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Abstract. The analysis of a stochastic interacting particle scheme for the
approximation of measure solutions of the parabolic-elliptic Keller-Segel sys-
tem in 2D is continued. In previous work it has been shown that solutions
of a regularized scheme converge to solutions of the regularized Keller-Segel
system, when the number of particles tends to infinity. In the present work,
the regularization is eliminated in the particle model, which requires an ap-
plication of the framework of time dependent measures with diagonal defects,
developed by Poupaud. The subsequent many particle limit of the BBGKY
hierarchy can be solved using measure solutions of the Keller-Segel system
and the molecular chaos assumption. However, a uniqueness result for the
limiting hierarchy and therefore a proof of propagation of chaos is missing.
Finally, the dynamics of strong measure solutions, i.e. sums of smooth dis-
tributions and Delta measures, of the particle model is discussed formally
for the cases of 2 and 3 particles. The blow-up behavior for more than 2
particles is not completely understood.
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1 Introduction

This paper is concerned with the mathematical analysis of a stochastic in-
teracting particle scheme [14] for the approximation of measure solutions
of the 2D parabolic-elliptic Keller-Segel system for chemotaxis, a biologi-
cal phenomenon in which living organisms direct their movements according
to the distribution of certain chemicals in their environment. At the macro-
scopic level, the biological system is described by the number density of cells,
% = %(t, x), and the concentration of the chemoattractant, S = S(t, x). The
classical (Patlak-)Keller-Segel model [17], which we consider in its parabolic-
elliptic nondimensional setting, reads

∂%

∂t
+∇ · (%∇S −∇%) = 0 , (1)

−∆S = % , (2)

for t > 0 and x ∈ R2, subject to the initial condition

%(t = 0, x) = %I(x) for all x ∈ R2 . (3)

This system was extensively studied by many authors. The survey [21] gives
a very good overview of the results and an extensive bibliography. In the
spatially two-dimensional case, the Poisson equation (2) is usually replaced
by the Newtonian potential solution

S[%](x) = − 1

2π

∫
R2

log(|x− y|)%(y) dy . (4)

Substitution of (4) in (1) leads to a McKean-Vlasov equation with singular
interaction potential. The classical result

d

dt

∫
|x|2%(t, x) dx =

M

2π
(8π −M) , with M :=

∫
R2

%I(x) dx , (5)

indicates the well known dichotomy in the qualitative behavior of the sys-
tem with the critical mass 8π, see [16, 10, 4, 3]. Biologically, the possible
concentration of the cell density in the supercritical case M > 8π represents
aggregation of cells, and the description of the dynamics of these aggregates
and of their interaction with the non-aggregated cells is of natural interest.
This led to the study of various regularizations of (1), (4). The regularization

Sε[%](x) = − 1

2π

∫
R2

log(|x− y|+ ε)%(y) dy . (6)
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of the interaction potential has been studied in [11], the main result being
convergence as ε→ 0 globally in time and for arbitrary initial mass to mea-
sure solutions. It is based on the framework developed by Poupaud in [22],
which he applied to the two-dimensional incompressible Euler equations (ex-
tending earlier work by Schochet [25]) as well as to the Keller-Segel system
without diffusion of the cells. Obviously, the main mathematical problem is
an appropriate definition of the limiting convective flux %∇S[%], when % is
only a signed bounded measure. The limit of the cell density is a distribu-
tional solution of the generalized Keller-Segel model

∂%

∂t
+∇ · (j[%, ν]−∇%) = 0 , (7)

where ν ∈M1((0, T )×R2)2×2 is a time dependent, symmetric and nonnega-
tive matrix valued measure (the so-called diagonal defect measure), verifying
the estimate

tr(ν(t, x)) ≤
∑

a∈Sat(%(t))

%(t)({a})2δ(x− a) , (8)

with Sat(%(t)) denoting the atomic support of the bounded, nonnegative
Radon measure %(t) ∈ M+

1 (R2). The distributional definition of the con-
vective flux j[%, ν] with a test function ϕ ∈ C∞c ((0, T )× R2) is given by∫ T

0

∫
R2

j[%, ν](t, x)ϕ(t, x) dx dt =

− 1

4π

∫ T

0

∫
R2

∫
R2

K(x− y)(ϕ(t, x)− ϕ(t, y))%(t, x)%(t, y) dx dy dt

− 1

4π

∫ T

0

∫
R2

ν(t, x)∇ϕ(t, x) dx dt ,

with

K(x) =

{
x/|x|2 for x 6= 0 ,
0 for x = 0 .

An essential trick (already detected by Schochet [25]) is the symmetrization in
the second line above, leading to the bounded factorK(x−y)(ϕ(t, x)−ϕ(t, y)),
whose discontinuity required the introduction of the defect measure.
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In [11] a strong formulation of the limiting system has been given, based
on the following ansatz for %:

% = %+ %̂ , with %̂(t, x) =
∑
n∈H

Mn(t)δ(x− xn(t)) ,

for a finite set H ⊂ N, assuming that %(t, x) is smooth and t varies in a
time interval where the atomic support of % consists of smooth paths xn(t)
carrying smooth weights Mn(t) ≥ 8π. The defect measure then takes the
form

ν(t, x) =
∑
n∈H

4πMn(t)δ(x− xn(t))Id ,

where Id denotes the identity matrix in R2×2, and the following system of
equations is obtained:

∂%

∂t
+∇ · (%∇S[%]−∇%)− 1

2π
∇% ·

∑
n∈H

Mn(t)
x− xn
|x− xn|2

= 0 , (9)

Ṁn = Mn%(x = xn) , (10)

ẋn = ∇S[%](x = xn)− 1

2π

∑
n6=m∈H

Mm
xn − xm
|xn − xm|2

. (11)

A variant of this system has been derived by Velázquez [29, 30] and a local-
in-time existence result for the initial value problem was given in [31]. In
general, one has to expect blow-up events in the smooth part % and/or col-
lisions of point aggregates in finite time. At such instants, a restart would
be required with either an additional point aggregate after a blow-up event
or with a smaller number of point aggregates after a collision. A rigorous
theory producing global solutions by such a procedure is missing, however.

