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Abstract. The Spherical Harmonics Expansion (SHE) assumes a momen-

tum distribution function only depending on the microscopic kinetic energy.
The SHE-Poisson system describes carrier transport in semiconductors with

self-induced electrostatic potential. Existence of weak solutions to the SHE-

Poisson system subject to periodic boundary conditions is established, based
on appropriate a priori estimates and a Schauder fixed point procedure. The
long time behavior of the one-dimensional Dirichlet problem with well prepared
boundary data is studied by an entropy-entropy dissipation method. Strong

convergence to equilibrium is proven. In contrast to earlier work, the analysis

is carried out without the use of the derivation from a kinetic problem.

1. Introduction. The Spherical Harmonics Expansion (SHE) model describes en-
sembles of particles, whose time dependent distribution f(x, k, t) in phase space
(position x ∈ Rd, momentum k ∈ R3, time t) depends on the momentum only
through the kinetic energy εc(k), i.e. f(x, k, t) = F (x, εc(k), t). It can be derived
as a singular limit of a kinetic transport equation for f , under the assumption of
dominant elastic scattering of the particles at a nonmoving background medium. If
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the particles are also subject to a position and time dependent gradient force field
−∇xΦ(x, t), then the SHE model takes the form

N(ε)∂tF − ∇̃ · (D(ε)∇̃F ) = 0 , (1)

with the modified gradient operator ∇̃ defined by

∇̃ = ∇x −∇xΦ ∂ε . (2)

The density of states N(ε) ≥ 0 has to be chosen such that the macroscopic particle
density is given by

%F (x, t) :=
∫
R(εc)

F (x, ε, t)N(ε)dε =
∫

R3
F (x, εc(k), t)dk , (3)

and the diffusivity D(ε) ≥ 0 depends on the details of the elastic scattering mech-
anism. The SHE model has been derived as a description of charge transport in
semiconductors (see, e.g. [2, 15, 9, 14]), and it owes its name to its first derivation
by a moment method. The present work is also motivated by the application to
semiconductors, and the particles are the electrons in the conduction band of a
semiconductor crystal. Although not very essential for the results of this work, we
make two simplifying assumptions: First, the crystal structure will be neglected
by considering an isotropic background. This is the justification for using a scalar
diffusivity D(ε). A related assumption is to replace the exact band structure of the
conduction band by the so called parabolic band approximation εc(k) = (2π)2/3|k|2,
where the factor in this dimensionless representation is chosen to produce (according
to 3) the density of states

N(ε) =
√
ε .

For the diffusivity, the form

D(ε) = εα , α > 0 ,

will be assumed. The cases α = 1/2 [7] and α = 1 [13] occur in the literature (see
also [4]).

The force field is the electric field due to the self-consistent electrostatic potential
Φ, satisfying the Poisson equation

−∆xΦ = %F − C , (4)

where C denotes the doping profile, a fixed given distribution of charges built into
the semiconductor crystal, here assumed constant and nonnegative; see, e.g. [1, 5, 16]
for related models. In [17] the author studied the diffusion approximation of an
initial-boundary value problem for a Boltzmann-Poisson system with an elastic
operator modeling electron-impurity collision. He proved the convergence of the
renormalized solutions to weak solutions of the SHE-Poisson system, obtaining a
result analogous to our Theorem 2.1. Although using similar analytical tools, our
work provides a “direct” proof of existence of solutions to the SHE-Poisson model,
and explores techniques for dealing with the non-parabolic structure of the SHE
equation. Moreover, the analysis of the long-time behavior of the system with well-
prepared Dirichlet boundary data on a one-dimensional position domain is new.

Two different settings with bounded position domains Ω ⊂ Rd, d = 1, 2 or 3,
will be considered: Either the periodic case with Ω = Td, the d-dimensional torus,
and C > 0; or Ω a bounded Lipschitz domain, Dirichlet boundary conditions, and
C = 0.
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The system 1–4 is considered subject to the initial condition

F (x, ε, 0) = F 0(x, ε) ≥ 0 , (5)

where the initial datum satisfies
A1. Boundedness and bounded total mass: F 0 ∈ L∞x,ε, F 0 ∈ L1

x,ε(N(ε)).
A2. Bounded total kinetic energy: εF 0 ∈ L1

x,ε(N(ε)).
A3. Global charge neutrality: Only in the periodic case Ω = Td,∫

Td
(%F 0 − C)dx = 0 .

Here and in the following, in the notation for function spaces, the subscripts indicate
the domains x ∈ Ω, ε ∈ [0,∞), t ∈ [0,∞), and weight functions are written in
parantheses.

By the charge conservation law

∂t%F +∇x · jF = 0 , with jF = −
∫ ∞

0

D∇̃F dε , (6)

global charge neutrality is propagated in time, which is necessary and sufficient for
the solvability of the Poisson equation 4 subject to periodic boundary conditions.
The setting with Dirichlet boundary conditions will be detailed in Section 3.

The paper is organized as follows: In Section 2, we study the existence of weak
solutions to the SHE-Poisson system 1–5 in the periodic setting x ∈ Td. We
first consider the SHE equation with a prescribed potential Φ ∈ L∞t (W 1,∞

x ) (Sec-
tion 2.1). Since this regularity cannot be expected for the solution of the coupled
system, we first consider a regularized problem, which is solved by an application
of the Schauder fixed point theorem, followed by removal of the regularization (Sec-
tion 2.2). In Section 3 we study the long time behavior of the Dirichlet problem
for the SHE-Poisson system on a one-dimensional position domain with well pre-
pared boundary data. Under appropriate assumptions, we prove that the solution
converges to equilibrium in the L2-sense.

2. Existence of solutions. In this section the existence of weak solutions to the
SHE-Poisson system 1–5 for the case x ∈ Td will be proved.

