
= 4(1− ρ)

∣∣∇√r∣∣2 + 4(1− ρ)
∣∣∣∇√b∣∣∣2 + ρ

∣∣∣∇√1− ρ
∣∣∣2 + |∇ρ|2 ,

we obtain

dE

dt
≤ − C̃ε

2

4

∫
Ω

4(1− ρ)|∇
√
r|2 + 4(1− ρ)|∇

√
b|2 + ρ|∇

√
1− ρ|2 + |∇ρ|2 dx dy

+
C̃

2

∫
Ω

(1− ρ)(r|∇Vr|2 + b|∇Vb|2) dx dy + Ĉ

Since |∇Vr|2 = |∇Vb|2 = 1 and ρ|∇
√

1− ρ|2 + |∇ρ|2 ≥ |∇
√

1− ρ|2, we get the
estimate

dE

dt
≤ −ε2C0

∫
Ω

(1− ρ)(|∇
√
r|2 + |∇

√
b|2) + |∇

√
1− ρ|2 + |∇ρ|2 dx dy + C,

(14)

for some constant C ≥ 0 and C0 = C̃
8 , which concludes the proof. �

Note that we cannot use the maximum principle to prove nonnegativity and bound-
edness of r, b and ρ. Therefore we define the entropy density on the set M, i.e.

hE :M→ R,(
r
b

)
7→ ε

(
(log r − 1) + b(log b− 1) +

1

2
(1− ρ)(log(1− ρ)− 1)

)
+ rVr + bVb,

where

M =

{(
r
b

)
∈ R2 : r > 0, b > 0, r + b < 1

}
. (15)

The fact that the corresponding gradient is invertible yields positivity and the
appropriate bounds for r, b and ρ (cf. [18], [6]).
The previous propositions and definitions allow us to prove global existence in the
following theorem.

Theorem 1. (Global existence) Let T > 0 and (r0, b0) : Ω → M, where M is
defined by (15), be measurable functions such that hE(r0, b0) ∈ L1(Ω). If 1

8 < γ0 <

1, there exists a weak solution (r, b) : Ω × (0, T ) →M to system (9) with periodic
boundary conditions satisfying

∂tr, ∂tb ∈ L2(0, T ;H1(Ω)′),

ρ,
√

1− ρ ∈ L2(0, T ;H1(Ω)),

(1− ρ)∇
√
r, (1− ρ)∇

√
b ∈ L2(0, T ;L2(Ω)).

Moreover, the weak solution satisfies the following entropy dissipation inequality:

dE

dt
+D1 ≤ C, (16)

where

D1 = ε2C0

∫
Ω

(1− ρ)2|∇
√
r|2 + (1− ρ)2|∇

√
b|2 + |∇

√
1− ρ|2 + |∇ρ|2 dx dy

and C0 and C are the constants from Lemma 1.
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Since the proof follows the lines of [6], we omit the details and sketch its ideas
only. In the first step one considers a time discrete regularized formulation of (9),
for which existence of weak solutions is guaranteed by Lax-Milgram. Then we use
Schauder’s fixed point theorem, cf. [5], to conclude the existence result for the
corresponding nonlinear problem. Finally uniform a priori estimates in the discrete
time step τ arising from the discrete version of the entropy inequality and the use
of a generalized Aubin-Lions lemma (cf. [21]) allow to pass to the limit τ → 0.

Remark 2. If γ1 6= γ2, the additional first order term can easily be controlled
by Young’s inequality as it was done for the other linear terms in the proof of
Theorem 1. The resulting additional diffusion terms can only be controlled for
γ1 − γ2 sufficiently small by the entropy production term in (14). More precisely
using

2ε|γ1 − γ2|(1− ρ)r|∂xb∂yu| ≤ 4ε2|γ1 − γ2|(1− ρ)(∂x
√
b)2 + |γ1 − γ2|(1− ρ)r(∂yu)2

and

2ε|γ1 − γ2|(1− ρ)b|∂yr∂xv| ≤ 4ε2|γ1 − γ2|(1− ρ)(∂y
√
r)2 + |γ1 − γ2|(1− ρ)b(∂xv)2,

the estimate can be closed for 4|γ1 − γ2| <
min{2γ0− 1

4 ,
1
2 (1−γ0)}−|γ1−γ2|

8 .