Contrary to the large amount of literature dedicated to the analysis of
the Keller-Segel system, only a few works are concerned with its numerical
treatment, [26, 19, 8, 24, 12, 23, 2]. However, these are capable to produce
an approximation of the solution in the smooth regime only. To fill this
gap, we recently developed a method for approximation of the global in time
solutions of the strong formulation of the Keller-Segel system after blow-up
(9)–(11). Our method is based on the approximation of the smooth part of
the cell density with a system of stochastic interacting particles,

%(t, x) ≈
∑
n∈L

Mn(t)δ(x− xn(t))
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for some finite index set L ⊂ N, L∩H = ∅, with point masses 0 < Mn(t) < 8π
and particle paths xn(t). The point singularities of % with Mn(t) ≥ 8π are,
as before, collected in the finite set H,

%̂(t, x) =
∑
n∈H

Mn(t)δ(x− xn(t)) .

The evolution of the particle paths is governed by the system of stochastic
differential equations

dxn = − 1

2π

∑
n6=m∈L∪H

Mm
xn − xm
|xn − xm|2

dt+
√

2βn dBn
t , (12)

for all n ∈ L ∪ H, where Bn
t are mutually independent two-dimensional

Brownian motions and the “switch” βn is equal to 1 for n ∈ L and zero
otherwise. Due to the singularity of the interaction kernel, a special treat-
ment is necessary in the situation when two particles approach each other.
In our scheme, such a situation is treated as an inelastic particle collision
and the two particles are ”glued“ together, ensuring stability of the scheme.
A blow-up instant in the cell density % is detected as a collisional creation
of a particle with mass larger or equal to 8π. This criterion is based upon
the conjecture that a blow-up of the cell density is always manifested as a
creation of the Dirac delta singularity with initial mass 8π. This conjec-
ture is generally accepted to be valid, although a rigorous proof exists for
the radially symmetric case only, see [15, 1, 20]. A detailed description of
this method as well as numerical results are presented in [14]. There also
the many particle limit of the regularized scheme has been studied, using
the formally equivalent formulation of the stochastic system (12) in terms of
the Kolmogorov forward equation and the corresponding BBGKY hierarchy
for the marginals of the particle distribution function. We showed that the
limiting Boltzmann hierarchy has a unique solution proving propagation of
molecular chaos. This is an example of the approximation of a McKean-
Vlasov equation with regular interaction potential by a stochastic particle
system [27].

In this work we are concerned with the many particle limit after removing
the regularization in the particle system, which is mathematically a much
more demanding problem. We start with the Kolmogorov equation with the
regularized interaction kernel

Kε(x) :=
x

|x|(|x|+ ε)
for x ∈ R2 . (13)
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For the corresponding BBGKY hierarchy (Section 2), only estimates in the
sense of tight boundedness of measures are uniform with respect to ε (Sec-
tion 3). The limit ε → 0 is complicated by the fact that the limiting in-
teraction terms contain products of discontinuous functions and (possibly)
singular measures charging the set of discontinuities. However, if the discon-
tinuity is of a particular type, one can apply the framework of time dependent
measures with diagonal defects, developed by Poupaud in [22], to obtain a
partial characterization of the limiting object. This is done in Section 4, as
well as the subsequent passage N →∞, which yields the Boltzmann hierar-
chy. Then, in Section 5, we show that the Boltzmann hierarchy is compatible
with the generalized Keller-Segel system, in the sense that measure solutions
of the latter together with the molecular chaos assumption generate solutions
of the former. However, there remains a gap in the theory, which is the lack
of a uniqueness result for the Boltzmann hierarchy, meaning that propaga-
tion of chaos has not been proven. This difficulty does not come as a surprise
since already for the one-particle problem (the generalized Keller-Segel sys-
tem) a uniqueness result is not available. Finally, in Sections 6 and 7 we
return to the stochastic particle system and study strong measure solutions
for 2 and 3 particles, respectively. Whereas, on a formal level, we have a
good understanding of the solution behaviour and of blow-up scenarios for 2
particles, the situation for 3 (or more) particles is less clear.

2 The BBGKY hierarchy

Our starting point is the regularized stochastic particle system

dxn = − 1

2π

M

N

N∑
n6=m=1

Kε(xn − xm) dt+
√

2 dBn
t , n = 1, . . . , N , (14)

with the parameter ε > 0 and the fixed set L = {1, . . . , N} of particles,
approximating the smooth solution of the regularized Keller-Segel system (1),
(6). For simplicity, we assume that each particle carries the same mass M/N ,
with M > 0 being the total mass of the system. Bn

t are mutually independent
two-dimensional Brownian motions and Kε is given by (13). Our convergence
proof is based on the (formally) equivalent formulation of (14) in terms of
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the corresponding Kolmogorov forward equation,

∂pN,ε

∂t
+

N∑
n=1

∇xn ·

[
− 1

2π

M

N

∑
m 6=n

Kε(xn − xm)pN,ε −∇xnp
N,ε

]
= 0 , (15)

where pN,ε = pN,ε(t, x1, . . . , xN) is the N -particle distribution function with
(x1, . . . , xN) ∈ R2N the vector of particle locations, subject to the initial
condition

pN,ε(t = 0, x1, . . . , xN) = pNI (x1, . . . , xN) , (16)

pNI ≥ 0 a.e. and

∫
R2N

pNI dx1 . . . dxN = 1 ,

Existence of unique, nonnegative smooth solutions to (15), (16) is obtained
by standard arguments (observe that Kε ∈ L∞ for ε > 0). Moreover, we
postulate the indistinguishability of particles : The initial condition pNI is
indifferent to permutations of its arguments (x1, . . . , xN), i.e., for any per-
mutation π of the N arguments, we have

pNI (x1, . . . , xN) = pNI (π(x1, . . . , xN)) for all (x1, . . . , xN) ∈ R2N . (17)

Then, as a consequence of the symmetry of the Kolmogorov equation (15)
with respect to interchange of the x-arguments and the uniqueness of its
solutions, the indistinguishability is propagated in time, i.e., pN,ε(t, ·) satisfies
(17) as well, for all t ≥ 0.

