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Abstract

We study the long-time asymptotics of linear kinetic models with periodic
boundary conditions or in a rectangular box with specular reflection bound-
ary conditions. An entropy dissipation approach is used to prove decay to the
global equilibrium under some additional assumptions on the equilibrium dis-
tribution of the mass preserving scattering operator. We prove convergence at
an algebraic rate depending on the smoothness of the solution. This result is
compared to the optimal result derived by spectral methods in a simple one
dimensional example.
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1 Introduction

We investigate initial value problems of the form

Ouf +v(k) - Vo f = Q(f) (1)

where f = f(t,z,k) > 0 denotes the particle distribution function, depending on time
t > 0, position € T? (a d-dimensional torus, d > 1) and momentum k¥ € B C R?.
For the velocity-momentum relation v = v(k) € R? we assume continuity, oddness
(v(—k) = —v(k)) and that flow in any direction is possible:

V2e S IkeB: wk) 2#£0. (2)
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The set of admissible momentum vectors B is symmetric about the origin. The sim-
plest example are free classical particles with v(k) = & and B rotationally invariant,
e.g. a ball, a sphere, or B = R?. Other examples are relativistic particles with
v(k) = k(1 4+ k%/c?)~'/2 and B = R?, or semi-classical particles moving in a periodic
potential where v(k) = Vie(k), €(k) is the band diagram, and B the first Brillouin
zone. In this case all functions of k satisfy periodic boundary conditions on 0B. In
all cases we assume B to be equipped with a measure, which we denote by dk for
simplicity.

The scattering operator () acts only on the variable £ and is assumed linear and
of the form

QU (k) = / S k) — S(k, k) fldR,

where f':= f(k'), and S(k, k') > 0 is the scattering rate.
We assume the existence of a normalized equilibrium distribution M (k) with van-
ishing mean velocity and bounded velocity moments up to fourth order:

(a) M e LY(B,dk), M >0, (b) Q(M) =0,
/M k=1 (d) /v(k)M(k)dk:(),
(e) m, ::/B|v(k)|JM(k)dk<oo, j<4.

A sufficient condition for Q(M) = 0 is the detailed balance or micro-reversibility
condition S(k',k)M' = S(k,k")M, Vk,k' € B, which we shall not assume here.

It has been shown by Degond, Goudon, and Poupaud [4] (see also [11]) that even
without micro-reversibility there is an entropy equation:

/Q dk = —- // S(K, k M’+S(kk)M]<M—M> dk'dk,  (3)

showing that the bilinear form |’ B ngk is non-positive (however it is non symmetric
without detailed balance).
Motivated by the entropy equation we shall consider the weighted L?-scalar prod-

uct f
b = [ 7.

For the scattering rate we assume the existence of positive constants v and I' such

that
S(K', k)

M(k)

This implies the boundedness of @ : L*(B, %) — L*(B, 4 (actually ||Q(f)|lx <
20| fllar) and

/B Fdk= (M) =0 = AFIE < — QU)o (4)

<T Vkk eB.
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i.e. coercivity on the orthogonal complement of the kernel of ), spanned by M.
As a consequence, for g € L?(B, %) with [, gdk = 0 the problem

Q) =g, léfMZO,

has a unique solution f in L?(B, %) (see [4]). The necessity of the solvability criterion
i) p9dk = 0 follows from the mass conservation property of @, also implying (by
integration of (1) with respect to k) the macroscopic conservation law

Op+Vy-J =0

for the macroscoplc mass density p(t, x) fB f(t,z, k)dk, where .J is the flux density
= [yu(k)f(t,z, k)dEk.
Existence of a unique solution of (1) subject to an initial condition

ft=0)=foeL? (Td;Ll(B) N L? (B %)) (5)

follows by standard arguments.
We shall be concerned with the convergence as t — oo of the solution of (1) to the
global equilibrium p., M (k), where py is determined by conservation of total mass,

poo:ﬁ/ﬂ‘dp(t,x)dx:ﬁ/ﬂ‘d/Bfg(x,k)dkdx.

With the relative entropy

1(flo) = [ 17 = alfsd.

the entropy equation (3) and the coercivity (4) imply

d
dt

Arguments, which are standard by now (see [5]) use this inequality for proving weak
convergence of f to the global equilibrium p,, M.

In this work we shall prove strong convergence of smooth solutions at an algebraic
rate depending on the smoothness. We shall use the entropy-entropy dissipation
approach developed by Desvillettes and Villani [6]. In [6] it has been applied to
a linear Fokker-Planck equation with a confining potential. There the necessary
smoothness is produced by a hypo-ellipticity property. In the case considered here,
regularization effects cannot be expected since the scattering operator is bounded.
We will use smoothness assumptions on the initial data and propagation of regularity
instead. A recent comparable study is [2], where the special (micro-reversible) case

H(f|poaM) < —vH(f|pM) . (6)

v==Fk B=R), S, k)= M(k)



with a Maxwellian M of vanishing mean velocity and given constant temperature
is considered. Similarly to [6], the whole space problem with confining potential is
treated there.