3.1. Numerical simulations. Next we illustrate the behavior of the model (7)
in spatial dimension two. The following simulations have been carried out using
the COMSOL Multiphysics Package with quadratic finite elements. We consider
the domain Ω = [0, 1]× [0, 1] with periodic boundary conditions. The spatial mesh
consists of 3258 triangles, the maximum time step in the BDF method is set to 0.1.

3.1.1. Example I: Periodic boundary conditions. In our first example we assume
that individuals have a small preference to step to the right, that is γ1 = 0.15 and
γ2 = 0.1. We set γ0 = 0.2, ε = 0.05 and the initial values to

r0(x, y) = r∞ + 0.02 cos(πx) sin (πy) ,

b0(x, y) = b∞ + 0.02 sin(πx) cos (πy) ,
(17)

with r∞ = b∞ = 0.4. Figure 1 illustrates the initial values r0, b0 and the solution
rT , bT to system (7) at time T = 20. We observe the formation of shifted stationary
diagonal stripes for the respective pedestrian densities.

Remark 3. Note that the direction of the diagonal stripes does not depend on γ1

and γ2. However, the total initial masses Mr and Mb, where

Mr :=

∫
Ω

r0(x, y) dx dy and Mb :=

∫
Ω

b0(x, y) dx dy,

as well as the type of perturbation change the stationary profiles. If the total initial
mass is small, perturbations smooth out quickly and the system returns to its initial
equilibrium state. If the total mass is sufficiently large, as in Example 3.1.1, we
observe the formation of diagonal stripes. The simulations indicate that the set M
is divided to a stable and unstable region. A rigorous proof is however left for future
work.

3.1.2. Example II: Mixed boundary conditions. The case of more realistic boundary
conditions shows that the choice of the parameters γ1 and γ2 is significant. Again we
start with initial values (17), where r∞ = b∞ = 0.1, and set γ0 = 0.15, ε = 0.0025.
We now use the following boundary conditions: Dirichlet at the corresponding
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(a) r0 (b) b0

(c) rT at T = 20 (d) bT at T = 20

Figure 1. Example I: Formation of diagonal lanes in the red and
blue particle density in the case of small perturbation of the equi-
librium solutions (r∞, b∞).

entrances, a given outflux at the exits and no-flux boundary conditions on the rest
of the domain. More precisely

r(0, y) = b(x, 0) = 0.1, Jr·
(

1
0

)
= 0.8r, Jb ·

(
0
1

)
= 0.8b

Jr ·
(

0
±1

)
= Jb·

(
±1
0

)
= 0.

Figures 3 and 4 show the different behavior for γ1 = 0.2, γ2 = 0.1 and γ1 = 0.1
and γ2 = 0.2. While in the first case pedestrians can still move to their preferred
walking direction, we observe a deadlock in the second case. This confirms the
intuitive assumption that stepping aside into the opposite direction as the other
group, i.e. γ1 > γ2, prevents a collision in the next time step. On the other hand,
if an individual steps aside in the walking direction of the other group, the initial
’conflict situation’ remains unchanged (see Figure 2 for a graphical illustration of
such a situation for a red individual).

3.2. Particle simulations. In this Section we want to compare the macroscopic
results presented in Section 3.1 to the stochastic individual based model introduced
in Section 2.1. In particular, we perform a particle simulation using Mathematica
considering a domain Ω partitioned into a grid of size N × N with P particles in
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(a) Conflict situation as
the red individual wants

to go to the right.

(b) Stepping aside in the
same direction as the

other group does not re-
solve the conflict.

(c) Side stepping in the
other direction resolves

the situation.

Figure 2. Illustration of a conflict situation for a red individual.

(a) rT at T = 100 (b) bT at T = 100

Figure 3. Example II: Particle density for γ1 = 0.2 and γ2 = 0.1.

(a) rT at T = 100 (b) bT at T = 100

Figure 4. Example II: Particle density for γ1 = 0.1 and γ2 = 0.2.

total. We define the total density ρΩ by

ρΩ :=
P

N2
.