In the following section, the limit ε → 0 will be carried out. Assuming
a regular limit pN = limε→0 p

N,ε, a counterpart of the classical virial cal-
culation (5) carried out for solutions of (15) followed by the limit ε → 0
gives

d

dt

∫
R2N

N∑
n=1

|xn|2pN dx1 . . . dxN =
N − 1

2π

(
N

N − 1
8π −M

)
. (18)

Consequently, for M > N
N−18π we expect formation of singularities in the

particle distribution function pN in finite time. In the limit N → ∞ the
classical 8π-criterion for the Keller-Segel system is recovered. However, the
analysis of Section 6 will show that for finite N the above criterion cannot
be expected to be sharp.
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For k = 1, . . . , N we define the k-particle marginals

PN,ε
k (t, x1, . . . , xk) :=

∫
R2(N−k)

pN,ε(t, x1, . . . , xN) dxk+1 . . . dxN , (19)

with PN,ε
N ≡ pN,ε. An integration of (15) with respect to xk+1, . . . , xN yields

∂PN,ε
k

∂t
+

k∑
n=1

∇xn ·
[
− M

2πN

N∑
n6=m=1

∫
R2(N−k)

Kε(xn − xm)pN,ε dxk+1 . . . dxN

−∇xnP
N,ε
k

]
= 0 . (20)

Obviously, PN,ε
k also satisfies the indistinguishability property. We split the

inner sum in (20) into the part with m > k (interaction of the first k particles
with the other N − k) and m ≤ k (interaction among the first k particles) to
obtain

M

2πN

∑
m6=n

∫
R2(N−k)

Kε(xn − xm)pN,ε dxk+1 . . . dxN

=
M(N − k)

2πN

∫
R2

Kε(xn − y)PN,ε
k+1(t, x1, . . . , xk, y) dy (21)

+
M

2πN

∑
m≤k,m6=n

Kε(xn − xm)PN,ε
k (t, x1, . . . , xk) .

This, inserted into (20), constitutes the BBGKY hierarchy for our system of
interacting particles (see, for instance, [9]). A simple consideration reveals
that in its weak formulation it is sufficient to work with symmetric test func-
tions ϕ = ϕ(x1, . . . , xk) ∈ C∞c (R2k) only (with respect to interchange of their
x-arguments), since the antisymmetric part of ϕ does not contribute to the
value of the integrals. Consequently, using the classical Schochet trick [25],
the weak formulation of the BBGKY hierarchy may be written in a sym-
metrized form, which in fact is crucial for the forthcoming analysis. It is
based on the antisymmetry of the kernel Kε and on the following obser-
vation: Let us consider a symmetric test function ϕ of k two-dimensional
arguments, collected in the vector x = (x1, . . . , xk). Then, for any n, m with
n 6= m, one has the relation ∇nϕ(x) = ∇mϕ([xm, xn; x̃n,m]), where ∇nϕ(x)
denotes the gradient of ϕ with respect to its n-th argument, evaluated at
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x, and ∇mϕ([z, y; x̃n,m]) denotes the gradient of ϕ with respect to its m-th
argument, evaluated at x with (z, y) replacing (xn, xm). Analogously, the
notation ∇nϕ([y; x̃m]) denotes the gradient of ϕ with respect to its n-th ar-
gument, evaluated at x with y ∈ R2 replacing xm. With this notation, the
symmetrized weak formulation of the BBGKY hierarchy reads

d

dt

∫
R2k

PN,ε
k (t, x)ϕ(x) dx

+
M(N − k)

4πN

k∑
n=1

∫
R2k

∫
R2

Kε(xn − y)PN,ε
k+1(t, x, y) · (∇nϕ(x)−∇nϕ([y; x̃n])) dy dx

+
M

2πN

k∑
n=1

∑
m>n

∫
R2k

Kε(xn − xm)PN,ε
k (t, x) · (∇nϕ(x)−∇nϕ([xm, xn; x̃n,m])) dx

−
k∑

n=1

∫
R2k

PN,ε
k (t, x)∆xnϕ(x) dx = 0 . (22)

In our previous work [14] we studied the limit of (22) when N → ∞
with fixed ε > 0 and recovered the solution of the regularized Keller-Segel
system, which in fact is an instance of a McKean-Vlasov equation with a
regular interaction kernel. Approximation of its solutions by large systems
of interacting particles, evolving according to systems of coupled stochastic
differential equations, was studied in [18, 5, 6, 27, 28] using the tools of
stochastic analysis. In contrast, our approach is PDE-based and deals with
the corresponding Kolmogorov forward equation.

Theorem 1 ([14]) For each ε > 0 and N ≥ 2, the regularized Kolmogorov
forward equation (15)–(16) with the initial condition pNI ∈ L2(R2N) satis-
fying the molecular chaos property has a unique global weak solution pN ∈
L2
loc([0,∞);W 1,2(R2N))∩C([0,∞);L2(R2N)). This solution verifies the indis-

tinguishability property and conserves the total mass. The k-particle marginals
PN,ε
k given by (19) have weakly converging subsequences in L2

loc([0,∞);W 1,2(R2k))
as N →∞ for each k ≥ 1 and the respective limits P ε

k satisfy the molecular
chaos property

P ε
k (t, x1, . . . , xk) =

k∏
n=1

P ε
1 (t, xn) for a.e. x ∈ R2k , t ≥ 0 , (23)

with %ε(t, x) := MP ε
1 (t, x) being the weak solution of the regularized Keller-

Segel model (1), (6) with the initial condition %ε(t = 0) = MP ε
1 (t = 0).
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The proof is based on uniform (with respect to N but not with respect
to ε) a priori estimates in the space L2

loc([0,∞);W 1,2(R2k)) for the sequence
{PN,ε

k }∞N=k for each fixed k ∈ N, and profits essentially from the chain prop-
erty of the marginals,∫

R2

PN,ε
k+1(t, x1, . . . , xk, y) dy = PN,ε

k (t, x1, . . . , xk) . (24)

Then, it is simple to pass to the limit N →∞ to obtain the so-called Boltz-
mann hierarchy for Pk = limN→∞ P

N
k . We showed that the Boltzmann hier-

archy admits solutions given by the molecular chaos formula (23), and since,
by regularity, the solutions are unique, they necessarily factorize.

3 Uniform a priori estimates in ε and N

In the limit ε → 0 of the BBGKY hierarchy one cannot expect any bet-
ter convergence than in the sense of measures and, as for the Keller-Segel
system, the main difficulty lies in the characterization of the product of the
discontinuous limiting interaction kernel and the (possibly) singular limiting
measure, charging the set of discontinuities. Similarly to [11] we apply the
framework of time dependent measures with diagonal defects, developed by
Poupaud [22].