We say that 1, 5 is satisfied in the weak sense, if∫
Td

∫ ∞
0

F 0ϕ(t = 0)N(ε)dε dx+
∫ ∞

0

∫
Td

∫ ∞
0

F∂tϕN(ε)dε dx dt

=
∫ ∞

0

∫
Td

∫ ∞
0

D(ε)∇̃F · ∇̃ϕdε dx dt , (7)

for all ϕ ∈ C∞0,t,ε([0,∞)× [0,∞); C∞x (Td)).

Theorem 2.1. Let 1/2 ≤ α ≤ 3/2 and A1–A3 hold. Then the SHE-Poisson
system 1–5 has a weak solution (F,Φ) with

F ≥ 0 , F ∈ L∞t,x,ε , ∇̃F ∈ L2
t,x,ε , Φ ∈ L∞t (W 2,5/3

x ) .

Moreover, it satisfies local mass conservation 6 with

%F ∈ L∞t (L5/3
x ) , jF ∈ L2

t (L
pα
x ) , pα =

15
11 + 2α

.
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The proof is carried out in several steps: First, we prove the existence of solutions
of the SHE equation with a prescribed potential Φ ∈ L∞t (W 1,∞

x ), based on suitable
apriori estimates (Section 2.1). Then, we couple it to the Poisson equation, using
the Schauder fixed point theorem (Section 2.2).

The method of proof does not provide uniqueness of solutions, although unique-
ness is expected to hold. The authors are not aware of (and do not know how to
prove) a uniqueness result.

2.1. The SHE equation with prescribed potential. This section is devoted to
the proof of the following theorem.

Theorem 2.2. Let the field ∇xΦ ∈ L∞t,x be given. Then there exists a unique weak
solution F of the SHE equation 7, satisfying

F ∈ L∞t,x,ε ∩ L∞t (L1
x,ε(N(ε))) , D(ε)∇̃F ∈ L2

t,loc(L
pα
x (L1

ε)) ,

with the consequence jF ∈ L2
t,loc(L

pα
x ). Moreover, %F ∈ L∞t,loc(L

5/3
x ) holds as well as

(in the distibutional sense) local mass conservation:

∂t%F +∇x · jF = 0 . (8)

The main difficulty when solving the SHE equation lies in the fact that it is
not strictly parabolic in three ways. First, the diffusivity D(ε) vanishes for ε = 0.
Second and more importantly, there is diffusion only in d directions of the (d+ 1)-
dimensional (x, ε)-space. Finally, the density of states vanishes for ε = 0.

Therefore, the proof is based on a regularization of the SHE equation 7:∫
Td

∫ ∞
0

F 0ϕ(t = 0)N(ε+ δ)dε dx+
∫ ∞

0

∫
Td

∫ ∞
0

Fδ∂tϕN(ε+ δ)dε dx dt

=
∫ ∞

0

∫
Td

∫ ∞
0

D(ε+ δ)(∇̃Fδ · ∇̃ϕ+ δ ∂εFδ ∂εϕ)dε dx dt , (9)

for all ϕ ∈ C∞0,t,ε([0,∞) × [0,∞); C∞x (Td)). Note that this includes the no-flux
boundary condition D(δ)(∇̃Fδ · ∇xΦ− δ∂εFδ) = 0 for ε = 0.

We start by defining the weighted Hilbert spaces

Hδ :=
{
u ∈ L1

loc(Td × [0,∞)) :
∫

Td

∫ ∞
0

u2N(ε+ δ)dε dx <∞
}
,

Vδ :=
{
u ∈ Hδ;

∫
Td

∫ ∞
0

D(ε+ δ)|∇x,εu|2dε dx <∞
}
,

with the natural scalar products

〈u, v〉Hδ :=
∫

Td

∫ ∞
0

uv N(ε+ δ)dε dx ,

〈u, v〉Vδ := 〈u, v〉Hδ +
∫

Td

∫ ∞
0

D(ε+ δ)∇x,εu · ∇x,εv dε dx ,

and the corresponding norms ‖·‖Hδ and ‖·‖Vδ . It is easily checked that Vδ and
Hδ are Hilbert spaces and that Vδ ↪→ Hδ continuously and densely and Hδ ⊂ Vδ ′,
where Vδ ′ is the dual space of Vδ.

For each t ≥ 0, we define the bilinear form at on Vδ × Vδ by

at(u, v) :=
∫

Td

∫ ∞
0

D(ε+ δ)(∇̃u · ∇̃v + δ∂εu ∂εv)dε dx .
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The bilinear form at is continuous

at(u, v) ≤ C ‖u‖Vδ ‖v‖Vδ for all u, v ∈ Vδ ,

and coercive in the sense

at(u, u) ≥ min
{

1
2
,

δ

1 + 2‖∇xΦ‖2∞

}(
‖u‖2Vδ − ‖u‖

2
Hδ

)
for all u ∈ Vδ ,

where the coefficient is a coercivity constant for the quadratic form |a−b∇xΦ|2+δb2.
Then, an application of a lemma by J.L. Lions (see [6], page 218) allows us to deduce,
for every δ > 0 and t ∈ [0, T ], the existence of a mild solution Fδ of 9 with

Fδ ∈ L2((0, T );Vδ) ∩ C([0, T ];Hδ) and ∂tFδ ∈ L2((0, T );Vδ ′) .

Its macroscopic density and flux will be denoted by

%δ =
∫ ∞

0

FδN(ε+ δ)dε , jδ = −
∫ ∞

0

D(ε+ δ)∇̃Fδdε . (10)

To pass to the limit δ → 0 in 9, we need several uniform a-priori estimates.

