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Abstract

Scalar one-dimensional conservation laws with a nonlocal diffusion term cor-
responding to a Riesz-Feller differential operator are considered. Solvability
results for the Cauchy problem in L∞ are adapted from the case of a frac-
tional derivative with homogeneous symbol. The main interest of this work
is the investigation of smooth shock profiles. In case of a genuinely nonlinear
smooth flux function we prove the existence of such travelling waves, which are
monotone and satisfy the standard entropy condition. Moreover, the dynamic
nonlinear stability of the travelling waves under small perturbations is proven,
similarly to the case of the standard diffusive regularization, by constructing a
Lyapunov functional.
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1. Introduction

We consider one-dimensional conservation laws for a density u(t, x), t > 0,
x ∈ R, of the form

∂tu+ ∂xf(u) = ∂xDαu , (1)

where Dα is the non-local operator

(Dαu)(x) =
1

Γ(1− α)

∫ x

−∞

u′(y)
(x− y)α

dy , (2)

with 0 < α < 1. The flux function f(u) is smooth and satisfies f(0) = 0.
We shall analyse the local and global solvability of the Cauchy problem

for (1), as well as the existence and stability of travelling wave solutions. In
particular, we shall show that smooth travelling wave solutions exist, which are
asymptotically stable. These waves are shock profiles satisfying the standard
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entropy conditions like those derived from the standard parabolic regularization
with Dα replaced by ∂x.

Since Dαu can be written as the convolution of the derivative u′ with Γ(1−
α)−1θ(x)x−α (with the Heaviside function θ), Dα is a pseudo-differential oper-
ator with symbol

ik
√

2π
Γ(1− α)

F
(
θ(x)
xα

)
(k) = ik (aα − ibα sgn(k)) |k|α−1 = (bα + iaα sgn(k)) |k|α ,

i.e. F(Dαu)(k) = (bα + iaα sgn(k)) |k|αû(k). Here F denotes the Fourier trans-
form

Fϕ(k) = ϕ̂(k) =
1√
2π

∫
e−ikxϕ(x)dx ,

and
aα = sin

(απ
2

)
> 0 , bα = cos

(απ
2

)
> 0 ,

(see [2] for the details of the computation). Obviously, the operator on the right
hand side of (1) also is a pseudo-differential operator with symbol

F(∂xDα) = − (aα − ibα sgn(k)) |k|α+1 . (3)

Due to the negativity of its real part, it is dissipative.

Remark 1. For s ∈ R, we use the Sobolev space

Hs := {u : ‖u‖Hs <∞} , ‖u‖Hs := ‖(1 + |k|)sû‖L2(R) ,

and the corresponding homogeneous norm

‖u‖Ḣs := ‖|k|sû‖L2(R) .

The fact ‖Dαu‖Ḣs =
√
a2
α + b2α ‖u‖Ḣs+α justifies to interpret Dα as a differen-

tiation operator of order α. It is bounded as a map from Hs to Hs−α.
Denoting by Cmb , m ≥ 0, the set of functions, whose derivatives up to order

m are continuous and bounded on R, Dαu : C1
b → Cb is bounded. This can be

easily seen by splitting the domain of integration in (2) into (−∞, x − δ] and
[x− δ, x] for some positive δ > 0. Then integration by parts in the first integral
shows the boundedness of Dαu.

The operator ∂xD1/3 occurs in applications. It has been derived as the
physically correct viscosity term in two layer shallow water flows by performing
formal asymptotic expansions associated to the triple-deck regularization used in
fluid mechanics (see, e.g., [18]). MoreoverD1/3 appears in the work of Fowler [12]
in an equation for dune formation:

∂tu+ ∂xu
2 = ∂2

xu− ∂xD1/3u . (4)

Here the fractional derivative appears with the negative sign, but this instability
is regularized by the second order derivative. Alibaud et al. showed the well-
posedness of (4) in L2 as well as the violation of the maximum principle, which
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is intuitive in the context of the application due to underlying erosions [1].
Travelling wave solutions of (4) have been analysed by Alvarez-Samaniego and
Azerad in [2].

Fractal conservation laws of the form

∂tu+ ∂xf(u) = Dα+1u , (5)

where Dα+1 is the pseudo-differential operator with symbol −|k|α+1 (meaning
Dα+1u = F−1(−|k|α+1û)) have been investigated in several works, see e.g. Biler
et al. [5] and Droniou et al. [10].

This work is organized as follows. In the remainder of this section we present
an existence result for the Cauchy problem in L∞. The crucial property here is
the nonnegativity of the semigroup generated by ∂xDα, which is a consequence
of its interpretation as a Riesz-Feller derivative [11, 13]. This allows to prove a
maximum principle for solutions of (1) as in [10].

Section 2 is devoted to the analysis of travelling wave solutions connecting
different far-field values. Such wave profiles are typically smooth. Working
with the original representation (2) of Dα, we obtain a nonlinear Volterra inte-
gral equation as the travelling wave version of (1). Assuming (even a bit less
than) convexity of the flux function and that the solutions of the associated
linear Volterra integral equation form a one-dimensional subspace of H2(R−),
we can show the existence and uniqueness of monotone solutions satisfying the
entropy condition for classical shock waves of the inviscid conservation law un-
derlying (1). This essentially requires to extend the well known results for
the existence of viscous shock profiles, which solve (local) ordinary differential
equations.

Biler et al. [5] showed that no travelling wave solutions of (5) can exist for
α ∈ (−1, 0]. For the case α ∈ (0, 1) also no existence result is available.

To show the asymptotic stability of the travelling waves, we use the an-
tiderivative method typically applied in the case of the classical viscous regu-
larisation and derive a Lyapunov functional. This allows to deduce the decay
of initially small perturbations.

In the appendix we consider linear Volterra integral equations and prove the
assumption on the dimension of the solution space with respect to subspaces
of H2(R−).

The Cauchy Problem
In the following, we verify the applicability of the work of Droniou et al. [10]

on the Cauchy problem of (5) in L∞ to

∂tu+ ∂xf(u) = ∂xDαu, u(0, x) = u0(x). (6)

Applying the Fourier transform to the linear evolution equation ∂tu = ∂xDαu,
we see that the semigroup generated by the fractional derivative is formally
given by the convolution with the kernel

K(t, x) = F−1e−Λ(k)t(x), where Λ(k) = (aα − ibαsgn(k))|k|α+1. (7)
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To analyse the well-posedness, we use the mild formulation of (6),

u(t, x) = K(t, .) ∗ u0(x)−
∫ t

0

K(t− τ, .) ∗ ∂xf(u(τ, .))(x)dτ. (8)

As a main ingredient in [10], Droniou et al. used the non-negativity of the kernel
associated to the semigroup generated by Dα+1. To make use of their methods
in the analysis of the Cauchy problem (6), we need to investigate the properties
of the kernel K associated to the operator ∂xDα.