It is important to point out that the approach of Desvillettes and Villani has the
potential to deal with nonlinear problems. Recently it has been applied to the (gas
dynamics) Boltzmann equation by the same authors.

Shortcomings of the approach are the required smoothness and the fact that ex-
ponential rates of convergence cannot be provided in general. This will be illustrated
by a simple one-dimensional example at the end of this work, which can be solved
by spectral analysis. As a result, exponential convergence to global equilibrium, even
for unsmooth solutions, is shown.

A further comment is concerned with boundary conditions. Let T¢ be repre-

sented by an interval in R?, centered around the origin, with periodic boundary
conditions. Assume further that the initial datum fj is invariant under the transfor-
mations (z;, k;) — (—x;, —k;),i = 1,...,d. Then this symmetry will be propagated
by (1), if v(k) and S(k, k") have the according symmetries. The crucial observation
is that on the subinterval  of T?¢ defined by z; > 0,i = 1,...d, distribution func-
tions with the symmetry of fy satisfy specular reflection boundary conditions on 0f2
[9]. This shows that our analysis applies to the case where the spatial domain is an
interval with specular reflection boundary conditions.
Smoothness with respect to x of f; as a function defined on T¢ requires compatibility
conditions along 0€2. An example with d = 1 will be discussed in the last section.
For general domains 2 with specular reflection boundary conditions, smoothness of
the solution is a delicate question (see [10]).

2 The convergence result

In this section the following result will be proved:

Theorem. Let n > 2 and fo € L*(T¢ x B) N L* (B, $%; H"(T%)). Then there exists

C > 0, such that the solution f of the initial value problem (1), (5) satisfies
1f = Poo M || L2 (1dx B,dzdr/m) < ctt-m/z,
As a preliminary step, we prove a smoothness result

Lemma. Under the assumptions of the above theorem, f satisfies

£, -, ')||L2(B,dk/M; H(T4)) < ||f0||L2(B,dk/M; Hn(T4)) (7)

Proof. For n = 0 the result is a consequence of the entropy equation (3) which implies
that the above norm of f is non increasing with time. Since the coefficients in the
transport equation (1) are independent of z, the same equation holds for partial
derivatives of f with respect to x. Therefore the left hand side of (7) also decays for
positive n. ]



The simplicity of the proof of this result strongly relies on the periodic boundary
conditions, the linearity of the transport equation, and on the fact that the trans-
port equation does not contain position dependent coefficients. In [2] and [6], where
the whole space problem with a confining potential is treated, the proofs of results
comparable to the Lemma are a major part of the analysis.

Now we proceed with the proof of the Theorem:

Proof. The main argument starts with the inequality (6). The problem is that it
allows the decay to global equilibrium to stop as soon as a local equilibrium f(t,z, k) =
p(t,x) M (k) is reached. Therefore we have to prove that in such a situation f moves
out of the local equilibrium as long as it is still away from the global equilibrium.
For this purpose, we compute derivatives with respect to time of the relative entropy
of f with respect to the local equilibrium:

G =2 [ QU Pagdos2 [ oV, Tds

Td

Since H(f|pM) is nonnegative, it is no surprise that the right hand side vanishes for
[ = pM. In the computation of the second order time derivative of H(f|pM), we
shall use the momentum balance equation

0] +V, P = /BUQ(f)dk

with the pressure tensor P := fB v ®vfdk. The right hand side can be interpreted
as momentum relaxation term. Now we rewrite the pressure tensor as

Pz/U@U(f—pM)dk+pT ,
B

where the temperature tensor 1" := fB v®uvM dk is positive definite as a consequence
of (2) and of the continuity of v(k).
A symmetrized version of the scattering operator is given by

Q*(f) = /qu(k,k’) (% _ %) A (k) = S(K k)M —;S(k,k)M.

The maps @° and @ produce the same quadratic form (Q(f), f)y, = (Q°(f), [)us>
where the latter is derived from a symmetric bilinear form. Now it is straightforward
to compute the second order time derivative of the relative entropy with respect to



the local equilibrium:
d2
T H(flM) = Q/Td(Vmp)TT(pr)dx—Q/W (V.- J) dz
+2/Tdep-/3v®vvm(f — pM)dkdx
2 [ oo [ v@(nards 4 [ (@ (0.QU, s
—4/Td(Q5(f),v-me>de. (8)

Note that when f = pM all terms except the first one on the right hand side vanish.