Lemma 2.3 (Mass conservation, maximum principle). The solution Fδ of 9 is
nonnegative and bounded,

‖Fδ(·, ·, t)‖L∞x,ε ≤
∥∥F 0

∥∥
L∞x,ε

, t ≥ 0 , (11)

and satisfies local mass conservation,

∂t%δ +∇x · jδ = 0 , (12)

in the distributional sense and, consequentially, global mass conservation,∫
Td
%δ(x, t)dx = Mδ :=

∫
Td

∫ ∞
0

F 0(x, ε)N(ε+ δ)dε dx , t ≥ 0 .

Proof. Local mass conservation follows by approximating functions depending only
on time and position by test functions in 9.

For proving boundedness we use the method of Stampacchia [6], and choose

H(s) =
{

0 for s ≤ 0 ,
s2 for s > 0 , K =

∥∥F 0
∥∥
L∞x,ε

,

and

ψ(t) =
∫

Td

∫ ∞
0

N(ε+ δ)H(Fδ −K)dε dx ,

satisfying ψ(t) ≥ 0, ψ(0) = 0, and

ψ′(t) = −
∫

Td

∫ ∞
0

D(ε+ δ)|∇̃Fδ|2H ′′(Fδ −K)dε dx

−δ
∫

Td

∫ ∞
0

D(ε+ δ)(∂εFδ)2H ′′(Fδ −K)dε dx ≤ 0 .

Therefore, H(Fδ−K) = 0 almost everywhere and the assertion follows. For proving
nonnegativity, we use

ψ(t) =
∫

Td

∫ ∞
0

N(ε+ δ)H(−Fδ)dε dx .
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Lemma 2.4 (Energy estimate). 1) The global kinetic energy, defined as

Eδ[Fδ](t) =
∫

Td

∫ ∞
0

εFδ(x, ε, t)N(ε+ δ)dε dx

is bounded locally in time, uniformly with respect to δ > 0, and the bound depends
on the L∞t,x-norm of ∇xΦ.
2) For every T ≥ 0,∫ T

0

∫
Td

∫ ∞
0

D(ε+ δ)
|∇̃Fδ|2

Fδ
dε dx dt

+δ
∫ T

0

∫
Td

∫ ∞
0

D(ε+ δ)
(∂εFδ)2

Fδ
dε dx dt ≤ CT ,

with CT independent from δ.
3) ∫ ∞

0

∫
Td

∫ ∞
0

D(ε+ δ)|∇̃Fδ|2 dε dx dt ≤
1
2
‖F 0‖L∞x,εMδ .

Proof. There exist many mathematical entropies. For every smooth convex η(F ),

d

dt

∫
Td

∫ ∞
0

η(Fδ)N(ε+ δ)dε dx = −
∫

Td

∫ ∞
0

η′′(Fδ)D(ε+ δ)|∇̃Fδ|2dε dx ≤ 0

holds, and the choice η(F ) = F 2/2 proves 3).
The proof of the remaining statements relies on showing boundedness of the quasi

entropy functional

H[F ] =
∫

Td

∫ ∞
0

(ε+ logF )FN(ε+ δ)dε dx+Mδ + C ,

with the total mass Mδ and the constant

C = |Td|
∫ ∞

0

e−1−ε/2(1 + ε/2)N(ε+ δ)dε .

The choice of C is motivated by the estimate∫ ∞
0

F logF N(ε+ δ)dε

≥
∫
e−1−ε/2<F<1

F logF N(ε+ δ)dε+
∫
F<e−1−ε/2

F logF N(ε+ δ)dε

≥ −
∫ ∞

0

(1 + ε/2)F N(ε+ δ)dε−
∫ ∞

0

e−1−ε/2(1 + ε/2)N(ε+ δ)dε ,

(which uses the monotonicity of F logF for F < 1/e), implying

H[F ] ≥ 1
2
Eδ[F ] (13)

A straightforward computation gives

dH[Fδ]
dt

= −
∫

Td
∇xΦ · jδ dx− δ

∫
Td

∫ ∞
0

D(ε+ δ)∂εFδ dε dx

−
∫

Td

∫ ∞
0

D(ε+ δ)
|∇̃Fδ|2

Fδ
dε dx− δ

∫
Td

∫ ∞
0

D(ε+ δ)
(∂εFδ)2

Fδ
dε dx
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With the boundedness of ∇xΦ and the Hölder inequality we obtain∣∣∣∣∫
Td
∇xΦ · jδ dx

∣∣∣∣ ≤ c

(∫
Td

∫ ∞
0

D(ε+ δ)
|∇̃Fδ|2

Fδ
dε dx

)1/2

M
1/(2p)
δ

×

(∫
Td

∫ ∞
0

(
D(ε+ δ)

N(ε+ δ)1/p

)1/p′

Fδ dε dx

)1/(2p′)

.

Now the explicit forms of N(ε) =
√
ε and of D(ε) = εα, first with 1/2 < α < 3/2,

are used. With the choice p = (3/2 − α)−1 > 1, the last factor above is equal to
Eδ[Fδ]α/2−1/4, leading to∣∣∣∣∫

Td
∇xΦ · jδ dx

∣∣∣∣ ≤ 1
2

∫
Td

∫ ∞
0

D(ε+ δ)
|∇̃Fδ|2

Fδ
dε dx+ cH[Fδ]α−1/2 ,

with a constant c independent from δ. It is easily seen that this estimate also holds
for α = 1/2, 3/2. Analogously, we estimate∣∣∣∣∫

Td

∫ ∞
0

D(ε+ δ)∂εFδ dε dx
∣∣∣∣ ≤ 1

2

∫
Td

∫ ∞
0

D(ε+ δ)
(∂εFδ)2

Fδ
dε dx+ cH[Fδ]α−1/2 ,

with the consequence

dH[Fδ]
dt

≤ cH[Fδ]α−1/2 − 1
2

∫
Td

∫ ∞
0

D(ε+ δ)
|∇̃Fδ|2

Fδ
dε dx

−δ
2

∫
Td

∫ ∞
0

D(ε+ δ)
(∂εFδ)2

Fδ
dε dx ,

implying local in time boundedness of H[Fδ] which, by 13 completes the proof of
1). Integration with respect to time then gives 2).