Let us recall that a sequence of bounded, nonnegative Radon measures
µn ∈M+

1 (Rd) converges tightly to µ ∈M+
1 (Rd) if it converges vaguely (this

is, M1(Rd)-weak*) and, moreover, µn(Rd)→ µ(Rd). In this case one has∫
Rd
ϕ(x)µn(x) dx→

∫
Rd
ϕ(x)µ(x) dx , as n→∞ ,

for every bounded continuous test function ϕ (in contrast to vague conver-
gence, where the test function has to be compactly supported). We say that
a sequence µn ∈M+

1 (Rd) is tightly bounded if for some M > 0

µn(Rd) < M ∀n ≥ 1 ,

sup
n≥1

µn(Rd \BR)→ 0 as R→∞ ,

where BR denotes the ball with center in the origin and with diameter R in
Rd. By the Prokhorov criterion, tight boundedness is equivalent to compact-
ness in the tight topology of measures, see for instance [7].
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For the forthcoming analysis, we introduce the family of 2 × 2-matrix
valued functions

mN,ε
k (t, z, x) :=

∫
R2

N ε(z − y)PN,ε
k+1(t, y, z, x) dy for 1 ≤ k ≤ N − 1 , (25)

with z ∈ R2 and x ∈ R2(k−1), where

N ε(z) :=
z ⊗ z

|z|(|z|+ ε)
for z ∈ R2 .

Following [22], we consider PN,ε
k (t, ·) and mN,ε

k (t, ·) as time dependent mea-
sures PN,ε

k (t) ∈M+
1 (R2k) and mN,ε

k (t) ∈ (M+
1 (R2k))2×2. Moreover, we intro-

duce a shorthand notation for the interaction terms of (22):

AN,ε
k+1(n;ϕ)(t) :=

∫
R2k

∫
R2

Kε(xn − y)PN,ε
k+1(t, x, y) · (∇nϕ(x)−∇nϕ([y; x̃n])) dy dx

and

BN,ε
k (n,m;ϕ)(t) :=

∫
R2k

Kε(xn − xm)PN,ε
k (t, x) · (∇nϕ(x)−∇mϕ([xm, xn; x̃n,m])) dx .

Lemma 1 For each fixed k, the two-parameter family {PN,ε
k (t)}N,ε of weak

solutions to the BBGKY hierarchy (22) is tightly bounded locally uniformly in
t and tightly equicontinuous in t, uniformly with respect to N <∞ and ε > 0.
The family {mN,ε

k (t)}N,ε given by (25) is tightly bounded locally uniformly in
t, uniformly with respect to N <∞ and ε > 0.

Proof: The existence of weak solutions PN,ε
k to (22) in L2

loc([0,∞);W 1,2(R2k))∩
C([0,∞);L2(R2k)) is established by Theorem 1. The forthcoming estimates
are based on the total mass conservation∫

R2k

PN,ε
k (t, x) dx = 1 for all t > 0, ε > 0, N <∞, k ≤ N . (26)

Let ϕ ∈ C∞c (R2k). From the mean value theorem

|∇nϕ(x)−∇nϕ([y; x̃n])| ≤
∥∥∇2

n,nϕ
∥∥
L∞
|xn − y|

and the uniform boundedness |N ε
i,j| ≤ 1 we immediately obtain

k∑
n=1

∣∣∣AN,ε
k+1(n;ϕ)

∣∣∣ ≤ k∑
n=1

∥∥∇2
n,nϕ

∥∥
L∞
≤ |ϕ|2,∞ ,
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and, similarly,

k∑
n=1

∑
m>n

∣∣∣BN,ε
k (n,m;ϕ)

∣∣∣ ≤ k∑
n=1

∑
m>n

(∥∥∇2
n,nϕ

∥∥
L∞

+
∥∥∇2

n,mϕ
∥∥
L∞

)
≤ k|ϕ|2,∞ ,(27)

where |ϕ|2,∞ is the W 2,∞(R2k)-seminorm of ϕ (i.e., L∞-norm of the second
order partial derivatives). Consequently, we have∣∣∣∣ d

dt

∫
R2k

PN,ε
k (t, x)ϕ(x) dx

∣∣∣∣ ≤ (M2π + 1

)
|ϕ|2,∞ .

This implies equicontinuity in W 2,∞(R2N)′:∣∣∣∣∫
R2k

PN,ε
k (t, x)ϕ(x) dx−

∫
R2k

PN,ε
k (s, x)ϕ(x) dx

∣∣∣∣ ≤ C|ϕ|2,∞|t− s| .

Now let ϕ ∈ Cb(R2k). For every δ > 0 there exists ϕδ ∈ W 2,∞(R2k) such that
‖ϕ− ϕδ‖L∞(R2k) ≤ δ. By the above inequality and the conservation of mass
(26), we have∣∣∣∣∫

R2k

PN,ε
k (t, x)ϕ(x) dx−

∫
R2k

PN,ε
k (s;x)ϕ(x) dx

∣∣∣∣ ≤ 2δ + C|ϕδ|2,∞|t− s| ,

implying the tight equicontinuity of PN,ε
k , uniformly with respect to N and

ε.
With a test function ϕR(x) = 1−β(|x|2/R2) with β nonincreasing, β(r) =

1 for 0 ≤ r ≤ 1/2 and β(r) = 0 for r ≥ 1, the above inequality gives

PN,ε
k (t)(R2k \BR) ≤ PN,k

I (R2k \BR/2) +
ct

R2
,

where BR is a ball in R2k with radius R. This immediately implies the locally
uniform tight boundedness.

The result for mε is a simple consequence of the tight boundedness of
PN,ε
k and the uniform bound |N ε

i,j| ≤ 1.

4 The limit ε→ 0, followed by N →∞
By the Prokhorov criterion [7], for every k ≤ N there exist nonnegative
bounded time dependent measures PN,k(t) and mN,k(t) such that, restricting
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to subsequences, as ε → 0, PN,ε
k (t) converges to PN

k (t) tightly and locally
uniformly in t and∫ T

0

∫
R2k

mN,ε
k (t, x)ϕ(t, x) dx dt→

∫ T

0

∫
R2k

mN
k (t, x)ϕ(t, x) dx dt

for all T > 0 and ϕ ∈ Cb([0, T ]×R2k). We can easily pass to the limit in the
time derivative and diffusive terms of the distributional formulation of (22),
but due to the discontinuity of the limiting interaction kernels,

K(xn − y) · (∇nϕ(x)−∇nϕ([y; x̃n]))

and

K(xn − xm) · (∇nϕ(x)−∇nϕ([xm, xn; x̃n,m]))

where K is the pointwise limit of Kε as ε→ 0, we cannot directly pass to the
limit here. Instead, we characterize the discontinuities in the AN,ε

k+1-terms by
performing the Taylor expansion

ϕn,i(x)− ϕn,i([y; x̃n]) =
2∑
j=1

∂ϕn,i
∂xn,j

(x)(xn − y) +O(|xn − y|2) ,

where ϕn,i := ∂ϕ
∂xn,i

, i = 1, 2, with xn,i being the i-th coordinate of xn. There-

fore, the integrand of the interaction term AN,ε
k+1(n;ϕ)(t) in the neighbour-

hood of the diagonal xn = y is equivalent to

2∑
i,j=1

N ε
i,j(xn − y)

∂ϕn,i
∂xn,j

(x)PN,ε
k+1(t, x) +O(|xn − y|) .