In each time step we update the position of all particles in a random order.
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3.2.1. Example I. In this example, we set α = 0.6, γ0 = 0.15 and γ1 = 0.2, γ2 = 0.1,
i.e. we consider a small preference to step to one side. Note that this choice of
parameters satisfies condition (2).
We perform two particle simulations for different total densities, namely ρΩ = 0.2
and ρΩ = 0.5. This corresponds to a initial random distribution of 2000 and 5000
particles on a 100×100 grid. The particle distribution after 500 time steps in either
case is illustrated in Figure 5. Whereas for the smaller density the distribution is
well mixed, we observe a clear segregation in the case ρΩ = 0.5. Note that the
segregation pattern has a similar structure as in Figure 1, the diagonal stripes have
the same orientation. Although the particle simulations of the stochastic individual
based model cannot directly be compared to the simulations of the macroscopic
model, the results let assume that they have a similar behavior.

(a) Particle simulation for ρΩ = 0.2 (b) Particle simulation for ρΩ = 0.5

Figure 5. Particle simulation after 500 steps.

3.2.2. Example II. Another interesting feature arises if we choose γ0 = 0 and α = 1.
Setting γ1 = 0.2 and γ2 = 0.1 (satisfying condition (2)) and starting with an initial
random density of ρΩ = 0.2, we observe the formation of traveling diagonal wave
patterns, see Figure 6. These patterns are not stationary and the orientation does
not depend on the choice of γ. We would like to mention that diagonal stripes have
been observed in a similar model for pedestrian dynamics (in which pedestrians
were not able to step aside), see [9] and [10]. Note that this particular choice of
parameters corresponds to the fact that particles always maintain their walking
direction if possible. Only in conflict situations (as illustrated in Figure 2), the
particles try to step aside.

4. The reduced 1D model

The preceding simulations show that system (7) reveals stable as well as unstable
regions for different values of (r, b) ∈ M. In order to gain further insights, we
consider the first order system (6), which can be written in the form(

∂tr
∂tb

)
= A

(
∂xr
∂xb

)
+B

(
∂yr
∂yb

)
, (18)

where

A =

(
2r + b− 1 r

(γ1 − γ2)(1− 2rb− b2) (γ1 − γ2)(1− 2br − r2)

)
,
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Figure 6. Particle simulation after 500 steps.

and

B =

(
(γ1 − γ2)(1− 2rb− r2) (γ1 − γ2)(1− 2br − b2)

b 2b+ r − 1

)
.

The matrices A and B are diagonalizable for γ1 6= γ2. Hence, the system is hy-
perbolic in x− and in y−direction, respectively. For γ1 = γ2, the only critical case
is b = 1 − 2r in x− and r = 1 − 2b in y−direction where both eigenvalues vanish.
However, system (18) is not hyperbolic as the eigenvalues of the linear combinations
of A and B are not all real in general. Additionally, the system is not genuinely
nonlinear. Note that a system of the form(

∂tr
∂tb

)
= M(r, b)

(
∂xr
∂xb

)
is called genuinely nonlinear, if rk ·∇r,bλk 6= 0 for k = 1, 2, where rk and λk denote
the right eigenvector and eigenvalue respectively.
Since the full 2D system is very complex, we start the analysis of the simplified 1D
reduction in the following.
In particular, we now focus on the two types of individuals walking in opposite
directions described by densities on a line. Note that this situation corresponds
to the original problem, if we write the system using coordinates

(
x+y

2 , x−y2

)
and

study the dynamics of the diagonal patterns. Reduced 1D models for bidirec-
tional pedestrian flows have been studied in [1], [8] or [16]. Appert-Rolland and
co-workers analysed the behavior of different models for multi-lane pedestrian flows
in [1], which are closly related to the traffic flow models such as the Aw-Rascle and
Lighthill-Whitham-Richards (LWR) model. They observe a similar behavior in
the proposed first order models, namely the lack of hyperbolicity of the system.
Note that this has been reported for classic traffic flow models for n populations
by Benzoni-Gavage and Colombo in [4]. In [8] Chertock and co-workers derive a
1D pedestrian model with slowdown interactions for counterflows in narrow streets.
This system is also not hyperbolic and exhibits similar instabilities as we observe
in our numerical simulations. The linear stability analysis of both systems gave
similar results as we will show in the following.
In our case, the transition rates reduce to

T i→i+1
r (r, b) = α(1− ρi+1),

T i→i−1
b (r, b) = α(1− ρi−1),
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which lead to the system(
∂tr
∂tb

)
=

(
−∂x((1− ρ)r)
∂x((1− ρ)b)

)
= C(r, b)

(
∂xr
∂xb

)
, (19)

where

C := C(r, b) =

(
2r + b− 1 r
−b −2b− r + 1

)
.