Lemma 2.5 (Estimates on the density and fluxes).

%δ ∈ L∞t,loc(L5/3
x ) , D(ε+ δ)∇̃Fδ ∈ L2

t,loc(L
pα
x (L1

ε)) ,

D(ε+ δ)Fδ ∈ L∞t,loc(Lpα/(2−pα)
x (L1

ε)) , D′(ε+ δ)Fδ ∈ L∞t,loc(L5/3
x (L1

ε)) ,

with pα = 15/(11+2α) and with bounds uniform with respect to δ > 0 and dependent
on ‖∇xΦ‖L∞x,t .

Proof. Throughout this proof, N and D have to be understood with the argument
ε+ δ. Using the maximum principle (Lemma 2.3), for every R ≥ 0, the density can
be estimated by

%δ =
∫ R

0

FδN dε+
∫ ∞
R

FδN dε ≤ 2
3

(R+ δ)3/2‖F 0‖∞ +
1

R+ δ
eδ ,

where

eδ =
∫ ∞

0

(ε+ δ)FδN dε

satisfies
∫

Td eδdx = Eδ[Fδ] + δMδ and therefore, by Lemma 2.4, eδ ∈ L∞t,loc(L
1
x).

Now we distinguish between the cases eδ < δ5/2‖F 0‖∞, when %δ ≤ 5
3δ

3/2‖F 0‖∞
follows with R = 0, and eδ ≥ δ5/2‖F 0‖∞, when the choice R = (eδ/‖F 0‖∞)2/5 − δ
gives %δ ≤ 5

3‖F
0‖2/5∞ e

3/5
δ , completing the proof of the first claim of the lemma.
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Starting with the consequence

‖D∇̃Fδ‖pαL1
ε
≤

(∫ ∞
0

D
|∇̃Fδ|2

Fδ
dε

)pα/2
‖DFδ‖pα/2L1

ε
,

of the Cauchy-Schwarz inequality, we integrate with respect to x and use the Hölder
inequality with exponent 2/pα to obtain

‖D∇̃Fδ‖2Lpαx (L1
ε)
≤
∫

Td

∫ ∞
0

D
|∇̃Fδ|2

Fδ
dε dx ‖DFδ‖Lpα/(2−pα)

x (L1
ε)
,

Thus, the second claim of the lemma follows from Lemma 2.4 and from the third,
which remains to be proved. This will again be achieved by repeated applications
of the Hölder inequality, starting with

‖DFδ‖L1
ε
≤ %1/q

δ

(∫ ∞
0

(
D

N

)q′
Fδdε

)1/q′

,

where the choice q = 3/(4− 2α) gives

‖DFδ‖
pα

2−pα
L1
ε
≤ %

pα(4−2α)
3(2−pα)

δ e
pα(2α−1)
3(2−pα)

δ

Integration with respect to x and another application of the Hölder inequality with
exponent 5(2−pα)

pα(4−2α) implies

‖DFδ‖Lpα/(2−pα)
x (L1

ε)
≤ ‖%δ‖(4−2α)/3

L
5/3
x

(Eδ[Fδ] + δMδ)
(2α−1)/3

,

completing the proof of the third claim of the lemma by applying the first and
Lemma 2.4.

Finally, the estimate

‖D′Fδ‖L1
ε
≤ ‖F 0‖∞

∫ 1

0

D′dε+
∫ ∞

1

D′Fδdε ≤ ‖F 0‖∞D(1 + δ) + α%δ ,

completes the proof.

Now we are ready to pass to the limit δ → 0 in 9 and 12 and to conclude the
proof of Theorem 2.2. In the last regularization term in 9, we use∫ ∞

0

D∂εFδ∂εϕdε = −
∫ ∞

0

(DFδ∂2
εϕ+D′Fδ∂εϕ)dε ,

and Lemma 2.5.

2.2. Coupling with the Poisson equation. As a first step, the Poisson equation
4 is regularized:

− (1− γ∆x)2∆xΦ = %F − C , γ > 0 . (14)

Theorem 2.6. Let A1–A3 hold and γ > 0. Then the regularized SHE-Poisson
system 7, 14 has a solution (Fγ ,Φγ) satisfying Φγ ∈ L∞t (W 1,∞

x ).

Proof. By elliptic regularity and Sobolev imbedding [10], the solution Φ of 14 sat-
isfies

‖Φ‖W 1,∞
x
≤ cγ‖%F − C‖L1

x
(15)

Therefore, for T > 0, we define a fixed point mapping Ψγ on the convex set

Bγ :=
{

Φ ∈ L2
t ((0, T ); W 1,∞

x ) : ‖Φ(·, t)‖W 1,∞
x
≤ cγ

(
M + |Td|C

)
, 0 ≤ t ≤ T

}
,
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with the total mass M =
∫

Td
∫∞

0
F 0 dε dx, by the following two steps:

• Given Φ ∈ Bγ , define F as the unique weak solution of the SHE equation 7.
• Solve the regularized Poisson equation

− (1− γ∆)2∆Ψγ(Φ) = %F − C , on Td . (16)

By the results of the previous subsection, the first step is well defined. By mass
conservation and 15, Ψγ maps Bγ into itself.