This suggests to define, for i = 1, 2 and n ≤ k, the operators

Aεk+1;i(n; η)(y, x) := Kεi (xn − y)(η(x)− η([y; x̃n]))−
2∑
j=1

N ε
i,j(xn − y)

∂η

∂xn,j
(x) ,

with y ∈ R2 and x ∈ R2k, such that the AN,ε
k+1-interaction terms can be

written as

AN,ε
k+1(n;ϕ)(t) =

∫
R2k

∫
R2

2∑
i=1

Aεk+1;i(n;ϕn,i)(y, x)PN,ε
k+1(t, y, x) dy dx

+

∫
R2k

∫
R2

2∑
i,j=1

N ε
i,j(xn − y)

∂ϕn,i
∂xn,j

(x)PN,ε
k+1(t, y, x) dy dx .

13



The functions Aεk+1;i(n;ϕn,i) are continuous and bounded, and converge uni-
formly to Ak+1;i(n;ϕn,i); consequently, we can pass to the limit directly in
the integrals involving them. Next, we realize that∫
R2k

∫
R2

N ε
i,j(xn − y)

∂ϕn,i
∂xn,j

(x)PN,ε
k+1(t, y, x) dy dx =

∫
R2k

mN,ε
k (t, xn, x̃n)

∂ϕn,i
∂xn,j

(x) dx ,

and the limit passage is facilitated by the uniform tight boundedness of
mN,ε
k (t). Let us note that the somehow weird notation mN,ε

k (xn, x̃n) is en-
forced by the fact that the functions mN,ε

k (as functions of k 2D-arguments)
are indifferent with respect to interchange of their k − 1 last arguments, the
first one being solicitated, as explained by the definition (25).

Consequently, in the limit ε → 0, with ϕ ∈ C∞c (R2k), we obtain the
distributional formulation∫

R2k

PN
k (T, x)ϕ(x) dx−

∫
R2k

PN
k (0, x)ϕ(x) dx

+
M(N − k)

4πN

k∑
n=1

∫ T

0

∫
R2k

∫
R2

2∑
i=1

Ak+1;i(n;ϕn,i)(y, x)PN
k+1(t, y, x) dy dx dt

+

∫ T

0

∫
R2k

2∑
i,j=1

mN
k;i,j(t, xn, x̃n)

∂ϕn,i
∂xn,j

(x) dx dt

+
M

2πN

k∑
n=1

∑
m>n

∫ T

0

BN
k (n,m;ϕ)(t) dt

+
k∑

n=1

∫ T

0

∫
R2k

PN
k (t, x)∆xnϕ(x) dx dt = 0 . (28)

Here, BN
k denotes the pointwise limit of BN,ε

k , which exists in L1(0, T ) due
to the estimate (27). We could have characterized the limit of the B-terms
in the same way as we did for the A-terms, however, since our next step is
to pass to N →∞, the double sum of the B-terms, multiplied by the factor
1/N , will vanish.

The limit passage N →∞ is facilitated by the fact that the tight bound-
edness estimates for PN,ε

k and mN,ε
k of Lemma 1 are uniform with respect to

N . Due to the locally uniform (with respect to t) tight boundedness of mN
k ,

there exist time dependent, matrix valued measures mk(t) ∈ (M+
1 (R2k))2×2,

14



such that in the limit N → ∞, (a subsequence of) the A-type interaction
terms tends to∫ T

0

∫
R2k

∫
R2

2∑
i=1

Ak+1;i(n;ϕn,i)(y, x)Pk+1(t, y, x) dy dx dt

+

∫ T

0

∫
R2k

2∑
i,j=1

mk+1;i,j(t, xn, x̃n)
∂ϕn,i
∂xn,j

(x) dx dt ,

where Pk is the limit of (a subsequence of) PN
k . Inspired by [22], we introduce

the defect measure

νk(t, z, x̃) := mk(t, z, x̃)−
∫
R2

N (z − y)Pk+1(t, z, y, x̃) dy ,

for z ∈ R2 and x̃ ∈ R2(k−1), where N is the pointwise limit of N ε as ε → 0.
Then, the distributional formulation of the Boltzmann hierarchy for Pk with
a test function ϕ ∈ C∞c (R2k) reads∫

R2k

Pk(T, x)ϕ(x) dx−
∫
R2k

Pk(0, x)ϕ(x) dx

+
M

4π

k∑
n=1

∫ T

0

∫
R2k

∫
R2

K(xn − y)Pk+1(t, x, y) · (∇nϕ(x)−∇nϕ([y; x̃n])) dy dx dt

+
M

4π

k∑
n=1

∫ T

0

∫
R2k

νk(t, xn, x̃n) : ∇2
n,nϕ(x) dx dt

+
k∑

n=1

∫ T

0

∫
R2k

Pk(t, x)∆xnϕ(x) dx dt = 0 , (29)

where K is the pointwise limit of Kε and A : B denotes the scalar product
of the 2× 2-matrices A and B. Let us note that the interaction integrals are
well defined, since K(xn− y)(∇nϕ(x)−∇nϕ([y; x̃n])) are bounded functions.

Lemma 2 For every k ≥ 1, the defect measure νk is symmetric, nonnegative
and satisfies, in the sense of distributions, the estimate

tr(νk(t, z, x̃)) ≤ Pk+1(t, z, {z}, x̃) :=

∫
R2

χ(z − y)Pk+1(t, z, y, x̃) dy , (30)

for z ∈ R2, x̃ ∈ R2(k−1), where χ(0) = 1 and χ(z) = 0 for z 6= 0.
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Proof: The proof follows along the lines of [22] and we present its outline
only. Symmetry is obvious. For a test function ϕ ∈ C∞c (R2k), z, y ∈ R2,
x̃ ∈ R2(k−1), (ϕ(z, y, x̃) − ϕ(z, z, x̃))N ε(z − y) converges uniformly to the
continuous function (ϕ(z, y, x̃)− ϕ(z, z, x̃))N (z − y). Therefore,∫

R2(k−1)

∫
R2

∫
R2

N ε(z − y)PN,ε
k+1(t, z, y, x̃)(ϕ(z, y, x̃)− ϕ(z, z, x̃)) dz dy dx̃

ε→0−→
∫
R2(k−1)

∫
R2

∫
R2

N (z − y)PN
k+1(t, z, y, x̃)(ϕ(z, y, x̃)− ϕ(z, z, x̃)) dz dy dx̃

N→∞−→
∫
R2(k−1)

∫
R2

∫
R2

N (z − y)Pk+1(t, z, y, x̃)(ϕ(z, y, x̃)− ϕ(z, z, x̃)) dz dy dx̃ .