The characteristic polynomial of C is

pC(λ) = λ2 + λ(b− r)− (1− 2ρ)(1− ρ)

and the corresponding eigenvalues are

λ1,2 =
r − b

2
±
√

(r − b)2

4
+ (1− ρ)(1− 2ρ).

Since the eigenvalues can take complex values system (19) is also not hyperbolic.
But we are able to calculate its hyperbolic regions in M explicitly. Figure 7 shows
the ellipsoidal region of r and b inside which the 1D system is not hyperbolic.

elliptic region

hyperbolic region

0.0 0.2 0.4 0.6 0.8 1.0
r0.0

0.2

0.4

0.6

0.8

1.0

b

Figure 7. Elliptic region of system (19).

Remark 4. In two dimensions, the derivation of the exact hyperbolic region is a
more challenging task. Nevertheless, we can check with the help of the corresponding
eigenvalues that system (18) is hyperbolic if ρ < 1

2 .

4.1. Linear stability. In this Subsection, we take a closer look at the linear sta-
bility of equilibrium solutions of system (19) and the regularized version thereof
on Ω × (0, T ) for Ω ⊆ R bounded and we assume periodic boundary conditions.
This work is closely related to the linear stability analysis presented in [1] and
[8] and allows to determine which equilibrium solutions are stable with respect to
small perturbations. Let (r∞, b∞) be an equilibrium solution, the linearized system
around (r∞, b∞) is (

∂tr
∂tb

)
=

(
−(1− ρ∞)∂xr + r∞∂xρ
(1− ρ∞)∂xb− b∞∂xρ

)
. (20)

We look for solutions which are Fourier modes of the form r = reikπxeλt and
b = beikπxeλt, where r, b are the amplitudes of the mode, k denotes the wave
number and λ the frequency. Inserting this Fourier ansatz into (20) leads to the
homogeneous linear system

(CF − λI)

(
r
b

)
= 0, (21)
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where

CF =

(
−ikπ(1− 2r∞ − b∞) ikπr∞

−ikπb∞ ikπ(1− r∞ − 2b∞)

)
.

The system has non-trivial solutions if and only if the determinant of the matrix
CF − λI vanishes resulting in a relation between the frequency λ and the wave
number k. If the real parts of the eigenvalues λ are negative for all wave numbers
k ∈ R, system (21) is called asymptotically stable. If one eigenvalue λ gets positive
for some k ∈ R, we have instabilities.
Evidently, we expect instabilities in the non-hyperbolic region. In the hyperbolic
region, the real part of the eigenvalues is zero. To analyze the linear stability behav-
ior inside the hyperbolic region, we would have to consider also higher order terms.
Therefore we analyze and simulate the respective parabolic 1D model derived in
the same way as the 2D model in Section 2.3. If we add the natural regularization
coming from the Taylor expansion, we have(

∂tr
∂tb

)
=

(
−∂x((1− ρ)r) + ε(∂x((1− b)∂xr + r∂xb))
∂x((1− ρ)b) + ε(∂x((1− r)∂xb+ b∂xr))

)
. (22)

First of all we study the zero-flux stationary solutions of system (22), which satisfy(
0
0

)
=

(
−(1− ρ)r + ε((1− b)∂xr + r∂xb)
(1− ρ)b+ ε((1− r)∂xb+ b∂xr)

)
. (23)

Proposition 5. Let (rS , bS) denote a solution to system (23). If 0 < rS , bS , ρS < 1,
then ∂xrS and ∂xbS must have different signs at every point x.