To prove the continuity of Ψγ , let us consider a sequence {Φn}n∈N ⊂ Bγ , con-
verging to Φ in L2

t ((0, T );W 1,∞
x ), and Fn the sequence of the corresponding solu-

tions of the SHE equation, weakly convergent to F due to the a-priori estimates of
Lemma 2.3. We need to verify that F is the (unique) solution of the SHE equation
with the potential Φ. For a test function ϕ, ∇xϕ−∇xΦn∂εϕ converges strongly to
∇̃ϕ = ∇xϕ − ∇xΦ∂εϕ in L2

t ((0, T ); L∞x,ε). Due to Lemma 2.4, ∇̃nFn is uniformly
bounded in L2

t,x,ε(D(ε)), and, consequently, has a weakly converging subsequence.
The limiting object is identified as ∇̃F , using the strong convergence of ∇xΦn and
the weak convergence of Fn in ∇̃nFn = ∇xFn−∂ε(∇xΦnFn). Consequently, we can
pass to the limit n → ∞ in the weak formulation of the SHE equation to see that
F is indeed its unique solution corresponding to Φ. Then it is trivial to conclude
that Ψγ(Φn)→ Ψγ(Φ) in L2

t,loc(W
1,∞
x ).

Finally, we will prove that Ψγ(Bγ) is a relatively compact subset of Bγ . Due to
Lemma 2.5, %F ∈ L∞t,loc(L

5/3
x ) and jF ∈ L2

t,loc(L
pα
x ). Since

(1− γ∆)2∆(∂tΨγ(Φ)) = ∇x · jF ,

elliptic regularity implies that Ψγ(Bγ) lies within a bounded set of L2
t,loc(W

6,5/3
x )

and ∂tΨγ(Bγ) in a bounded subset of L2
t,loc(W

1,pα
x ). Moreover, in

W 6,5/3
x ↪→W 1,∞

x ↪→W 1,pα
x ,

the first embedding is continuous and compact (d ≤ 3), the second continuous, and
the left and right spaces are reflexive. Consequently, by the classical Aubin-Lions
lemma [6], the set Ψγ(Bγ) is relatively compact in L2

t,loc(W
1,∞
x ). Therefore, the

Schauder theorem implies the existence of a fixed point Φγ ∈ Bγ of the mapping
Ψγ .

Finally, we remove the regularization by passing to the limit γ → 0. For this, we
will need a bound on the kinetic energy E [Fγ ] that is independent of the W 1,∞

x -norm
of Φγ :

Lemma 2.7. Let (Fγ ,Φγ) be a solution of the regularized SHE-Poisson system 7,
14 as found in Theorem 2.6. Then the total energy defined as

Etot[Fγ ](t) := E [Fγ ](t) +
1
2

∫
Td
|∇x(1− γ∆x)Φγ |2dx ,

satisfies

Etot[Fγ ](t) = Etot[F 0] <∞ ,

for all t ≥ 0.

Proof. Let us observe that ∇̃(ε+Φγ) = 0. Therefore, using ε+Φγ as a test function
in 7 yields (after an approximation procedure)∫

Td

∫ ∞
0

(ε+ Φγ)∂tFγN(ε)dε dx = 0 .
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On the other hand,∫
Td

∫ ∞
0

Φγ∂tFγN(ε)dε dx =
∫

Td
Φγ∂t%Fγ dx

= −
∫

Td
Φγ(1− γ∆x)2∆x∂tΦγ dx =

d

dt

1
2

∫
Td
|∇x(1− γ∆x)Φγ |2dx ,

which proves d
dtEtot[Fγ ] = 0.

It remains to show that Etot[F 0] is well defined. As in the proof of Lemma 2.5,
we prove

‖%F ‖L5/3
x
≤ 5

3
‖F‖2/5L∞x,ε

E [F ]3/5

The inequality ‖u‖Lpx ≤ ‖(1 − γ∆x)u‖Lpx , p ≥ 1, together with elliptic regularity,
implies a (uniform in γ) bound in W 2,5/3

x for the solution of 14. Sobolev imbedding
(d ≤ 3) implies

‖Φγ‖L∞x ≤ c1‖Fγ‖
2/5
L∞x,ε
E [Fγ ]3/5 + c2 .

Integration by parts gives∫
Td
|∇x(1− γ∆x)Φγ |2dx =

∫
Td

Φγ(%Fγ − C)dx ≤ ‖Φγ‖L∞x (M + C|Td|) ,

completing the proof of the boundedness of the potential energy and, therefore, the
total energy at t = 0.

We are now ready to carry out the limit γ → 0, concluding the proof of The-
orem 2.1. Due to the boundedness of E [Fγ ] established in the previous lemma,
we obtain by the same estimates as in the proof of Lemma 2.5 the uniform-in-γ
boundedness of

%Fγ ∈ L∞t (L5/3
x ) and jFγ ∈ L2

t (L
pα
x ) ,

and therefore also of

Φγ ∈ L∞t (W 2,5/3
x ) and ∂tΦγ ∈ L2

t (W
1,pα
x ) .

An application of the Aubin-Lions lemma [6] implies the strong convergence (re-
stricted to a subsequence) of Φγ → Φ in L2

t (W
1,2
x ) as γ → 0. We also have Fγ → F

in L∞t,x,ε-weak∗. Therefore, for any test function ϕ we have ∇xϕ−∇xΦγ∂εϕ→ ∇̃ϕ
strongly in L2

t,x,ε(D(ε)). As in the proof of Lemma 2.4 (3), the uniform boundedness
of ∇xFγ − ∂ε(Fγ∇xΦγ) in L2

t,x,ε(D(ε)) follows. By the weak∗ convergence of Fγ
and the strong convergence of ∇xΦγ , its weak limit is ∇̃F . These arguments justify
passing to the limit in the second line of 7, completing the proof of Theorem 2.1,
since all other terms in 7 and 14 are linear.