Exactly this term leads to the desired result that ;—;H (f|pM) is positive whenever

f = pM, but f has not reached the global equilibrium p, M. We estimate it from
below by

[ (Vop) T(Vap)da = KI(pM|pr01),

Td

where K is a positive constant coming from the positive definiteness of 1", and
I(flg) = H(V.f|Vag)

is the Fisher information. In estimating the remaining terms in (8), it is important
that the bounds vanish for f = pM. For the first term we derive

/Td(Vx-J)de:/W (VI-/B\/M(k)v(k)M dk) dz < moI(f|pM),

M(k)

where we have used that M has zero mean velocity. The other terms are estimated
similarly by further applications of the Cauchy-Schwarz inequality:

< v/maI(pM|ps M)I(f|pM),

/ pr-/v®vvx(f—pM)dkdx
Td B

/T Vo /B vQ(f)dk da

[ @uauna =| [ @ - 0.0 -,

And finally, the most complicated term

< 20/ moI (pM |poo M) H(f|pM) , (9)

< AT*H(f|pM).

[ @00V s
:/Td/B%Qs(f—pM)v-Vx(f—pM)dkdx—i—/Td/BQs(f)v-prdkda;(.lo)
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The first term on the right hand side is again split into two parts according to the
gain and loss terms in (). The second part originating from the loss term can be
written as the integral of a divergence and, thus, vanishes by the divergence theorem
due to the periodic boundary conditions. Therefore we have

/ /%Qs(f—pM)v-Vw(f—pM)dkdx
Td

/W//¢]\//’[€;\/[I — pM')v -V (f — pM)dK' dk dz .

With the boundedness assumption on the scattering kernel and the Cauchy-Schwarz
inequality the modulus of this term can be estimated by

C/moI(flpM)H(flpM) < "2 (I(f|pM) + H(f|pM)).

The last term in (10) is estimated analogously to (9):

[, v [t avas

Combining all these estimates, we have

< 20/ my I (pM | poc M) H(f[pM) .

L (f10M) 2 KI(pM1poaM) — Coy/T(pMlpma M) (H(f19MD) + 1(7]pM)) "

dt?
— CH(f|pM) — C5I(f[pM),

with positive constants K, C, Cs, C'5. We simplify this inequality using the fact that
Vo >0dCs >0, such that

\/f(lepooM)(H(flpM) +I(flpM)) < 0I(pM|psc M) + CsH(f|pM) + CsI(flpM) ,

and the Poincaré inequality [7]

I(pM|pso M) = /w VeplPde > C/Td (P = poo)” dz = CH(pM |poo M) .

Choosing § small enough, (11) takes the form

2
SSH(FlpM) 2 KH(pM|psM) — CLH(7|oM) — GI(flpM),  (12)

with different, but still positive constants.
In the next step we use the additivity of the relative entropy, i.e.,

H(flpM) + H(pM|psM) = H(flpouM),

7



to derive

CIH(foM) 2 KH(f|p-oM) — CuH(JpM) — CI(flpM) (13)

Now we need an estimate for the term I(f|pM). This is done by standard interpola-
tion [12] in the position variable:

IVatllae < Cllull o lullgmpa » — Yu € BT, n> 1.

We derive
I(flpM) = / IV (F = pM)|2a gl

1=1/n /4 1/n
¢ [ (G5 = M) (07 = oM e )
1/n
< cr(flpnp ([ 507 = oM Eeat) (1)

where the last estimate is due to the Holder inequality. The boundedness of the last
factor on the right hand side is ensured by the Lemma:

/ ||f pM“H" T4) dk < ||f( ) ’.)HLZ(B dk.rrn Td)) S ||f0||12(3,%;[{n('ﬂ‘d)) :

Recalling (6), we have derived the following system of differential inequalities for the
relative entropies with respect to local and global equilibrium:
d
dt

2

LH(FIM) > KH(floM) - CLH(fpM) - GH(FlpM)' 7. (15)

Since H(f|pM) is bounded, the term CyH(f|pM) can be dropped by increasing Cs.
Theorem 6.2 from [6] now ensures

H(flpooM) < Ot

[N

H(flpoM) < —yH(f|pM),

completing the proof. Note that for n = oo in (15), we would have exponential
convergence by Theorem 6.2 of [6]. O

The Csiscar-Kullback inequality (compare [1]),

||f||L1(deB) < C||f||L2('JI‘d><B,dmdk/M) )

a simple consequence of the normalization of M and of the boundedness of T%, can
be used to estimate decay of the L'-norm rather than of the weighted L?-norm:

Corollary. Under the assumptions of the Theorem, the following estimate holds:

||f - pooM||L1(]rd><B) < C1=m/2



3 A one-dimensional example

In this section we shall present a simple one dimensional problem that can be solved
explicitly by spectral methods. We will show the relation between specular reflection
and periodic boundary conditions and compare the decay estimate of the preceding
section to the optimal result.