Proof. Let us assume that ∂xrS and ∂xbS have the same sign. Then the terms
ε((1− bS)∂xrS + rS∂xbS) and ε((1− rS)∂xbS + bS∂xrS) would also have the same
sign. Since we assume that (1 − ρS)rS and (1 − ρS)bS are positive, equation (23)
can not hold, which leads to a contradiction. �

Linearizing system (22) around (r∞, b∞) gives(
∂tr
∂tb

)
=

(
−(1− ρ∞)∂xr + r∞∂xρ+ ε((1− b∞)∂xxr + r∞∂xxb)
(1− ρ∞)∂xb− b∞∂xρ+ ε((1− r∞)∂xxb+ b∞∂xxr)

)
. (24)

Inserting again the Fourier ansatz from above into (24) leads to the homogeneous
linear system

(DF − λI)

(
r
b

)
= 0, (25)

where

DF = kπ

(
−i(1− 2r∞ − b∞)− εkπ(1− b∞) −εkπr∞ + ir∞

−εkπb∞ − ib∞ i(1− r∞ − 2b∞)− εkπ(1− r∞)

)
.

The characteristic polynomial of DF is

pDF
(λ) =λ2 − λ(ikπ(r∞ − b∞)− εk2π2(2− ρ∞)) + k2π2((1− 2ρ∞)(1− ρ∞))

− 2iεk3π3(1− ρ∞)(r∞ − b∞) + ε2k4π4(1− ρ∞).

Again the real parts of the eigenvalues λ determine the linear stability of system
(25). The following result has been calculated using Mathematica.

Proposition 6. Let ε > 0 and let (r∞, b∞) be such that 0 ≤ r∞, b∞, ρ∞ ≤ 1. Then
system (25) is linearly stable for (r∞, b∞) /∈ D, where D is the area inside the two

curves γ1,2 : [0, 1] 7→ (r,min(−6+9r−4r2

−9+8r ± 4
√

2r−3r2+r4

(−9+8r)2 , 1− r), see Figure 8.
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Inside the curves γ1,2, the system is unstable. The diffusion stabilizes the modes
corresponding to large wave numbers, i.e. instabilities arise only for modes with

k <

√
−4+ρ(12−8r2+ρ(−9+8r))

(−2+ρ)2

επ
.

instable region

stable region

0.0 0.2 0.4 0.6 0.8 1.0
r0.0

0.2

0.4

0.6

0.8

1.0

b

Figure 8. Separation of linearly stable and instable region. Note
that the blue line still belongs to the stable region and the red line
to the unstable one.

Remark 7. If we study the stability of solutions to system (19) in the case of linear
diffusion as in [1], we obtain linear stability in the hyperbolic region and instability
in the elliptic region, cf. Figure 7.

4.2. Local L2-stability resulting from a Lyapunov functional. In this Sec-
tion, we want to construct a positive entropy functional which can be used to prove
local L2-stability of equilibrium solutions to system (22). Our results on linear
stability already indicate that this will only be possible in a subdomain of M.
Note that system (22) can equivalently be written as(

∂tr
∂tb

)
=

(
−∂x((1− ρ)r) + ε(∂x((1− ρ)∂xr + r∂xρ))
∂x((1− ρ)b) + ε(∂x((1− ρ)∂xb+ b∂xρ))

)
.

By adding and subtracting the equations we obtain:(
∂tρ

∂t(r − b)

)
=

(
−∂x((1− ρ)(r − b)) + ε∂2

xρ
−∂x((1− ρ)ρ) + ε(∂x((1− ρ)∂x(r − b) + (r − b)∂xρ))

)
.

Introducing the new unknowns ξ := 1− ρ and η := r − b gives(
∂tξ
∂tη

)
=

(
∂x(ηξ) + ε∂2

xξ
−∂x(ξ(1− ξ)) + ε(∂x(ξ∂xη − η∂xξ))

)
. (26)

Note that due to mass conservation, ξ and η are conserved quantities, i.e.

d

dt

∫
Ω

η dx =
d

dt

∫
Ω

ξ dx = 0. (27)

Theorem 8. The entropy functional

J :=
1

2

∫
Ω

η2 + ξ2 − (ξ(log ξ − 1) + 1) + (1− ξ)2 dx (28)

is nonnegative for (η, ξ) ∈ [−1, 1]× [0, 1] and non-increasing in time if

ξ ≥ 1

2
+

1

4δ
for δ ≤ 2. (29)
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Proof. The nonnegativity of J follows from

−(ξ(log ξ − 1) + 1) + (1− ξ)2 ≥ 0 for ξ ∈ [0, 1] .