3. Long time behavior. In this section we study the long time behavior of the
SHE-Poisson system 1–4, posed on an interval Ω ⊂ R, subject to the initial condi-
tion 5 and with well prepared boundary data

Φ(t, x) = Φb(x) , x ∈ ∂Ω , t ≥ 0 , (17)
F (t, x, ε) = Ψ(ε+ Φb(x)) , x ∈ ∂Ω , t ≥ 0 , (18)

We adopt the following assumptions on the boundary data:
A4. The boundary datum Φb is nonnegative.
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A5. The profile Ψ : R → (0,+∞) is smooth and strictly decreasing, with Ψ′(ε)
bounded for ε ∈ (0,∞) and with finite energy:∫ ∞

0

εΨ(ε)N(ε) dε <∞ .

Furthermore, there exists a constant C0 > 0, such that

sup
{

(Ψ−1)′(s) : s ∈
(

0,
∥∥F 0

∥∥
L∞x,ε

)}
≤ −C0 < 0 . (19)

In the following it will occasionally be useful to use the microscopic total energy
z = ε+ Φ(t, x) as an independent variable instead of the kinetic energy ε. In terms
of the variables (x, z), the operator ∇̃ becomes ∇x.

We say that the couple (F,Φ) is a weak solution of the SHE-Poisson system 1–
4 with the Dirichlet boundary conditions 17, 18, if the boundary conditions are
satisfied in the sense that

Φ(t, ·)− Φb ∈ H1
0 (Ω) , F (t, ·, z − Φ(t, ·))−Ψ(z) ∈ H1

0 (Ω) (20)

for every fixed t and z, where Φb now has to be understood as the linear interpolation
of the boundary data in (17). The weak formulation 7 of the SHE equation now has
to be satisfied for all test fuctions ϕ ∈ C∞0 ([0,∞) × Ω × [0,∞)), and Φ is a weak
solution of the Dirichlet problem 4, 20.

Remark 1. Because of the lack of energy conservation, the existence analysis per-
formed in Section 2 for the spatially periodic case cannot be straightforwardly mod-
ified for the case of the Dirichlet problem, considered in this section. In particular,
the estimates for the decoupled problem pose a difficulty. However, it will be shown
in the following that the main a priori estimates for the coupled problem can still be
carried out. For example, boundedness of the kinetic energy will be a consequence
of entropy dissipation. Existence of a weak solution satisfying the maximum princi-
ple estimates F ≥ 0 and ‖F (t, ·, ·)‖L∞x,ε ≤ ‖F

0‖L∞x,ε , as well as the mass conservation
property ‖F (t, ·, ·)‖L1

x,ε(N) = ‖F 0‖L1
x,ε(N) will be assumed. Moreover, the result of

Theorem 3.1 below holds under the assumption of sufficient regularity of F . To
avoid technicalities, we merely pose the assumption that F is regular enough to
justify the proof of Lemma 3.2.

We define the equilibrium profile (F∞,Φ∞) corresponding to the time-independent
boundary data 17–18 by

F∞(x, ε) = Ψ(ε+ Φ∞(x)) , ε > 0, x ∈ Ω ,

−∆xΦ∞ = %∞ :=
∫ ∞

0

Ψ(ε+ Φ∞)N(ε)dε , in Ω ,

Φ∞(x) = Φb(x) , x ∈ ∂Ω .

Since the right hand side of the semilinear elliptic equation for Φ∞ is strictly de-
creasing as a function of Φ∞, the solvability of the Dirichlet problem is a standard
result. The solution is smooth and nonnegative and, consequently, the same is true
for the equilibrium density %∞.

For (F,Φ) a weak solution of the SHE-Poisson system and (F∞,Φ∞) the corre-
sponding equilibrium profile, we define the relative entropy (see [3])

H[F |F∞](t) =
∫

Ω

∫ ∞
0

RΨ[F (t)|F∞]N dε dx+
1
2

∫
Ω

|∇x(Φ(t)− Φ∞)|2dx, (21)
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with

RΨ[F |G] =
∫ G

F

[Ψ−1(s)−Ψ−1(G)] ds = βΨ(F )− βΨ(G) + (F −G)Ψ−1(G),

and βΨ(F ) = −
∫ F

0
Ψ−1(s) ds. Before stating the main result of this section, we

adopt two more assumptions:
A6. The initial datum F 0 has bounded relative entropy,∫

Ω

∫ ∞
0

RΨ[F 0|F∞]N dε dx <∞ .

A7. There exists a positive constant cΨ, such that for every F > 0,

βΨ(F ) ≥ −cΨFΨ−1(F ) , for F ≥ F .

The assumption A7 looks rather mysterious, but it is satisfied for typical choices
of the equilibrium profile Ψ, in particular, it has been used already for the Maxwellian
Ψ(z) = e−z (as is standard in the corresponding problem for the Boltzmann equa-
tion [8, 12, 11]) in the proof of Lemma 2.4.

Theorem 3.1. Let d = 1, 1/2 ≤ α < 1, and the assumptions A1–A7 be satisfied.
Then the weak solution (F,Φ) of the SHE-Poisson system 1–4 with the Dirichlet
boundary conditions 17–18 converges to the equilibrium (F∞,Φ∞) in L2

x,ε(N)×L2
x,

and the decay of the distance to the partial equilibrium FΦ(t, x, ε) = Ψ(ε+ Φ(t, x))
can be quantified by

‖F − FΦ‖L2
x,ε(N) ≤

c

(1 + (1− α)t)1/(1+3α)
.

The proof of this theorem will be performed in two steps. First, in Lemma 3.2 we
derive an entropy-entropy production inequality. Then, by introducing a coordinate
transformation, we bound the entropy production by the entropy in Lemma 3.4,
using a special Poincaré-type estimate, which we are only able to prove in the
one-dimensional case and for α < 1.