Lemma 1. For 0 < α < 1, the kernel K given by (7) is non-negative:

K(t, x) ≥ 0, for all t > 0, x ∈ R.

Additionally, the kernel K satisfies the properties:
(i) For all t > 0 and x ∈ R, K(t, x) = 1

t1/(1+α)K
(
1, x

t1/(1+α)

)
.

(ii) For all t > 0, ‖K(t, .)‖L1(R) = 1.

(iii) K(t, x) is C∞ on (0,∞) × R and for all m ≥ 0 there exists a Bm such
that

∀(t, x) ∈ (0,∞)× R, |∂mx K(t, x)| ≤ 1
t(1+m)/(1+α)

Bm
(1 + t−2/(1+α)|x|2)

.

(9)
(iv) There exists a C0 such that for all t > 0: ‖∂xK(t, .)‖L1(R) = C0

t1/(1+α) .

Proof. We already mentioned that the operator ∂xDα is a Riesz-Feller differen-
tial operator, see also Gorenflo and Mainardi [13]. Due to Feller [11], the symbol
of ∂xDα is the characteristic exponent of a random variable with Lévy stable
distribution. Hence the kernel K is the scaled probability density function of a
Lévy stable distribution and is non-negative.

The additional properties of the kernel K are verified in the same manner
as in [10]: (i) follows from the change of variable η = t1/(1+α)k under the
integral sign. Since the kernel K is non-negative, we deduce ‖K(1, .)‖L1(R) =∫
K(1, x)dx = F(K(1, .))(0) = 1, which together with (i) implies (ii). To show

(iii), we write ∂mx K(1, x) = 1√
2π

∫
(ik)meikxe−Λ(k)dk. Since α > 0, we can

integrate by parts twice and obtain ∂mx K(1, x) = O(1/x2). Together with the
boundedness of ∂mx K(1, x), we get the estimate for t = 1 and deduce the estimate
for arbitrary t > 0 from (i). Finally, (iv) follows from (i) and (iii).

Hence the kernel associated to ∂xDα satisfies the same properties as the one
for Dα+1 required in the work of Droniou et al. [10]. Thus their analysis carries
over to our problem and we obtain the analogous result:

Theorem 1. If u0 ∈ L∞, then there exists a unique solution u ∈ L∞((0,∞)×R)
of (6) satisfying the mild formulation (8) almost everywhere. In particular

‖u(t, .)‖∞ ≤ ‖u0‖∞, for t > 0.

Moreover, the solution has the following properties:
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1. u ∈ C∞((0,∞)× R) and u ∈ C∞b ((t0,∞)× R) for all t0 > 0.
2. u satisfies equation (1) in the classical sense.
3. u(t)→ u0, as t→ 0, in L∞(R) weak-∗ and in Lploc(R) for all p ∈ [1,∞).

To motivate the well-posedness, we estimate the terms in (8) for t > 0, with
the help of the properties of the kernel K, as follows: |K(t, .) ∗ u0(x)| ≤ ‖u0‖∞
and ∣∣∣∣∫ t

0

∂xK(t− s, .) ∗ f(u(s, .))ds
∣∣∣∣ ≤ C‖f(u)‖L∞((0,t)×R)t

1− 1
1+α .

Due to the Lipschitz continuity of f , we get a contraction for small times t0 on
L∞((0, t0)× R) and therefore the well-posedness.

To show the global existence as well as the maximum principle, Droniou et
al. [10] constructed an approximate solution by a splitting method and used a
compactness argument to pass to the limit.

We shall also mention that an alternative L2-based existence theory of (1)
can be obtained by standard approaches such as contraction arguments and
Lyapunov functionals. Here the main ingredient is the a priori decay of the
L2-norm. Testing (1) with u and assuming vanishing far-field values of u, the
flux term vanishes∫

R
u∂xf(u)dx =

∫
R
uf ′(u)∂xudx =

∫
R
∂xG(u)dx = 0, G(u) =

∫ u

0

vf ′(v)dv,

since G is smooth and G(0) = 0. We obtain the L2-estimate:

1
2
d

dt

∫
R
u2dx = −aα

∫
R
|k|1+α|û|2dk ≤ 0 .

Here we have used Plancherel’s theorem together with |û(k)|2 = |û(−k)|2, im-
plying ∫

R
sgnk|k|j |û(k, t)|2dk = 0 .

This relation shows that in an L2-framework the operator ∂xDα behaves sim-
ilarly to Dα+1. Due to the decay of the L2-norm of the solution to (1), one
would hope for well-posedness of the Cauchy problem with initial data in L2

allowing us to deduce the global existence. Using a contraction argument sim-
ilar to the one by Dix for the classical viscous Burgers equation, we can show
the well-posedness in L2 for the quadratic flux f(u) = u2 in the case α > 1/2.
This critical value was already mentioned by Biler, Funaki and Woyczynski [5]
for (5). For the general flux and α ∈ (0, 1) we have to require higher regularity
of the initial data: u0 ∈ H1. To deduce global existence of solutions in H1, a
Lyapunov functional can be derived under an additional smallness assumption
on ‖u0‖H1 . These results follow from the proofs we carry out in Section 2.2.
Since obviously the assumptions on the initial data are much more restrictive
as in the L∞-based existence result, we do not go into more details here.
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2. Travelling wave solutions

2.1. Existence of travelling wave solutions
We introduce the travelling wave variable ξ = x− st with the wave speed s

and look for solutions u(x, t) = u(ξ) of (1), which are connecting the different
far-field values u− and u+. A straightforward calculation shows that if u depends
on x and t only through the travelling wave variable ξ, then so does Dαu, and
we arrive at

−su′ + f(u)′ = (Dαu)′ , u(−∞) = u− , u(∞) = u+ ,

where the prime denotes differentiation with respect to ξ. Integration gives the
travelling wave equation

h(u) := −s(u− u−) + f(u)− f(u−) = Dαu = dα

∫ ∞
0

u′(ξ − y)
yα

dy , (10)

with dα = 1/Γ(1 − α). If the derivative u′ decays to zero fast enough as ξ →
±∞, then we obtain, at least formally, the Rankine-Hugoniot conditions, which
correspond to shock solutions of the inviscid conservation law and relate the
far-field values and the wave speed via

s =
f(u+)− f(u−)

u+ − u−
. (11)