Using the property (27), we obtain

dJ
dt

=

∫
Ω

η∂tη + 2ξ∂tξ − log ξ∂tξ dx

=

∫
Ω

−η∂xξ + 2ηξ∂xξ − ε(ξ(∂xη)2 − η∂xξ∂xη) dx

+

∫
Ω

−2ηξ∂xξ − 2ε(∂xξ)
2 + η∂xξ + ε

1

ξ
(∂xξ)

2 dx

= −ε
∫

Ω

ξ(∂xη)2 − η∂xξ∂xη + 2(∂xξ)
2 − 1

ξ
(∂xξ)

2 dx.

Using Young’s inequality to estimate the mixed term, i.e.

ε

∫
Ω

η∂xξ∂xη dx = ε

∫
Ω

η√
δξ
∂xξ
√
δξ∂xη dx ≤ ε

∫
Ω

η2

2δξ
(∂xξ)

2 +
δξ

2
(∂xη)2 dx,

we obtain

dJ
dt
≤ −ε

∫
Ω

(
2−

(
1 +

1

2δ

)
1

ξ

)
(∂xξ)

2 dx− ε
(

1− δ

2

)∫
Ω

ξ(∂xη)2 dx. (30)

Hence, the entropy functional is decreasing in time for δ ≤ 2 and ξ ≥ 1
2 + 1

4δ . �

The aim is to show that small perturbations of the equilibrium solutions (ξ∞, η∞)
decay in time and we therefore introduce the corresponding relative entropy func-
tional to (28):

Jrel :=
1

2

∫
Ω

(η − η∞)2 +

(
2− 1

ξ∞

)
(ξ − ξ∞)2

− ξ∞
(
ξ

ξ∞

(
log

ξ

ξ∞
− 1

)
+ 1

)
+

1

ξ∞
(ξ − ξ∞)2 dx

(31)

which satisfies the same entropy dissipation inequality as J in (30). To guarantee
that (29) holds for all times t > 0, we add another term to the entropy functional.
This term allows us to control the H1-norm, and therefore by Sobolev-imbedding,
the L∞− norm of the perturbation ξ − ξ∞. Differentiating the equation for ξ and
testing it with ∂xξ we obtain the a priori estimate

1

2

d

dt

∫
Ω

(∂xξ)
2 dx =

∫
Ω

−∂x(ηξ)∂2
xξ − ε(∂2

xξ)
2 dx

=

∫
Ω

−(ξ∂xη + η∂xξ)∂
2
xξ − ε(∂2

xξ)
2 dx

≤ 1

2ε

∫
Ω

ξ2(∂xη)2 + η2(∂xξ)
2 dx+

ε

2

∫
Ω

(∂2
xξ)

2 dx− ε
∫

Ω

(∂2
xξ)

2 dx

=
1

2ε

∫
Ω

ξ2(∂xη)2 + η2(∂xξ)
2 dx− ε

2

∫
Ω

(∂2
xξ)

2 dx.

Combining the latter with Jrel we obtain the relative entropy

J̃rel :=
1

2

∫
Ω

(η − η∞)2 +

(
2− 1

ξ∞

)
(ξ − ξ∞)2 + αε2(∂x(ξ − ξ∞))2

− ξ∞
(
ξ

ξ∞

(
log

ξ

ξ∞
− 1

)
+ 1

)
+

1

ξ∞
(ξ − ξ∞)2 dx
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for some α > 0. The relative entropy J̃rel is defined in such a way as to preserve
the nonnegativity is preserved and satisfies

J̃rel ≥
(

1− 1

2ξ∞

)(
‖η − η∞‖2L2(Ω) + ‖ξ − ξ∞‖2L2(Ω)

)
, (32)

as well as (by Sobolev embedding)

J̃rel ≥ C1(αε2)‖ξ − ξ∞‖2H1(Ω) ≥ C(αε2)‖ξ − ξ∞‖2∞, (33)

for some positive constants C1, C both depending on αε2. Moreover

J̃rel = 0 ⇐⇒ (η, ξ) = (η∞, ξ∞).