Lemma 3.2. Let (F,Φ) be a weak solution of the SHE-Poisson system 1–4 with the
Dirichlet boundary conditions 17–18, and (F∞,Φ∞) the corresponding equilibrium
profile. Then we have

c1

∫
Ω

∫ ∞
0

(F (t)− FΦ)2N dε dx+
1
2

∫
Ω

|∇xΦ(t)−∇xΦ∞|2dx

≤ H(0)− c2
∫ t

0

∫
Ω

∫ ∞
0

D|∇̃F (τ)|2dε dx dτ ,

with positive constants c1, c2, and FΦ(t, x, ε) = Ψ(ε+ Φ(t, x)).

Proof. With the assumption of sufficient regularity of F , as mentioned in Remark 1,
we first evaluate the time derivative of H:

d

dt

∫
Ω

∫ ∞
0

RΨ[F (t)|F∞]N dε dx =
∫

Ω

∫ ∞
0

∂tF
(
Ψ−1(F∞)−Ψ−1(F )

)
N dε dx

= −
∫

Ω

∫ ∞
0

D∇̃F · ∇̃
(
ε+ Φ∞ −Ψ−1(F )

)
dε dx

=
∫

Ω

∫ ∞
0

(Ψ−1)′(F )D|∇̃F |2dε dx−
∫

Ω

∫ ∞
0

D∇̃F · ∇x(Φ∞ − Φ)dε dx .
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The last term can be rewritten in terms of the flux jF :

−
∫

Ω

∫ ∞
0

D∇̃F · ∇x(Φ∞ − Φ)dε dx = −
∫

Ω

(Φ∞ − Φ)∇x · jF dx ,

and using the continuity equation 8,

−
∫

Ω

(Φ∞ − Φ)∇x · j dx = −
∫

Ω

(Φ∞ − Φ)∂t(%∞ − %)dx

=
∫

Ω

(Φ∞ − Φ)∆x[∂t(Φ∞ − Φ)]dx = −1
2
d

dt
‖∇x(Φ− Φ∞)‖2L2

x
.

Consequently, we arrive at

d

dt
H[F (t)|F∞](t) =

∫
Ω

∫ ∞
0

(Ψ−1)′(F (t))D|∇̃F (t)|2dε dx

≤ −C0

∫
Ω

∫ ∞
0

D|∇̃F |2dε dx , (22)

where the inequality is due to A5. Moreover, we estimate the integrand RΨ[F |F∞]
in the relative entropy by

RΨ[F (t)|F∞] =
1
2
βΨ
′′(ξ)(F (t)− F∞)2

=
1
2

(−Ψ−1)′(ξ)(F (t)− F∞)2

≥ C0

2
(F (t)− F∞)2 ,

with some ξ ∈
(

0,
∥∥F 0

∥∥
L∞x,ε

)
. On the other hand

‖F − FΦ‖L2
x,ε(N) ≤ ‖F − F∞‖L2

x,ε(N) + ‖FΦ − F∞‖L2
x,ε(N)

≤ ‖F − F∞‖L2
x,ε(N) + c‖Φ− Φ∞‖L2

x

≤ ‖F − F∞‖L2
x,ε(N) + c‖∇xΦ−∇xΦ∞‖L2

x
,

where the second inequality is due to the Lipschitz continuity of Ψ, and the third is
due to the Poincaré inequality on H1

0 (Ω). Using this estimate in the time-integrated
version of 22, we conclude.

Lemma 3.3. The total kinetic energy

E [F ] =
∫

Ω

e[F ]dx , e[F ] =
∫ ∞

0

εFN dε ,

is bounded uniformly in time.

Proof. This result is the consequence of the fact that the kinetic energy is controlled
by the relative entropy. The proof of the previous lemma implies H[F (t)|F∞] ≤
H[F 0|F∞], and in the following, we shall prove the existence of a constant c, such
that

H[F |F∞] ≥ 1
2
E [F ]− c , (23)

which implies the result of the lemma.
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A straightforward computation shows∫ ∞
0

R[F |F∞]N dε =
∫ ∞

0

βΨ(F )N dε+ e[F ] + e[F∞] + Φ∞(%F + %∞)

≥
∫ ∞

0

βΨ(F )N dε+ e[F ] . (24)

By its definition, βΨ is strictly convex and satisfies βΨ(0) = βΨ(F̂ ) = 0, β′Ψ(Ψ(0)) =
0, with 0 < Ψ(0) < F̂ . This implies∫ ∞

0

βΨ(F )N dε ≥
∫
F<Ψ(ε/(2cΨ))

βΨ(F )N dε+
∫

Ψ(ε/(2cΨ))≤F<F̂
βΨ(F )N dε

≥
∫ ∞

0

βΨ(Ψ(ε/2cΨ))N dε− 1
2
e[F ] = −2(2cΨ)3/2e[Ψ]− 1

2
e[F ] .

In the estimate of the second term assumption A7 has been used, and in the final
computation of the first term, the explicit form of the density of states N(ε) =

√
ε.

Combining this last estimate with 24 and integration with respect to x shows 23,
completing the proof.

Lemma 3.4. The entropy dissipation rate satisfies∫
Ω

∫ ∞
0

D|∇̃F |2dε dx ≥ c(1− α)
(∫

Ω

∫ ∞
0

(F − FΦ)2N dε dx

)r
, (25)

where c is a time-independent constant and r = 3(1 + α)/2.