If the flux function f(u) is convex between the far-field values u− and u+, then
the left hand side h(u) of (10) is negative between its zeroes u− and u+. If u(ξ)
is monotone, the right hand side in (10) has the same sign as u′. Therefore if
a monotone solution exists, it has to be nonincreasing, leading to the standard
entropy condition

u− > u+ ,

derived by replacing Dαu by u′. Under this assumption, the existence of a
smooth monotone travelling wave will be proved. The precise assumptions on
the flux function will be formulated in terms of h(u): We require

h ∈ C∞([u+, u−]) , h(u+) = h(u−) = 0 , h < 0 in (u+, u−) ,
∃um ∈ (u+, u−) such that h′ < 0 in (u+, um) , h′ > 0 in (um, u−] . (12)

Note that this is a little less than asking for convexity of f , and it allows for the
slightly weakened form f ′(u+) ≤ s < f ′(u−) of the Lax entropy condition.

The integral operator

Dαu(ξ) = dα

∫ ξ

−∞

u′(y)
(ξ − y)α

dy

in the travelling wave problem

h(u) = Dαu , u(−∞) = u− , u(∞) = u+ , (13)
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is of the Abel type. It is well known that it can be inverted by multiplying (13)
with (z − ξ)−(1−α) and integrating with respect to ξ from −∞ to z. This leads
to

u(ξ)− u− = D−α(h(u))(ξ) := d1−α

∫ ξ

−∞

h(u(y))
(ξ − y)1−α dy . (14)

Equations (13) and (14) are equivalent if u ∈ C1
b (R) and u′ ∈ L1(R−), hence in

particular if u ∈ C1
b (R) is monotone. We will use both formulations to deduce

the existence result. An important property of both integral equations is their
translation invariance, which will be used several times below.

The equation (14) is a nonlinear Volterra integral equation with a locally in-
tegrable kernel, where a well developed theory exists for problems on bounded
intervals. Therefore we shall start our investigations by proving a ’local’ exis-
tence result around ξ = −∞. The subsequent monotonicity and boundedness
results will lead to global existence for ξ ∈ R.

The local existence result is based on linearisation at ξ = −∞ (or, equiva-
lently, at u = u−). This can be done for either (13) or (14) with the same result.
As could be expected for ordinary differential equations, the linearisations

h′(u−)v = Dαv , v = h′(u−)D−αv , (15)

have solutions of the form v(ξ) = beλξ, b ∈ R, where a straightforward com-
putation gives λ = h′(u−)1/α, see also [6]. We will need that these are the
only non-trivial solutions of (15) in the space H2(−∞, ξ0] for some ξ0 ≤ 0. In
particular, we assume that

N
(
id− h′(u−)D−α

)
= span{exp(λξ)} with λ = h′(u−)1/α , (16)

which is reasonable due to our analysis in the appendix Appendix A. The main
result of this section is the following.

Theorem 2. Let (12) and (16) hold. Then there exists a decreasing solution
u ∈ C1

b (R) of the travelling wave problem (13). It is unique (up to a shift)
among all u ∈ u− +H2((−∞, 0)) ∩ C1

b (R).

The following local existence result shows that the nonlinear problem has,
up to translations, only two nontrivial solutions, which can be approximated by
u− ± eλξ for large negative ξ. The choice 1 of the modulus of the coefficient of
the exponential is irrelevant due to the translation invariance of the solution.

Lemma 2. (Local existence) Let (16) hold. Then, for every small enough ε >
0, the equation (13) has solutions uup, udown ∈ u− + H2(Iε), Iε = (−∞, ξε],
ξε = log ε/λ, satisfying

uup(ξε) = u− + ε , udown(ξε) = u− − ε . (17)

These are unique among all functions u satisfying ‖u − u−‖H2(Iε) ≤ δ, with δ
small enough, but independently from ε. They satisfy (with an ε-independent
constant C)

‖uup − u− − eλξ‖H2(Iε) ≤ Cε
2 , ‖udown − u− + eλξ‖H2(Iε) ≤ Cε

2 .
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Proof. The proof will only be given for existence and uniqueness of udown, which
will be of greater interest below, but the proof for uup is analogous.

We start by writing (13) and the initial condition (17) in terms of the per-
turbation ū(ξ) = udown(ξ)− u− + eλξ:

(Dα − h′(u−))ū = F (ū, ξ) , ū(ξε) = 0 , (18)

where we denote

F (ū, ξ) = h(u− − eλξ + ū) + h′(u−)(eλξ − ū).

The idea is to write (18) as a fixed point problem considering the right hand side
as given. Since we shall use the Fourier transform for constructing a particular
solution, we need a smooth enough extension to ξ ∈ R, although we are only
interested in ξ < ξε. For f ∈ H2(Iε), let the extension E(f) ∈ H2(R) satisfy

E(f)
∣∣∣
Iε

= f , ‖E(f)‖H2(R) ≤ γ‖f‖H2(Iε) .

The bounded solution of the equation

(Dα − h′(u−))upart = E(f) ,

and of its derivatives with respect to ξ can be written as

u
(m)
part = F−1

[
(bα|k|α − h′(u−) + iaαsgn(k)|k|α)−1 FE(f)(m)

]
, m = 0, 1, 2 .

The coefficient can easily be seen to be bounded uniformly in k, leading to the
estimate

‖upart‖H2(Iε) ≤ ‖upart‖H2(R) ≤ C‖E(f)‖H2(R) ≤ Cγ‖f‖H2(Iε) .

By the assumption (16), U [f ](ξ) = upart(ξ) − upart(ξε)eλ(ξ−ξε) is the unique
solution of

(Dα − h′(u−))U = f in Iε , U(ξε) = 0 ,

satisfying by the Sobolev imbedding of H2(Iε) in Cb(Iε) the estimate

‖U [f ]‖H2(Iε) ≤ ‖upart‖H2(Iε) + ‖upart‖L∞(Iε) ‖e
λ(ξ−ξε)‖H2(Iε)

≤ Cγ‖f‖H2(Iε) + C‖upart‖H2(Iε) ≤ K‖f‖H2(Iε)

for some K > 0. This allows to write (18) as a fixed point problem:

ū = U [F (ū, ξ)] .

