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The set of admissible momentum ve
tors B is symmetri
 about the origin. The sim-plest example are free 
lassi
al parti
les with v(k) = k and B rotationally invariant,e.g. a ball, a sphere, or B = R3 . Other examples are relativisti
 parti
les withv(k) = k(1 + k2=
2)�1=2 and B = R3 , or semi-
lassi
al parti
les moving in a periodi
potential where v(k) = rk�(k), �(k) is the band diagram, and B the �rst Brillouinzone. In this 
ase all fun
tions of k satisfy periodi
 boundary 
onditions on �B. Inall 
ases we assume B to be equipped with a measure, whi
h we denote by dk forsimpli
ity.The s
attering operator Q a
ts only on the variable k and is assumed linear andof the form Q(f)(k) = ZB[S(k0; k)f 0 � S(k; k0)f ℄dk0;where f 0 := f(k0), and S(k; k0) � 0 is the s
attering rate.We assume the existen
e of a normalized equilibrium distributionM(k) with van-ishing mean velo
ity and bounded velo
ity moments up to fourth order:(a) M 2 L1(B; dk); M � 0 ; (b) Q(M) = 0 ;(
) ZB M(k) dk = 1 ; (d) ZB v(k)M(k) dk = 0 ;(e) mj := ZB jv(k)jjM(k) dk <1 ; j � 4 :A suÆ
ient 
ondition for Q(M) = 0 is the detailed balan
e or mi
ro-reversibility
ondition S(k0; k)M 0 = S(k; k0)M , 8k; k0 2 B, whi
h we shall not assume here.It has been shown by Degond, Goudon, and Poupaud [4℄ (see also [11℄) that evenwithout mi
ro-reversibility there is an entropy equation:ZB Q(f)fM dk = �14 ZB ZB[S(k0; k)M 0 + S(k; k0)M ℄� fM � f 0M 0�2 dk0dk ; (3)showing that the bilinear form RB Q(f)gM dk is non-positive (however it is non symmetri
without detailed balan
e).Motivated by the entropy equation we shall 
onsider the weighted L2-s
alar prod-u
t hf; giM = ZB fgM dk :For the s
attering rate we assume the existen
e of positive 
onstants 
 and � su
hthat 
 � S(k0; k)M(k) � � 8k; k0 2 B :This implies the boundedness of Q : L2(B; dkM ) ! L2(B; dkM ) (a
tually kQ(f)kM �2�kfkM) andZB f dk = hf;MiM = 0 =) 
kfk2M � �hQ(f); fiM ; (4)2



i.e. 
oer
ivity on the orthogonal 
omplement of the kernel of Q, spanned by M .As a 
onsequen
e, for g 2 L2(B; dkM ) with RB gdk = 0 the problemQ(f) = g ; ZB f dk = 0 ;has a unique solution f in L2(B; dkM ) (see [4℄). The ne
essity of the solvability 
riterionRB g dk = 0 follows from the mass 
onservation property of Q, also implying (byintegration of (1) with respe
t to k) the ma
ros
opi
 
onservation law�t� +rx � J = 0for the ma
ros
opi
 mass density �(t; x) = RB f(t; x; k)dk, where J is the 
ux densityJ(t; x) = RB v(k)f(t; x; k)dk.Existen
e of a unique solution of (1) subje
t to an initial 
onditionf(t = 0) = f0 2 L2�Td;L1(B) \ L2 �B; dkM �� (5)follows by standard arguments.We shall be 
on
erned with the 
onvergen
e as t!1 of the solution of (1) to theglobal equilibrium �1M(k), where �1 is determined by 
onservation of total mass,�1 = 1�(Td) ZTd �(t; x) dx = 1�(Td) ZTd ZB f0(x; k) dk dx :With the relative entropy H(f jg) := ZTd kf � gk2Mdx;the entropy equation (3) and the 
oer
ivity (4) implyddtH(f j�1M) � �
H(f j�M) : (6)Arguments, whi
h are standard by now (see [5℄) use this inequality for proving weak
onvergen
e of f to the global equilibrium �1M .In this work we shall prove strong 
onvergen
e of smooth solutions at an algebrai
rate depending on the smoothness. We shall use the entropy-entropy dissipationapproa
h developed by Desvillettes and Villani [6℄. In [6℄ it has been applied toa linear Fokker-Plan
k equation with a 
on�ning potential. There the ne
essarysmoothness is produ
ed by a hypo-ellipti
ity property. In the 
ase 
onsidered here,regularization e�e
ts 
annot be expe
ted sin
e the s
attering operator is bounded.We will use smoothness assumptions on the initial data and propagation of regularityinstead. A re
ent 
omparable study is [2℄, where the spe
ial (mi
ro-reversible) 
asev = k; B = R3 ; S(k0; k) = M(k)3



with a Maxwellian M of vanishing mean velo
ity and given 
onstant temperatureis 
onsidered. Similarly to [6℄, the whole spa
e problem with 
on�ning potential istreated there.It is important to point out that the approa
h of Desvillettes and Villani has thepotential to deal with nonlinear problems. Re
ently it has been applied to the (gasdynami
s) Boltzmann equation by the same authors.Short
omings of the approa
h are the required smoothness and the fa
t that ex-ponential rates of 
onvergen
e 
annot be provided in general. This will be illustratedby a simple one-dimensional example at the end of this work, whi
h 
an be solvedby spe
tral analysis. As a result, exponential 
onvergen
e to global equilibrium, evenfor unsmooth solutions, is shown.A further 
omment is 
on
erned with boundary 
onditions. Let Td be repre-sented by an interval in Rd , 
entered around the origin, with periodi
 boundary
onditions. Assume further that the initial datum f0 is invariant under the transfor-mations (xi; ki) 7! (�xi;�ki); i = 1; : : : ; d. Then this symmetry will be propagatedby (1), if v(k) and S(k; k0) have the a