By the definitions of mN,ε
k and νk, this implies∫

R2(k−1)

∫
R2

∫
R2

N ε(z − y)PN,ε
k+1(t, z, y, x̃)ϕ(z, y, x̃) dz dy dx̃

ε→0, N→∞−→
∫
R2(k−1)

∫
R2

∫
R2

N (z − y)Pk(t, z, y, x̃)ϕ(z, y, x̃) dz dy dx̃

+

∫
R2(k−1)

∫
R2

νk(t, z, x̃)ϕ(z, z, x̃) dz dx̃ .

Since N ε is nonnegative, so is the right hand side for a nonnegative test
function. Choosing ϕ(z, [y; x̃]) = η(R(z − y))ψ(z, x̃) with an arbitrary non-
negative ψ ∈ C∞c (R2(k−1)) and a nonnegative η ∈ C∞c (R2) with η(0) = 1, the
first term on the right hand side vanishes for R→∞, proving nonnegativity
of νk. The convergence is due to the Lebesgue theorem of dominated conver-
gence, using the fact that N (z − y)η(R(z − y)) is bounded and converges to
0 pointwise.

For the second statement, note that tr(N ε) ≤ 1, and, consequently

tr

(∫
R2(k−1)

∫
R2

∫
R2

N ε(z − y)PN,ε
k+1(t, z, y, x̃)ϕ(z, y, x̃) dz dy dx̃

)
≤
∫
R2(k+1)

PN,ε
k+1(t, x)ϕ(x) dx .

Passing to the limit, this gives∫
R2(k+1)

Pk+1(t, x)ϕ(x) dx

16



≥ tr

(∫
R2(k−1)

∫
R2

∫
R2

N (z − y)Pk+1(t, z, y, x̃)ϕ(z, y, x̃) dz dy dx̃

)
+tr

(∫
R2(k−1)

∫
R2

νk(t, z, x̃)ϕ(z, z, x̃) dz dx̃

)
=

∫
R2(k−1)

∫
R2

∫
R2

(1− χ(z − y))Pk+1(t, z, y, x̃)ϕ(z, y, x̃) dz dy dx̃

+tr

(∫
R2(k−1)

∫
R2

νk(t, z, x̃)ϕ(z, z, x̃) dz dx̃

)
,

where we have used the identity tr(N (z)) = 1−χ(z) with the above definition
of χ. Finally, we arrive at

tr

(∫
R2(k−1)

∫
R2

νk(t, z, x̃)ϕ(z, z, x̃) dz dx̃

)
≤
∫
R2(k−1)

∫
R2

∫
R2

χ(z − y)Pk+1(t, z, y, x̃)ϕ(z, y, x̃) dz dy dx̃

=

∫
R2(k−1)

∫
R2

Pk+1(t, z, {z}, x̃)ϕ(z, z, x̃) dz dx̃ ,

which completes the proof.

5 Compatibility with the Keller-Segel system

We show that the Boltzmann hierarchy (29) has solutions that are generated
by scaled measure solutions % of the Keller-Segel system (7) and by the
molecular chaos assumption:

Pk(t, x1, . . . , xk) =
k∏
i=1

P1(t, xi) for all k ≥ 1 , (31)

where P1 := %/M . Then, the usual procedure would be to prove unique-
ness of the solutions to the Boltzmann hierarchy and conclude that they
always factorize. However, not surprisingly we did not succeed in proving
such a uniqueness result. In fact, even for the single particle model (7), (8)
uniqueness is an open problem. Therefore, we are merely able to show the
compatibility of the Boltzmann hierarchy with the Keller-Segel system:
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Theorem 2 Let (%, ν) be a solution of the Keller-Segel system (7) in the
sense of [11], with % a time dependent, bounded, nonnegative Radon measure
%(t) ∈ M+

1 (R2) and ν ∈ M1((0, T ) × R2)2×2 a time dependent, symmetric
and nonnegative matrix valued measure. Then the measures

Pk(t, x1, . . . , xk) :=
k∏
i=1

P1(t, xi) and (32)

νk(t, z, x1, . . . , xk−1) := ν1(t, z)
k−1∏
i=1

P1(t, xi) (33)

with P1 := %/M and ν1 := ν/M2, are a distributional solution to the Boltz-
mann hierarchy (29) subject to the initial condition Pk(t = 0, x1, . . . , xk) =∏k

i=1 P1(t = 0, xi). Moreover, the defect measures νk are symmetric and
nonnegative, and satisfy the estimate (30).

Proof: We will show that the pairs (Pk, νk) defined by (32) verify the
distributional formulation (29). Let us fix k ∈ N and the test function
ϕ = ϕ(x1, . . . , xk) ∈ C∞c (R2k), symmetric with respect to the interchange of
its xi-arguments. Moreover, we define

ψ(t, z) :=

∫
R2(k−1)

(
k−1∏
i=1

P1(t, xi)

)
ϕ(z, x) dx , for all z ∈ R2, t > 0 .

Let us note that we have the regularity P1 ∈ W 1,∞(0, T ;W−2,∞(R2)) (see
the proof of Lemma 1 in [11]), which implies ψ ∈ Cb(0, T ;C∞c (R2)). Conse-
quently, the time derivative term (first line) of (29) can be written with (32)
as follows: ∫

R2k

Pk(T, x)ϕ(x) dx−
∫
R2k

Pk(0, x)ϕ(x) dx

=

∫ T

0

d

dt

[∫
R2k

(
k∏
i=1

P1(t, xi)

)
ϕ(x) dx

]
dt

= k

∫ T

0

∫
R2

∂P1

∂t
(t, z)ψ(t, z) dz .