In order to estimate F (ū, ξ), we first rewrite it as follows:

F (ū, ξ) =
h′′(ũ)

2
(
eλξ − ū

)2
=
h′′(ũ)

2

(
ε2e2λ(ξ−ξε) − 2εeλ(ξ−ξε)ū+ ū2

)
.
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We recall that f is smooth and hence ‖h′′(u)‖L∞ ≤ L1(‖u‖L∞) for some positive
nondecreasing function L1. Using moreover the continuous imbedding of H2(Iε)
in Cb(Iε), it can easily be seen that

‖F (ū, ξ)‖H2(Iε)
≤ C‖h′′(ũ)‖L∞(Iε)

(
ε2 + ε‖ū‖H2(Iε) + ‖ū‖L∞(Iε)‖ū‖H2(Iε)

)
≤ L(‖ū‖H2(Iε))

(
ε2 + ε‖ū‖H2(Iε) + ‖ū‖2H2(Iε)

)
,

where L is a positive nondecreasing function. The fixed point map is now
bounded by

‖U [F (ū, ξ)]‖H2(Iε) ≤ KL(‖ū‖H2(Iε))
(
ε2 + ε‖ū‖H2(Iε) + ‖ū‖2H2(Iε)

)
.

We assume for simplicity that R = KL(1) > 1. It is easily seen that the fixed
point map is a contraction on the ball with radius (2R)−1, which is independent
of ε. Moreover the ball with radius ε22R is mapped into itself. Hence we
conclude that there exists a solution ū bounded in H2(Iε) by a constant of
O(ε2), which is unique in a ball with a radius of O(1).

Lemma 3. (Local monotonicity) Let the assumptions of Lemma 2 hold. Then,
in Iε,

uup > u− , u′up > 0 , udown < u− , u′down < 0 .

Proof. Again we restrict our attention to udown and skip the analogous proof
for uup. As a consequence of Lemma 2 and of Sobolev imbedding

|udown(ξ)− u− + eλξ| ≤ Cε2 , ξ ≤ ξε .

Thus, there exists ξ∗ satisfying

udown(ξ∗) = u− − 2Cε2 , ξCε2 ≤ ξ∗ ≤ ξ3Cε2 .

Since udown(ξ) < u− for ξ ≥ ξ∗, we may restrict our attention in the following
to ξ ≤ ξ∗. Thus, we eliminated a subinterval of length d1 ≥ ξε − ξ3Cε2 . Now
we set ε1 = ε, ε2 = 2Cε2

1, and, by a shift in ξ, replace ξ∗ by ξε2 . This means
that the shifted solution becomes the unique udown from Lemma 2, where ε1

has been replaced by ε2. Of course, the argument can be iterated to produce
a sequence {εn}, determined by εn+1 = 2Cε2

n, and in each step a subinterval
of length dn ≥ ξεn − ξ3Cε2n can be eliminated, where udown < u− holds. It is
easily seen that, for ε1 = ε small enough,

∑∞
n=1 dn = ∞ completing the proof

of udown < u− in Iε.
The proof of the second property of udown is completely analogous noting

that, again by Sobolev imbedding,

|u′down(ξ) + λeλξ| ≤ Cε2 for ξ ≤ ξε .
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Remark 2. Together with uup − u−, udown − u− ∈ L2(Iε), the result of the
lemma implies

lim
ξ→−∞

uup(ξ) = lim
ξ→−∞

udown(ξ) = u− .

Together the two solutions constitute the ’unstable manifold’ of the point u−.

The Lemmata 2 and 3 show the existence of a solution u of (13), which
satisfies u ∈ C1

b and is monotone. Thus u is also a solution of equation (14).

Lemma 4. (Continuation principle) Let u ∈ C1
b ((−∞, ξ0]) be a (continuation

of a) solution of (14) as constructed in Lemma 2. Then there exists a δ > 0,
such that it can be extended uniquely to C1

b ((−∞, ξ0 + δ)).

Proof. Defining

f(ξ) = u− + d1−α

∫ ξ0

−∞

h(u(y))
(ξ − y)1−α dy ,

which can be considered as given and smooth by the assumptions, (14) can be
written as

u(ξ) = f(ξ) + d1−α

∫ ξ

ξ0

h(u(y))
(ξ − y)1−α dy .

Local existence of a smooth solution for ξ close to ξ0 is a standard result for
Volterra integral equations, see e.g. Linz [16].

It is now obvious that, as for ordinary differential equations, boundedness
will be enough for global existence.

Lemma 5. (Global uniqueness) Let u ∈ u− + H2((−∞, ξ0)) be a solution
of (14). Then, up to a shift in ξ, it is the continuation of uup or of udown,
or u ≡ u−.

Proof. For every δ > 0 there exists a ξ∗ ≤ ξ0, such that ‖u−u−‖H2((−∞,ξ∗)) < δ,
and therefore, by Sobolev imbedding, also |u(ξ∗) − u−| < δ. Choosing δ small
enough, there are only the options u(ξ∗) = u− (implying u ≡ u−) or u(ξ∗) 6= u−
whence, by local uniqueness, u is up to a shift either equal to uup or to udown,
depending on the sign of u(ξ∗)− u−.

This result already implies the uniqueness of the travelling wave, if it exists.

Lemma 6. (Global monotonicity) Let u ∈ C1
b (−∞, ξ0] be (a continuation of)

the solution udown of (14) as constructed in Lemma 2. Then u is nonincreasing.

Proof. We recall the properties of h given in (12). We shall use both formula-
tions (13) and (14). First we prove that the derivative of u remains negative as
long as u ≥ um. Assume to the contrary that

u(ξ∗) ≥ um , u′(ξ∗) = 0 , u′ < 0 in (−∞, ξ∗) .
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Then we obtain from the derivative of (14), evaluated at ξ = ξ∗, the contradic-
tion

0 = u′(ξ∗) = d1−α

∫ ξ∗

−∞

h′(u(y))u′(y)
(ξ∗ − y)1−α dy < 0 .

Now we show that u cannot become increasing for u < um. Again, assume the
contrary

u(ξ∗) < um , u′ > 0 in (ξ∗, ξ∗ + δ) , u′ ≤ 0 in (−∞, ξ∗] ,

where we assume additionally that δ is small enough such that u(ξ∗ + δ) < um.
This implies∫ ξ∗+δ

−∞

u′(y)
(ξ∗ + δ − y)α

dy =
∫ ξ∗

−∞

u′(y)
(ξ∗ + δ − y)α

dy +
∫ ξ∗+δ

ξ∗

u′(y)
(ξ∗ + δ − y)α

dy

>

∫ ξ∗

−∞

u′(y)
(ξ∗ − y)α

dy .