One advantage of the spectral theory approach is that it is not relying on smooth-
ness of the solutions. While the assumption f, € L?(B, H'(T?)) in Chapter 2 is
necessary to give :TZH (f|pM) a meaning and even more regularity is needed to guar-
antee fast convergence, spectral theory shows ezponential convergence for every L*
solution.

We treat the following problem:
f+kof =(f)—f (16)

with £ € {41, —1}, initial condition f(t = 0) = fy, and periodic boundary conditions
in z with period 2L, i.e., T* = (=L, L) is a possible choice. The expression (f) is the

mean value . .
() (1) = 2D TED Y,

This can be considered as a one dimensional neutron transport or radiative trans-
fer equation and falls into the class of equations treated in this paper. We chose a
simple one dimensional example because eigenfunctions and eigenvalues can be calcu-
lated explicitly, however our convergence result from Section 2 also applies to similar
problems, i.e. for example mass preserving neutron transport or radiative transfer
in higher dimensions. The entropy method was used to show exponential conver-
gence for the homogeneous radiative transfer equation in [8]. For a review of neutron
transport and spectral considerations leading to convergence results, see [3].

Equation (16) will be solved by spectral methods. The spectral problem

can be written as the system of ordinary differential equations

Apr+ 0.0 =0,
)\j,\—|—axp)\ = —j)\, (17)

by using the macroscopic density and flux

p(.Z‘) = f(.Z‘, +1) + f(.??, _1) ) J('T) = f(l‘, +1) - f(l‘, _1) .

The eigenvalues are solutions of

Ir

2 1 1 (Ir\?
)\l()\l+1):—<L> 5 le,)\l,i:—ii Z_<f>, ZZO



The eigenvalues Ao . = 0 and g = —1 are simple with the eigenspaces Ey y =span{(1,0)}

and Ejp_ =span{(0,1)}. All the other eigenvalues have multiplicity two with the
eigenspaces

5 <bal I o8 lmx < lmx I " lmx o8 lmrx
=spanq | — —, sin — n— — :
L = 5P NaL L L) N2’ L

It is easily seen that the eigenfunctions form a basis of LQ((—L, L))Q. Therefore, the

initial value problem is solved completely for initial data fo(-,+1) € L*((—L, L)).
Observe that all eigenvalues have their real part in the interval [—1,0]. There is

a spectral gap ¢ of positive length between A\¢; = 0 and the nearest eigenvalue \; ;:

|

So we derived convergence of f as t — oo (with respect to the L*-norm) to

if L < 2m,

i - (%)2 else.

N[= N[

1 L

foo:E .

(fO(«T; 1) + fO('Z‘J —1))dl‘

at the exponential rate e %.
As noted before, exponential convergence could be recovered in the entropy ap-
proach by showing that
I(floM) < CH(f]pM) (18)

holds and, thus, (15) is valid with n = co. However straightforward calculations show
that this is not even possible in this simple case. It is well known [1] that validity of
a Sobolev inequality of type (18) would imply the existence of a spectral gap of posi-
tive length. Our example, as many others, demonstrates that the converse is not true.

We conclude our work by commenting on specular reflection boundary conditions.
Let us consider equation (16) on © = (0, L) with specular reflection boundary condi-
tions

f(t,0,+1) = f(¢,0,-1), f(t,L,4+1) = f(t,L,—1).
Proceeding as proposed in the introduction, the initial data have to be continued to
fo(l";k) :fO(_:EJ_k)J (19)
and the problem with periodic boundary conditions is solved. However, this peri-
odic continuation has to satisfy regularity assumptions when the entropy approach is

applied. It is of course not sufficient that fo(-,+1) € H"((0,L)). Additionally the
initial data have to satisfy the following compatibility conditions:

10



Conversely, for smooth periodic initial data satisfying (19), this symmetry (and, thus,
also (20)) is propagated by the transport equation (being invariant under the map
(x,k) = (—x,—k)). Thus, if the solution is reduced to the interval (0, L), it satisfies
specular reflection boundary conditions.

Similar compatibility conditions arise in higher dimensional rectangular domains.
For domains with curved boundaries and specular reflection boundary conditions,
appropriate compatibility conditions are hard to formulate and are only expected to
exist under convexity assumptions on the domain. Related results can be found in
the recent work [10] on classical solutions of Vlasov-Poisson with specular reflection.
There, only first order derivatives have to be controlled, which turns out to be difficult
enough.
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