The convective term (second line) of (29)) yields

M

4π

k∑
n=1

∫ T

0

∫
R2k

∫
R2

K(xn − y)Pk+1(t, x, y) · (∇nϕ(x)−∇nϕ([y; x̃n])) dy dx dt
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=
M

4π

k∑
n=1

∫ T

0

∫
R2

∫
R2

K(xn − y)P1(t, xn)P1(t, y)

×

(∫
R2(k−1)

k−1∏
i=1

P1(t, xi) (∇nϕ(x)−∇nϕ([y; x̃n])) dx

)
dy

=
kM

4π

∫ T

0

∫
R2

∫
R2

K(z − y)P1(t, z)P1(t, y) · (∇ψ(t, z)−∇ψ(t, y)) dz dy .

The defect measure term (third line) and diffusive term (fourth line) of (29)
are treated similarly,

M

4π

k∑
n=1

∫ T

0

∫
R2k

νk(t, xn, x̃n) : ∇2
n,nϕ(x) dx dt =

kM

4π

∫ T

0

∫
R2

ν1(t, z) : ∇2ψ(t, z) dz dt

and, respectively,

k∑
n=1

∫ T

0

∫
R2k

Pk(t, x)∆xnϕ(x) dx dt = k

∫ T

0

∫
R2

P1(t, z)∆ψ(t, z) dt dt .

We conclude that, since (%, ν) = (MP1,M
2ν1) satisfy the weak formulation

of the limiting Keller-Segel system (7), the sequence (Pk, νk) given by (32) is
a distributional solution of the Boltzmann hierarchy (29).

Finally, symmetry and nonnegativity of νk follow trivially from the cor-
responding properties of ν, so we only need to verify the validity of the
estimate (30) on tr(νk). With the same test functions ϕ and ψ as above, the
distributional formulation of the left hand side of (30) reads∫

R2

∫
R2(k−1)

tr(νk(t, z, x))ϕ(z, x) dx dz =

∫
R2

tr(ν1(t, z))ψ(t, z) dz

≤
∑

a∈Sat(P1(t))

P1(t)({a})2ψ(t, a) ,

where the last estimate follows from (8). This is indeed equal to the distri-
butional formulation of the right hand side of (30), since∫

R2(k−1)

∫
R2

∫
R2

χ(z − y)Pk+1(t, z, y, x)ϕ(z, x) dy dz dx

=

∫
R2(k−1)

∫
R2

∫
R2

χ(z − y)P1(t, y)P1(t, z)
k−1∏
i=1

P1(t, xi)ϕ(z, x) dy dz dx
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=
∑

a∈Sat(P1(t))

∑
b∈Sat(P1(t))

P1(t)({a})P1(t)({b})χ(a = b)ψ(t, a)

=
∑

a∈Sat(P1(t))

P1(t)({a})2ψ(t, a) .

6 A detailed study of the system with two

particles

In the introduction, the strong formulation (9)–(11) of the Keller-Segel sys-
tem for measure solutions has been given. This and the following section deal
with the corresponding question for the stochastic particle formulation. We
restrict the discussion to the cases of two (this section) and three (following
section) particles, since already in the case of three particles our results are
incomplete.

The Kolmogorov equation (15) in the case N = 2 takes the form

∂pε

∂t
+ (∇x −∇y) · jε − (∆x + ∆y)p

ε = 0 , (34)

for the particle distribution function pε = pε(t, x, y), t ≥ 0, x, y ∈ R2, with
jε(t, x, y) = −M

4π
Kε(x− y)pε(t, x, y).

With the coordinate transformation

u =
x+ y

2
, v =

x− y
2

,

this equation becomes

∂pε

∂t
+∇v · jε −

1

2
(∆u + ∆v)p = 0 , jε = −M

4π
Kε(2v)pε . (35)

It is inspiring to study the evolution of the marginals gε(t, v) :=
∫
R2 p

ε(t, u, v) du
and hε(t, u) :=

∫
R2 p

ε(t, u, v) dv, which turns out to be decoupled:

∂gε

∂t
− M

4π
∇v · (Kε(2v)gε)− 1

2
∆vg

ε = 0 , (36)

∂hε

∂t
− 1

2
∆uh

ε = 0 .
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The first equation describes the distribution of the distance of the particles,
while the second one stands for the distribution of the center of mass of the
system. Comparing the virial calculation for the formal limits g = limε→0 g

ε

and p = limε→0 p
ε (see (18)),

d

dt

∫
R2

g|v|2 dv =
1

8π
(8π −M) ,

d

dt

∫
R4

p(|x|2 + |y|2) dx dy =
1

2π
(16π −M) ,

we observe that the latter does not provide a sharp criterion for concentration.
We conjecture that, even for a finite number of particles, the criterionM > 8π
is sharp.

For the Keller-Segel system concentration goes hand in hand with L∞-
blow-up. In the following, formal arguments will be given for the claim that
the probability density of the stochastic particle system is always unbounded,
and this fact is not necessarily connected to concentration of mass. To this
end, we examine local approximations of the distribution of the particle dis-
tance by introducing the coordinate transformation ϑ = 2v

ε
, g̃(ϑ) = ε2gε(v),

and performing the formal limit ε→ 0 in (36):

M

4π
∇ϑ ·

ϑg̃

|ϑ|(|ϑ|+ 1)
+ ∆ϑg̃ = 0 .

The rotationally symmetric solutions, decaying as ϑ→∞, have the form

g̃(ϑ) = c(|ϑ|+ 1)−M/4π ,

where c is a constant. This expression has finite mass if and only if M > 8π.
Consequently, in this case gε contains an approximation of a Dirac delta at
v = 0. On the other hand, if M < 8π, g does not concentrate. To obtain the
profile of g in the neighbourhood of v = 0, we integrate (36) with ε = 0 over
R2 \Br(0):

d

dt

∫
|v|>r

g dv =

∫
|v|=r

(
M

4π

g

r
+
∂g

∂n

)
dS(v) ,

where dS is the surface measure and ∂g
∂n

denotes the derivative of g with
respect to the outer normal. Since the total mass of g is conserved, for small
r we approximately have

M

4π

g(r)

r
+
∂g

∂r
(r) = 0 ,
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with g(v) = g(|v|). Therefore, in the subcritical case g behaves asymptoti-
cally like r−M/4π close to the origin, i.e., it is unbounded with an integrable
singularity. In this situation we expect ’diffusion to win’, i.e. a long time
behavior governed by dispersion. This can be examined by an intermediate
asymptotics showing self similar decay: With the standard diffusive rescal-
ing τ = log t, ξ = x/

√
t, η = y/

√
t, and limε→0 p

ε(t, x, y) = p(t, x, y) =
q
(
log t, x/

√
t, y/
√
t
)
/t2, the function q satisfies

∂τq +∇ξ · Jξ +∇η · Jη = 0 ,

Jξ = −ξ
2
q − M

4π

ξ − η
|ξ − η|2

q −∇ξq , Jη = −η
2
q − M

4π

ξ − η
|ξ − η|2

q −∇ηq .