But on the other hand we know

0 > h(u(ξ∗ + δ))− h(u(ξ∗))

= dα

∫ ξ∗+δ

−∞

u′(y)
(ξ∗ + δ − y)α

dy − dα
∫ ξ∗

−∞

u′(y)
(ξ∗ − y)α

dy > 0 ,

leading again to a contradiction. Therefore u′ cannot get positive.

Lemma 7. (Boundedness) Let u ∈ C1
b (−∞, ξ0] be (a continuation of) the so-

lution udown of (14) as constructed in Lemma 2. Then u+ < u < u−.

Proof. Suppose the solution would reach the value u+ in finite time, i.e. there
exists a ξ∗, such that u(ξ∗) = u+. Since u is nonincreasing and, by Lemma 3,
strictly decreasing at least close to ξ = −∞, we obtain the contradiction

0 = h(u+) = dα

∫ ξ∗

−∞

u′(y)
(ξ∗ − y)α

dy < 0 .

The proof of Theorem 2 is completed by proving limξ→∞ u(ξ) = u+. As-
suming to the contrary limξ→∞ u(ξ) > u+, would imply limξ→∞ h(u(ξ)) < 0.
Then, however, −D−αh(u) = u− − u would increase above all bounds, which is
impossible by Lemma 7.

2.2. Asymptotic stability of travelling waves for convex fluxes
We change to the moving coordinate ξ = x− st in (1),

∂tu+ ∂ξ(f(u)− su) = ∂ξDαu , (19)
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and look for solutions of (19), which are small perturbations of travelling wave
solutions and in particular share the same far-field values. Let u0(ξ) be an
initial datum and φ(ξ) a travelling wave solution as constructed in the previous
section, with the shift chosen such that∫

R
(u0(ξ)− φ(ξ))dξ = 0 . (20)

Due to the conservation property of the equation (19) we see that (formally)∫
R

(u(t, ξ)− φ(ξ))dξ = 0 , for all t ≥ 0 .

The flux function will be assumed to be convex between the far-field values of
the travelling wave, i.e.

f ′′(φ(ξ)) ≥ 0 , for all ξ ∈ R .

The perturbation U = u− φ satisfies the equation

∂tU + ∂ξ((f ′(φ)− s)U) +
1
2
∂ξ
(
f ′′(φ+ ϑU)U2

)
= ∂ξDαU , (21)

for some ϑ ∈ (0, 1). The aim is to show local stability of travelling waves, i.e.
the decay of U for small initial perturbations U0 = u0 − φ. Testing (21) with
U , we get

1
2
d

dt
‖U‖2L2 +

1
2

∫
R
f ′′(φ)φ′U2dξ − 1

2

∫
R
f ′′(φ+ ϑU)U2∂ξU dξ

= −aα‖U‖2Ḣ(1+α)/2 , (22)

where several integrations by parts have been carried out. Recalling φ′ ≤ 0,
we see that the second term has the unfavourable sign. As one would do for
the conservation law with the classical viscous regularisation, we introduce the
primitive of the perturbation:

W (t, ξ) =
∫ ξ

−∞
U(t, η)dη , W0(ξ) =

∫ ξ

−∞
U0(η)dη .

Integration of (21) gives the equation for W ,

∂tW + (f ′(φ)− s)∂ξW +
1
2
f ′′(φ+ ϑU)(∂ξW )2 = ∂ξDαW , (23)

which we test with W to obtain
1
2
d

dt
‖W‖2L2 −

1
2

∫
R
f ′′(φ)φ′W 2dξ +

1
2

∫
R
f ′′(φ+ ϑU)(∂ξW )2W dξ

= −aα‖W‖2Ḣ(1+α)/2 . (24)

This equation has the crucial property that the quadratic terms have the favour-
able sign. From the cubic term (arising from the nonlinearity) we pull out the
L∞-norm of W (and of U if f ′′ is not constant), which we shall control by
Sobolev imbedding.
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Well-posedness of the perturbation equation
Before deriving decay estimates, we have to guarantee the well-posedness of

the Cauchy problem for (23),

∂tW + (f ′(φ)− s)∂ξW +
1
2
f ′′(φ+ ϑU)(∂ξW )2 = ∂ξDαW , W (0, x) = W0(x).

(25)
Therefore we use a contraction argument. Assuming f(u) = u2 and α > 1/2
allows to estimate the nonlinearity in the fashion of Dix [7] implying the well-
posedness in H1. For the general flux and α ∈ (0, 1) we have to require more
regularity of the initial data, W0 ∈ H2.

We recall the definition (7) of the kernel K associated to the linear evolution
equation and rewrite (25) in its mild formulation

W (t, x) = K(t, .) ∗W0(x)

−
∫ t

0

K(t− τ, .) ∗
(

(f ′(φ)− s)U(τ, .) +
f ′′(φ+ ϑU))

2
(U(τ, .))2

)
(x)dτ. (26)

Before proceeding with the contraction arguments, we note that for any W0 ∈
Hs we have K(t, .) ∗W0 →W0 as t→ 0 in Hs. In particular, the integral

‖K(t, .) ∗W0 −W0‖2Hs =
∫

(1 + |k|)2s|e−Λ(k)t − 1|2|Ŵ0(k)|2dk

is bounded by 4‖W0‖2Hs and we can apply the Dominated Convergence Theorem
to pass to the limit under the integral sign. Moreover ‖K(t, .) ∗ W0‖Hs ≤
‖W0‖Hs .

Proposition 1. Let f(u) = u2 and α > 1
2 . Then for any W0 ∈ H1 there exists

a T > 0 such that (25) has a unique solution W ∈ H1 for t ∈ [0, T ).