Thus, J̃rel is a Lyapunov functional and due to its control of the H1-norm of
ξ− ξ∞, it allows us to guarantee the conservation of (29) (provided that the initial
perturbation is sufficiently small). This leads to the following asymptotic stability
result.

Theorem 9 (L2- asymptotic stability of equilibria). Let δ ≤ 2 and (η∞, ξ∞) be an
equilibrium solution satisfying

ξ∞ =
1

2
+

1

4δ
+ β (34)

for some small β > 0. Moreover, let the initial data (η0, ξ0) with mean (η0, ξ0) =
(η∞, ξ∞) be such that

J̃rel(0) ≤ C(αε2)
β2

4
, (35)

where C(αε2) is the positive constant from estimate (33). Then, the solution
(η(t), ξ(t)) to system (22) satisfies

[‖η(t)− η∞‖L2(Ω) + ‖ξ(t)− ξ∞‖L2(Ω)]→ 0. (36)

Proof. As we have seen in (33) the relative entropy J̃rel controls the L∞-norm of
the perturbation. Thus, if

J̃rel ≤ C(αε2)
β2

4
, then ‖ξ − ξ∞‖∞ ≤

β

2
, (37)

such that with (34) we obtain

ξ −
(

1

2
+

1

4δ

)
= ξ − ξ∞ + β ≥ β

2
, (38)

in particular guaranteeing (29). Since the initial data is such that J̃rel(0) ≤
C(αε2)β

2

4 , we know that initially the relative entropy is decaying, i.e.

d

dt
J̃rel(0) ≤ 0 .

Hence there exists a small time t1 such that J̃rel(t1) ≤ J̃rel(0) and we can repeat
the argument. Thus (38) holds for all times and we have

dJ̃rel

dt
≤ −C2(βε)

∫
Ω

(∂xξ)
2 + (∂xη)2 dx,

where C2 is a positive constant depending on βε. This, together with (32), implies
that (36). �

Remark 10. We shall emphasize that the lower threshold for ξ corresponds to and
upper bound for ρ, which is in line with the linear stability result from Section 4.1.
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4.3. Numerical simulations in 1D. We conclude by illustrating the behavior of
the one-dimensional model (22). All simulations were performed using the COM-
SOL Multiphysics Package with quadratic finite elements. We consider the domain
Ω = [0, 1] (split into 100 intervals) with periodic boundary conditions and a BDF
method with maximum time step 0.1.

4.3.1. Example I. Let ε = 0.005 and (r∞, b∞) = (0.3, 0.3) ∈ D. We recall that D is
the area in which the system is unstable, see Proposition 6. Starting with a slight
perturbation of the equilibrium solutions, i.e.

r0(x) = r∞ + 0.02 sin(2πx),

b0(x) = b∞ − 0.02 sin(2πx),

we observe the formation of instabilities as Figure 9 illustrates. Changing the initial

(a) rT for T = 100 (b) bT for T = 100 (c) ρT for T = 100

Figure 9. Small perturbations resulting in the formation of
shocks in the instable regime.

values a little, i.e.

r0(x) = r∞ + 0.01 cos(2πx),

b0(x) = b∞ − 0.01 cos(2πx),

we get a different result, cf. Figure 11.

(a) rT for T = 100 (b) bT for T = 100 (c) ρT for T = 100

Figure 10. Small perturbations resulting in the formation of
shocks in the instable regime.
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4.3.2. Example II. If we start outside the unstable region, for example by setting
(r∞, b∞) = (0.85, 0.1) /∈ D, the solution should go back to its equilibrium value in
the case of small perturbations. We set ε = 0.005 and

r0(x) = r∞ + 0.02 sin(2πx),

b0(x) = b∞ − 0.02 sin(2πx),

and observe the expected behavior in Figure 11.

(a) r0 and rT for T = 1000 (b) b0 and bT for T = 1000

Figure 11. Perturbation smoothing out in the linearly stable regime.

Remark 11. These examples demonstrate that the behavior in the 1D case is very
similar to the one in 2D and therefore suggest the existence of stable and unstable
regions also for the 2D case.
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