The steady state making these fluxes vanish, is given by

q∞(ξ, η) = c|ξ − η|−M/(4π) exp

(
−|ξ|

2 + |η|2

4

)
The value of c can be determined from initial conditions by mass conserva-
tion. The standard computation leads to entropy decay:

d

dτ

∫
R4

q log
q

q∞
dξ dη = −

∫
R4

|Jξ|2 + |Jη|2

q
dξ dη .

This computation is only formal and has to be taken with care because of
the singularities in the integrands. However, we still conjecture, for M < 8π:

p(t, x, y) ≈ ct
M
8π
−2|x− y|−

M
4π exp

(
−|x|

2 + |y|2

4t

)
, as t→∞ .

After these observations, let us come back to (35), now for arbitrary M .
The same steps as in Sections 3 and 4 for the BBGKY hierarchy lead to the
limit ε→ 0 in the interaction term:

M

8π

∫
R4

K(2v) · (∇vϕ(u, v)−∇vϕ(u,−v))p du dv +
M

8π

∫
R2

ν : ∇2
vϕ(u, 0) du .

The defect measure ν is symmetric, nonnegative, and satisfies

tr(ν(t, u)) ≤ p(t, u, {0}) :=

∫
R2

p(t, u, v)χ(v) dv .
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Therefore, in the subcritical case M < 8π, when p does not concentrate,
the defect measure vanishes and the corresponding strong formulation of the
limiting system is obtained by choosing ε = 0 in (35).

To derive the strong formulation in the supercritical case M > 8π, we
make an ansatz for p of the form

p(t, u, v) = p0(t, u, v) + δ(v)p1(t, u) , (37)

where p0 (the distribution function of free particles) and p1 (the distribution
function of the particle aggregate) are smooth functions of u and v. Inserting
this ansatz into the weak formulation, we obtain

d

dt

∫
R4

p0ϕ(u, v) du dv +
d

dt

∫
R2

p1ϕ(u, 0) du

+
M

8π

∫
R4

K(2v)p0 · (∇vϕ(u, v)−∇vϕ(u,−v)) du dv

+
M

8π

∫
R2

ν : ∇2
vϕ(u, 0) du

−1

2

∫
R4

p0(∆u + ∆v)ϕ(u, v) du dv − 1

2

∫
R2

p1(∆u + ∆v)ϕ(u, 0) du = 0 .

We require that the defect measure term balances the term 1
2

∫
R2 p1∆vϕ(u, 0) du,

which leads to ν(t, u) = 4π
M
p1(t, u)Id2×2.

The estimate tr(ν(t, u)) ≤ p(t, u, {0}) = p1(t, u) implies that the ansatz
(37) is only valid if M ≥ 8π. The strong formulation is obtained by integra-
tion by parts and taking into account the calculation ∇v · v

2|v|2 = πδ(v):

∂p0
∂t
− M

4π
K(2v) · ∇vp0 −

1

2
(∆u + ∆v)p0 = 0 ,

∂p1
∂t
− 1

2
∆up1 =

M

4
p0(v = 0) .

With this system, we can make several interesting observations. First of all,
note that the equation for p0 is not in divergence form. Indeed, the “mass” of
p0 is not conserved, since it is being transported to p1 via the source term on
the right hand side of the second equation. Therefore, the mass of the aggre-
gate increases with time which, being in the supercritical case M > 8π, is in-
deed to be expected. Moreover, defining the massm0(t) =

∫
R4 p0(t, u, v) du dv
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and the v-second-order moment u0(t) =
∫
R4 p0(t, u, v)|v|2 du dv of p0, we eas-

ily compute

u̇0(t) +

(
M

4π
− 2

)
m0(t) = 0 .

Thus, u0(t) is a nonincreasing quantity, and, if u0(t = 0) is finite, m0 ∈
L1(0,∞). We see that the flow of mass from p0 to p1 must be fast enough,
so that the total mass of p0 is integrable on the time interval (0,∞).

Finally, let us give the limiting strong formulation in the original variables
x and y. For M < 8π, it is (34) with ε = 0. For M > 8π, we have
p(t, x, y) = p0(t, x, y) + p1(t, x)δ(x− y) with

∂p0
∂t
− M

4π
K(x− y) · (∇x −∇y)p0 − (∆x + ∆y)p0 = 0 ,

∂p1
∂t
− 1

2
∆xp1 =

M

4
p0(x, x) .

7 Systems with three or more particles

We give an overview of some observations concerning the three particle prob-
lem (see [13] for details). The ansatz corresponding to (37) for the case of
three particles reads

p(t, x, y, z) = p0(t, x, y, z) + δ(x− y)p1(t, x, z) + δ(y − z)p1(t, y, x)

+δ(z − x)p1(t, z, y) + δ(x− y)δ(y − z)p2(t, x) ,

where p0 describes three free particles, p1(t, x, z) one two-particle aggregate
at position x and one free particle at position z, and p2 a three-particle
aggregate. The three terms containing p1 have to occur due to particle indis-
tinguishability. Note that p1 is in general not symmetric in its two position
arguments. If for the diagonal defect measures corresponding to this ansatz,
the inequalities (30) are checked, it turns out that, for p2 not to vanish,
M > 8π is required, whereas the corresponding condition for p1 is M > 12π.
Thus, for M < 8π no concentration happens and p1 = p2 = 0. For M > 12π,
a system of PDEs for p0, p1, p2 can be derived from the distributional for-
mulation (28), where mass is transferred from p0 to p1 (by collisions of 2
particles) and from p1 to p2 (by collisions of a two-particle aggregate with
the third particle). The condition M > 12π (curiously agreeing with the
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concentration condition obtained from (18)) again can be seen as a version
of the 8π-criterion since it is needed for the collision of 2 particles, whose
total mass 2M

3
has to be bigger than 8π.

The strong formulation of the dynamics in the case 8π < M < 12π is
an open problem. The difficulty lies in the fact that in this case only an
aggregate of three (but not of two) particles can be stable, which therefore
has to be created by a three-particle collision intuitively expected to be an
event with zero probability. This question as well as the strong formulation
of the dynamics of more than three particles remain the subject of further
investigations.
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