Proof. Denoting the right hand side of (26) with GW the mild formulation
gives a fixed point problem W = GW . We note that f ′′ = 2 and briefly explain
how to carry out the contraction argument. Let T > 0 and denote ‖W‖∗Hs =
supt∈[0,t0] ‖W‖Hs . Applying Plancherel’s Theorem we can bound the H1 norm
of GW by

‖GW‖∗H1 ≤ ‖W0‖H1 +
∫ T

0

∥∥∥(1 + |k|)e−Λ(k)(t−τ)F((2φ− s)U + U2)(τ, k)
∥∥∥
L2
dτ

≤ ‖W0‖H1 + C

∫ T

0

sup
k∈R

∣∣∣(1 + |k|)e−Λ(k)(t−τ)
∣∣∣ ‖U(τ, .)‖L2dτ

+
∫ T

0

∥∥∥(1 + |k|)e−Λ(k)(t−τ)
∥∥∥
L2

sup
k∈R
|(U(τ, .)2)̂|dτ

Using Cauchy-Schwarz inequality it is easy to see that ‖(gh)̂‖∞ ≤ ‖g‖L2‖h‖L2 ,
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hence supk∈R |(U(τ, .)2)̂| ≤ ‖U‖∗ 2
L2 . We then bound

sup
k∈R

∣∣∣(1 + |k|)e−Λ(k)(T−τ)
∣∣∣ ≤ 1 +

∥∥∥ye−aα|y|α+1
∥∥∥
∞

(T − τ)
1

1+α

≤ C
(

1 + (T − τ)−
1

1+α

)
, (27)

‖(1 + |k|)e−Λ(k)(T−τ)‖L2 ≤ C
(

(T − τ)−
1

2(1+α) + (T − τ)−
3

2(1+α) )
)
,

where we have performed the substitution k 7→ k(t − τ)
1

α+1 in the integrand.
For α > 1/2, the terms on the right hand side are integrable from 0 to T and the
operator G is a contraction for small times T : There exists a constant C0 > 0,
such that

‖GW‖∗H1 ≤ C0

(
1 + (T + T 1− 1

1+α )‖W‖∗H1 + (T 1− 1
2(1+α) + T 1− 3

2(α+1) )‖W‖∗ 2
H1

)
,

Then for T small enough, G maps the ball B2C0(T ) = {W ∈ C([0, T ], H1) :
‖W‖∗H1 ≤ 2C0} into itself. With Banach’s fixed point argument we can con-
clude the existence of a solution W ∈ B2C0(T ) of (26), which is therefore
the solution of (25) on [0, T ). The uniqueness result is only local in B2C0 .
Hence let us now assume W,V ∈ C([0, T ], H1) are two solutions of (26) and let
M = max{‖W‖∗H1 , ‖V ‖∗H1}. Then W − V solves a fixed point equation, where
for a small enough T0 > 0 the fixed point operator is again a contraction on
B2M (T0). Therefore W = V on [0, T0]. Repetition of this argument provides
uniqueness on the whole time interval of existence.

Proposition 2. Let W0 ∈ H2. Then there exists a T > 0 such that the Cauchy
problem (25) has a unique solution W ∈ H2 for t ∈ [0, T ).

Proof. We again consider the fix point operator GW associated to the right
hand side of (26), where now f ′′ is not constant. This requires to pull out the
L∞-norm of U and therefore, by Sobolev-Imbedding, we shall control W in H2.
We estimate the nonlinearity as follows:∥∥K(T − τ, .) ∗ f ′′(φ+ ϑU)U2(τ, .)

∥∥
H2

=
∥∥∥(1 + |k|)K̂ (1 + |k|)F(f ′′(φ+ ϑU)U2)

∥∥∥
L2

≤ C
(

1 + (T − τ)−
1

1+α

)
‖f ′′(φ+ ϑU)U2‖H1

≤ L(‖U‖H1)‖U‖2H1

(
1 + (T − τ)−

1
1+α

)
,

where we have used (27) and Sobolev Imbedding. L is a positive non-decreasing
function. The linear terms are estimated in a similar fashion as above, such
that for a C0 > 0

‖GW‖∗H2 ≤ C0

(
1 + (T + T 1− 1

1+α ) (1 + L(‖W‖∗H2)‖W‖∗H2) ‖W‖∗H2

)
.

The proof can be concluded in a similar way as before.
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Global existence will be the consequence of the existence of a Lyapunov
functional, which also allows to deduce the asymptotic stability of travelling
waves. The Lyapunov functional is also easier to derive in the case of the
Burgers flux. Mainly for pedagogical reasons we first derive the result in this
simplified situation and then proceed with the stability for the general convex
flux function.

Stability of travelling waves for the quadratic flux
Assuming f(u) = u2 and α > 1/2, the Cauchy problem for (23) is well-posed

in H1. Since f ′′ = 2, the nonlinear term in (22) vanishes. Therefore to derive
the global existence as well as asymptotic stability it suffices to construct a
Lyapunov-functional controlling the H1-norm of W .

Theorem 3. Let f(u) = u2 and α > 1/2. Let φ be a travelling wave solution
as in Theorem 2, and let u0(ξ) be an initial datum for (19), such that W0(ξ) =∫ ξ
−∞(u0(η)−φ(η))dη satisfies W0 ∈ H1. If ‖W0‖H1 is small enough, the Cauchy

problem for equation (19) with initial datum u0 has a unique global solution
converging to the travelling wave in the sense that

lim
t→∞

∫ ∞
t

‖u(τ, ·)− φ‖L2dτ = 0 .

Remark 3. Note that the condition (20), which can be translated to W0(±∞) =
0, is incorporated in the condition W0 ∈ H1.

Proof. Equations (22) and (24) imply the estimates

1
2
d

dt
‖U‖2L2 − C0‖U‖2L2 ≤ −aα‖U‖2Ḣ(1+α)/2 , (28)

1
2
d

dt
‖W‖2L2 − ‖W‖L∞‖∂ξW‖2L2 ≤ −aα‖W‖2Ḣ(1+α)/2 , (29)

with C0 = ‖φ′‖L∞ . We shall construct a Lyapunov functional by a linear
combination of these estimates. For γ > 0, we denote γ∗ = min{1, γ} and
γ∗ = max{1, γ}. Then

J(t) =
1
2
(
‖W‖2L2 + γ‖U‖2L2

)
is bounded from above and below by

γ∗
2
‖W‖2H1 ≤ J ≤

γ∗

2
‖W‖2H1 . (30)

The combined estimate reads
dJ

dt
− (γC0 + ‖W‖L∞) ‖W‖2

Ḣ1 + aα
(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
≤ 0 .

The idea is to control the second term by the third, which seems plausible, since
the interpolation inequality

‖W‖2
Ḣ1 ≤ ‖W‖2Ḣ(1+α)/2 + ‖W‖2

Ḣ(3+α)/2 , (31)
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holds as a consequence of k2 ≤ |k|1+α + |k|3+α, k ∈ R. The same inequality
with k replaced by k(aα/(2C0))1/(1+α) implies

γC0‖W‖2Ḣ1 ≤
aα
2
(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
,

with γ = (aα/(2C0))2/(1+α). For the term arising from the nonlinearity we
use the consequence ‖W‖2

Ḣ1 ≤ 1
γ∗

(‖W‖2
Ḣ(1+α)/2 + γ‖W‖2

Ḣ(3+α)/2) of (31), which
leads to

dJ

dt
+
(
aα
2
− 1
γ∗
‖W‖L∞

)(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
≤ 0 .