Proof. Setting G = F −FΦ, the Hölder inequality with exponent 3 and the identity
N(ε)3 = εN(ε) imply∫

Ω

∫ ∞
0

G2N dε dx ≤ E [G]1/3‖G‖1/3L∞x,ε
‖G‖4/3L2

x,ε

We introduce the coordinate transformation (x, ε) → (x, z) with the total energy
z := ε + Φ, such that the operator ∇̃ = ∂x − ∂xΦ ∂ε transforms to ∂x. Due to the
nonnegativity of the boundary data Φb (Assumption A4), we have z ≥ 0. Note
that FΦ(t, x, z−Φ(t, x)) = Ψ(z), implying ∂xF = ∂xG. Therefore, we have to prove∫ ∞

0

∫
ΩΦ,z

G2dx dz ≤ c

(∫ ∞
0

∫
ΩΦ,z

D(z − Φ)(∂xG)2dx dz

) 3
2r

, (26)

for G satisfying G(x, z) = 0 for x ∈ ∂Ω, where ΩΦ,z = {x ∈ Ω : Φ(x) < z}.
Since −∂2

xΦ = %F ≥ 0, the potential Φ is concave and bounded over Ω. Therefore,
for any fixed time t ≥ 0, we may define

Φ := inf
x∈Ω

Φ(x) ≥ inf
x∈∂Ω

Φb(x) ≥ 0 ,

Φ := sup
x∈Ω

Φ(x) <∞ .

We fix a constant δ > 0 and define the disjoint intervals

I1
δ := (Φ,Φ− δ) , I2

δ := (Φ− δ,Φ + δ) and I3
δ := (Φ + δ,∞) .

We split the domain of integration in 26 accordingly and prove the inequality in
each of the three parts:
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• We start with I3
δ . For a fixed z ∈ I3

δ , we have ΩΦ,z = Ω and

z − Φ(x) ≥ δ for all x ∈ Ω .

Therefore,∫
I3
δ

∫
Ω

G2dx dz ≤ c

∫
I3
δ

∫
Ω

(∂xG)2dx dz

≤ c

δα

∫
I3
δ

∫
Ω

D(z − Φ)(∂xG)2dx dz ,

where c is the constant of the Poincaré inequality and depends only on Ω.
• For I2

δ , we obtain∫
I2
δ

∫
ΩΦ,z

G2dx dz ≤ 2δ|Ω| ‖G‖2L∞x,ε .

• Finally, the estimate for z ∈ I1
δ is a consequence of the (possibly not strict)

concavity of Φ. At the points x ∈ Φ−1(Φ− δ), the slope of Φ is at least δ/|Ω|.
Therefore, for any fixed z ∈ I1

δ , we have |Φ′(x)| ≥ δ/|Ω| for all x ∈ ΩΦ,z.
Consequently,

z − Φ(x) ≥ δ

|Ω|
dist(x, ∂(Ω\ΩΦ,z)) ,

and∫
ΩΦ,z

dx

(z − Φ)α
≤
(
|Ω|
δ

)α ∫
ΩΦ,z

dx

dist(x, ∂(Ω \ ΩΦ,z))α
≤ |Ω|

(1− α)δα
.

Noting that the boundary of each connected component of ΩΦ,z contains at
least one point of ∂Ω, we use the weighted Poincaré inequality 27 with w(x) =
D(z − Φ(x)). This yields∫

ΩΦ,z

G2dx ≤
∫

ΩΦ,z

dx

D(z − Φ)

∫
ΩΦ,z

D(z − Φ)(∂xG)2dx

≤ |Ω|
(1− α)δα

∫
ΩΦ,z

D(z − Φ)(∂xG)2dx .

Combining the three partial estimates, we have∫ ∞
0

∫
ΩΦ,z

G2dx dz ≤ c1δ +
c2

(1− α)δα

∫ ∞
0

∫
ΩΦ,z

D(z − Φ)(∂xG)2dx dz ,

where c1 and c2 are time-independent constants. Optimizing in δ gives∫ ∞
0

∫
ΩΦ,z

G2dx dz ≤ c

(
1

1− α

∫ ∞
0

∫
ΩΦ,z

D(z − Φ)(∂xG)2dx dz

) 1
1+α

,

and a transformation back to the original coordinates (x, ε) concludes the proof
of 25.

We now conclude the proof of Theorem 3.1. Denoting

u(t) =
∫

Ω

∫ ∞
0

(F − FΦ)2N dε dx ,
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Lemmata 3.2 and 3.4 yield the estimate

u(t) ≤ c1 − c2(1− α)
∫ t

0

u(s)r ds ,

with time-independent constants c1 and c2. An application of the Gronwall lemma
gives the result

u(t) ≤ c

(1 + (1− α)t)1/(r−1)
for all t ≥ 0 .

Lemma 3.2 provides a uniform-in-time bound for ∇xΦ(t, ·) in L2
x. As a consequence,

restricting to subsequences, Φ(t, ·) → Φ̂ in L2
x as t → ∞, implying FΦ → FΦ̂ and

therefore also F → FΦ̂ in L2
x,ε(N). Passing to the limit in the Poisson equation

−∆xΦ = %F implies Φ̂ = Φ∞, leading to the convergence F → F∞ in L2
x,ε(N)

(without restricting to a subsequence).

4. Appendix: The weighted Poincaré inequality. For completeness, we in-
clude a proof of the inequality 27 below. Let Ω be a bounded domain in Rd,
u ∈ C∞0 (Ω) and w a nonnegative weight. For a fixed x̃ := (x2, . . . , xd) ∈ Rd−1, let
us denote

Ω−1(x̃) = {x1 ∈ R; (x1, x̃) ∈ Ω} .
Then, we have

u(x1, x̃)2 ≤

(∫
Ω−1(x̃)

|∂x1u(y, x̃)|dy

)2

≤

(∫
Ω−1(x̃)

dy
w(y, x̃)

)(∫
Ω−1(x̃)

w(y, x̃)|∂x1u(y, x̃)|2 dy

)
.

Integrating over Ω, we obtain∫
Ω

u(x)2 dx ≤ diam(Ω)

(
supx̃∈Rd−1

∫
Ω−1(x̃)

dy
w(y, x̃)

)(∫
Ω

w(x)|∂x1u(x)|2 dx
)
, (27)

which we call the weighted Poincaré inequality.
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