By Sobolev imbedding and (30) we have

‖W‖L∞ ≤ ‖W‖H1 ≤
√

2
γ∗
J .

We now let the initial data be small enough such that J(0) < (γ∗)3a2
α/8. This

immediately implies the existence of a λ > 0, such that

dJ

dt
≤ −λ

(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
≤ −λγ∗‖U‖2L2 , for all t > 0 .

Integration with respect to time concludes the proof.

Stability for a general convex flux function
In contrary to the quadratic flux, now the nonlinearity in estimate (22) does

not vanish:

1
2
d

dt
‖U‖2L2 − C0‖U‖2L2 − L(‖U‖L∞)‖U‖L∞‖U‖2H1 ≤ −aα‖U‖2Ḣ(1+α)/2 , (32)

with a positive nondecreasing function L and, similarly to above, C0 =
‖f ′′(φ)φ′‖L∞/2. The estimate for W reads

1
2
d

dt
‖W‖L2 − L(‖U‖L∞)‖W‖L∞‖∂ξW‖2L2 ≤ −aα‖W‖2Ḣ(1+α)/2 , (33)

We see that now we have to control U and W in H1 ⊂ L∞, and therefore
also need to derive an estimate for ∂ξU . As we have mentioned above, the
Cauchy problem for (23) is well-posed in H2. Hence the decay of W in H2 is
needed to repeat the local existence as well as to control the nonlinearities. We
differentiate (21) and test it with ∂ξU . After several integrations by parts, we
can estimate

1
2
d

dt
‖∂ξU‖2L2 − C1‖U‖2H1 − L(‖U‖L∞)

(
‖U‖L∞‖∂ξU‖2L2 + ‖∂ξU‖3L3

)
≤ −aα‖∂ξU‖2Ḣ(1+α)/2 , (34)

where C1 depends on the travelling wave and its derivatives up to order 2. We
now apply a generalisation of the celebrated Gagliardo-Nirenberg inequalities
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(see e.g. [14]) to Sobolev spaces with fractional order, which was proven by
Amann [4] (Proposition 4.1):

‖∂ξU‖3L3 ≤ C‖∂ξU‖2
H
α+1

4
‖∂ξU‖L2 ≤ C‖U‖H1‖U‖2

H
5+α

4
(35)

We are now ready to prove a stability result similar to Theorem 3 for the general
convex flux function:

Theorem 4. Let (12) hold and let φ be a travelling wave solution as in The-
orem 2. Let u0 be an initial datum for (19) such that W0(ξ) =

∫ ξ
−∞(u0(η) −

φ(η))dη satisfies W0 ∈ H2. If ‖W0‖H2 is small enough, then the Cauchy problem
for equation (19) with initial datum u0 has a unique global solution converging
to the travelling wave in the sense that

lim
t→∞

∫ ∞
t

‖u(τ, ·)− φ‖H1dτ = 0 .

Proof. We proceed similarly to above and define

J(t) =
1
2

(‖W‖2L2 + γ1‖U‖2L2 + γ2‖∂ξU‖2L2) ,

with positive constants γ1, γ2 > 0. We denote γ∗ = min{1, γ1, γ2} and γ∗ =
max{1, γ1, γ2}. Then, as a functional of W , J is equivalent to the square of the
H2-norm. Combining (33), (32) and (34) together with (35) gives the complete
estimate

d

dt
J + aα

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)
−γ1C0‖U‖2L2 − γ2C1‖U‖2H1 − L(‖W‖H2)‖W‖H2‖U‖2H(5+α)/4 ≤ 0 .

Similarly to above we now choose γ1, γ2 > 0 such that

γ1C0‖U‖2L2 + γ2C1‖U‖2H1

≤ aα
2
(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)
,

and get the final estimate

d

dt
J +

(
aα
2
− 1
γ∗
L(‖W‖H2)‖W‖H2

)(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2

)
+γ2

(
aα
2
− 1
γ∗
L(‖W‖H2)‖W‖H2

)
‖W‖2

Ḣ(5+α)/2 ≤ 0 .

Letting again the initial data be such that J(0) is small enough, we can deduce
that J is nonincreasing for all times and moreover∫ ∞

0

‖U(t, ·)‖2H1dt <∞ .
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Appendix A. Linear Integral Equation

In this appendix we analyse the assumption (16) in more detail. We will
show that all continuous and bounded solutions on R− of the linear equation

v(ξ) = C0

∫ ξ

−∞

v(y)
(ξ − y)1−α dy, v(−∞) = 0, C0 = h′(u−)/Γ(α), (A.1)

are given by the one-parameter family {beλξ : b ∈ R} with λ = h′(u−)1/α. A
proof for the space Cb(R−) cannot be carried out directly, since the kernel is only
locally integrable. Therefore we first derive the uniqueness result in the space
of continuous functions with exponential decay as ξ → −∞. We also present
a less direct, but more general approach, which gives a similar result for the
underlying space L∞(R−). In addition we show that no continuous solutions
with polynomial decay can exist.

We start by analysing solutions of (A.1) in Cb(−∞, ξ0] for a ξ0 < 0. Since it
is easier to work with integral operators acting on a finite domain, we perform
the transformation

w(η) = u(ξ), where η = −1
ξ
∈ [0, η0], for an η0 > 0,

leading to the following equation for w

w(η) = C0 η
1−α

∫ η

0

w(s)
(η − s)1−αs1+α

ds, w(0) = 0. (A.2)

To prove that the only non-trivial solutions with exponential decay are
w(η) = be−

λ
η , we adapt the approach of Wolfersdorf for another integral equa-

tion (see the Appendix in [20]):

Lemma 8. All solutions of (A.1) within the space

Cw(R−) = {f ∈ Cb(R−) : f(ξ) = eµξg(ξ) for a 0 < µ < λ, where g ∈ Cb(R−)}

are given by the one-parameter family {beλξ : b ∈ R} with λ = h′(u−)1/α.

Proof. Let w(η) = e−
µ
η z(η) be a solution of (A.2), where 0 < µ < λ. For

z ∈ Cb[0, η0] we assume w.l.o.g. z(0) = 0 (otherwise we can shift some decay of
the exponential function onto z). We shall show that z = be−

λ−µ
η . Therefore

we introduce

φ(η) = z(η)− C1e
−λ−µη

∫ η0

0

z(s)ds, 1 = C1

∫ η0

0

e−
λ−µ
s ds

and note that φ(0) = 0. Its primitive Φ(ξ) =
∫ η

0
φ(s)ds satisfies Φ(0) = Φ(η0) =

0. Due to Rolle’s Theorem there exists an η1 > 0 such that Φ′(η1) = φ(η1) = 0.
If φ ≡ 0, the proof is finished. Let now φ 6= 0. W.l.o.g. we assume that η1 > 0
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is the smallest value with φ(η1) = 0 and that φ(η) ≥ 0 in [0, η1] with φ(η) > 0
in (η2, η1) for an η2 ∈ [0, η1). Then we obtain

z(η1) = C0 η
1−α
1

∫ η1

0

e
µ

(
1
η1
− 1
s

)
z(s)

(η1 − s)1−αs1+α
ds

> C0 η
1−α
1

∫ η1

0

e
λ

(
1
η1
− 1
s

)
(η1 − s)1−αs1+α

ds︸ ︷︷ ︸
=1

C1 e
−λ−µη1

∫ η0

0

z(s)ds = z(η1),

leading again to a contradiction, and thus φ ≡ 0.

We shall also mention a more general approach, which was introduced for in-
tegral equations of Fredholm type. A similar result to Lemma 8 with the under-
lying space being L∞(R−), can also be deduced from results on the Wiener-Hopf
equation, which has the standard form

W (ξ)−
∫ ∞

0

K(ξ − y)W (y)dy = 0, ξ ≥ 0. (A.3)

Wiener and Hopf related the Fredholm property of the associated operator in
(A.3) to conditions on its symbol [19]. Krein extended the Wiener-Hopf method
to equations with L1-integrable kernels [15]. We only state the part of his result
which we will use in the following:

Let K ∈ L1(R). If the symbol a(z) := 1 −
√

2πF(K)(z) is elliptic, i.e.
infz∈R |a(z)| > 0, and the winding number of the curve {aµ(z) : z ∈ (−∞,∞)}
around the origin is a non-positive number r. Then equation (A.3) has ex-
actly |r| linearly independent solutions in any of the Lebesgue spaces Lp(R+),
1 ≤ p ≤ ∞.

Since the kernel in (A.1) is only locally integrable we introduce as above
exponential weights, which will allow to apply this result.

For a generalization of the Wiener-Hopf method to other spaces than the
Lebesgue ones, we refer to the work of Duduchava [9], in which also the Theorem
of Krein is given more detailed.

Lemma 9. All solutions of (A.1) within the space

L∞w (R−) = {f ∈ L∞(R−) : f(ξ) = eµξg(ξ) for a 0 < µ < λ and g ∈ L∞(R−)}

are given by the one-parameter family {beλξ : b ∈ R} with λ = h′(u−)1/α.

Proof. Consider solutions v of (A.1) of the form v(ξ) = eµξw(ξ) for some 0 <
µ < λ and w ∈ L∞(R−). Setting W (ξ) = w(−ξ) and K(ξ) = e−µξθ(ξ)ξα−1,
equation (A.1) becomes a Wiener Hopf equation in the form (A.3). The kernel
K is integrable, since µ > 0. Thus, to apply the result of Krein, it remains to
investigate the properties of the symbol

aµ(z) = 1− h′(u−)
√

2π
Γ(α)

F
(
θ(ξ)
ξ1−α

)
(z − iµ) = 1− h′(u−)(µ+ iz)−α

= 1− h′(u−)(µ2 + z2)−α/2(cos(αϕµ,z)− i sin(αϕµ,z)) ,
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where ϕµ,z = arctan z
µ and

√
2π

Γ(α)F
( θ(ξ)
ξ1−α

)
(z) = (iz)−α for z ∈ C. To check the

ellipticity of the symbol, rewrite |aµ(z)|2 as follows

|aµ(z)|2 =
(
1− h′(u−)(µ2 + z2)−α/2

)2 + 2h′(u−)(µ2 + z2)−α/2
(
1− cos(αϕµ,z)

)
,

which attains its minimum with respect to z at z = 0 and does not vanish if
0 < µ < λ. Thus the symbol aµ is elliptic and forms a closed curve {aµ(z) :
z ∈ (−∞,∞)}, since aµ(±∞) = 1. Thus the winding number of the closed
curve is a well-defined integer, which remains to be computed. We note that
Re(aµ) is an even function and Re(aµ(0)) < 0 for 0 < µ < λ. Moreover Im(aµ)
is an odd function and Im(aµ(z)) = 0 only if z = 0 or z = ±∞. Hence the
parametrization of the closed curve runs once around the origin in the counter
clockwise sense. Thus the winding number is −1 and the result of Krein implies
the statement.

Finally, we show that no bounded solutions with polynomial decay can exist.

Lemma 10. (i) If v ∈ Cb(R−) is a solution of (A.1), then v cannot change the
sign.
(ii) Equation (A.1) has no solution v ∈ Cb(R−) with polynomial decay as ξ →
−∞.

Proof. Again it easier to consider equation (A.2) instead. Solutions cannot
change sign due to the nonlocality: If a smooth solution w is positive (negative)
on (0, η∗) for some η∗ > 0, then the solution remains positive (negative). In
contrast, if w = 0 on [0, η∗), then w(η) is a solution of equation (A.2) where the
integration starts at η∗ instead of s = 0. Therefore, we avoid the singularity of
the kernel at s = 0 and are left with the integrable singularity at s = η. Given
the initial value w(η∗) = 0, we conclude from standard theory that there exists
only the trivial solution.

We prove statement (ii) by contradiction. Suppose that there exists a solu-
tion with polynomial decay w(η) = ηβz(η) for some β > 0 and z ∈ Cb(−∞, η0]
which satisfies w.l.o.g. z(η) ≥ z∗ > 0. Then

z(η) ≥ z∗
h′(u−)
Γ(α)

η1−α−β
∫ η

0

1
(η − s)1−αs1+α−β ds =

h′(u−)
Γ(α)

z∗B(α, β−α) η−α,

where B denotes the Beta function. We see that for any β the right hand side
grows unbounded as η → 0, which contradicts our assumption z ∈ Cb(−∞, η0].
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