ording symmetries. The 
ru
ial observationis that on the subinterval 
 of Td de�ned by xi � 0; i = 1; : : : d, distribution fun
-tions with the symmetry of f0 satisfy spe
ular re
e
tion boundary 
onditions on �
[9℄. This shows that our analysis applies to the 
ase where the spatial domain is aninterval with spe
ular re
e
tion boundary 
onditions.Smoothness with respe
t to x of f0 as a fun
tion de�ned on Td requires 
ompatibility
onditions along �
. An example with d = 1 will be dis
ussed in the last se
tion.For general domains 
 with spe
ular re
e
tion boundary 
onditions, smoothness ofthe solution is a deli
ate question (see [10℄).2 The 
onvergen
e resultIn this se
tion the following result will be proved:Theorem. Let n � 2 and f0 2 L1(Td � B) \ L2 �B; dkM ;Hn(Td)�. Then there existsC > 0, su
h that the solution f of the initial value problem (1), (5) satis�eskf � �1MkL2(Td�B;dxdk=M) � Ct(1�n)=2 :As a preliminary step, we prove a smoothness resultLemma. Under the assumptions of the above theorem, f satis�eskf(t; �; �)kL2(B;dk=M ; Hn(Td)) � kf0kL2(B;dk=M ; Hn(Td)): (7)Proof. For n = 0 the result is a 
onsequen
e of the entropy equation (3) whi
h impliesthat the above norm of f is non in
reasing with time. Sin
e the 
oeÆ
ients in thetransport equation (1) are independent of x, the same equation holds for partialderivatives of f with respe
t to x. Therefore the left hand side of (7) also de
ays forpositive n. 4



The simpli
ity of the proof of this result strongly relies on the periodi
 boundary
onditions, the linearity of the transport equation, and on the fa
t that the trans-port equation does not 
ontain position dependent 
oeÆ
ients. In [2℄ and [6℄, wherethe whole spa
e problem with a 
on�ning potential is treated, the proofs of results
omparable to the Lemma are a major part of the analysis.Now we pro
eed with the proof of the Theorem:Proof. The main argument starts with the inequality (6). The problem is that itallows the de
ay to global equilibrium to stop as soon as a lo
al equilibrium f(t; x; k) =�(t; x)M(k) is rea
hed. Therefore we have to prove that in su
h a situation f movesout of the lo
al equilibrium as long as it is still away from the global equilibrium.For this purpose, we 
ompute derivatives with respe
t to time of the relative entropyof f with respe
t to the lo
al equilibrium:ddtH(f j�M) = 2 ZTd hQ(f); fiM dx + 2 ZTd �rx � J dxSin
e H(f j�M) is nonnegative, it is no surprise that the right hand side vanishes forf = �M . In the 
omputation of the se
ond order time derivative of H(f j�M), weshall use the momentum balan
e equation�tJ +rx � P = ZB vQ(f)dkwith the pressure tensor P := RB v 
 vf dk. The right hand side 
an be interpretedas momentum relaxation term. Now we rewrite the pressure tensor asP = ZB v 
 v(f � �M)dk + �T ;where the temperature tensor T := RB v
vM dk is positive de�nite as a 
onsequen
eof (2) and of the 
ontinuity of v(k).A symmetrized version of the s
attering operator is given byQs(f) = ZB �(k; k0)� f 0M 0 � fM� dk0 ; �(k; k0) = S(k0; k)M 0 + S(k; k0)M2 :The maps Qs and Q produ
e the same quadrati
 form hQ(f); fiM = hQs(f); fiM ,where the latter is derived from a symmetri
 bilinear form. Now it is straightforwardto 
ompute the se
ond order time derivative of the relative entropy with respe
t to
5



the lo
al equilibrium:d2dt2H(f j�M) = 2 ZTd(rx�)TT (rx�)dx� 2 ZTd (rx � J)2 dx+2 ZTdrx� � ZB v 
 vrx(f � �M)dkdx�2 ZTdrx� � ZB vQ(f)dkdx + 4 ZTd hQs(f); Q(f)iM dx�4 ZTd hQs(f); v � rxfiM dx : (8)Note that when f = �M all terms ex
ept the �rst one on the right hand side vanish.Exa
tly this term leads to the desired result that d2dt2H(f j�M) is positive wheneverf = �M , but f has not rea
hed the global equilibrium �1M . We estimate it frombelow by ZTd(rx�)TT (rx�)dx � KI(�M j�1M);where K is a positive 
onstant 
oming from the positive de�niteness of T , andI(f jg) := H(rxf jrxg)is the Fisher information. In estimating the remaining terms in (8), it is importantthat the bounds vanish for f = �M . For the �rst term we deriveZTd(rx � J)2dx = ZTd rx � ZBpM(k)v(k)(f � �M)pM(k) dk!2 dx � m2I(f j�M);where we have used that M has zero mean velo
ity. The other terms are estimatedsimilarly by further appli
ations of the Cau
hy-S
hwarz inequality:����ZTdrx� � ZB v 
 vrx(f � �M)dk dx���� �pm4I(�M j�1M)I(f j�M) ;����ZTdrx� � ZB vQ(f)dk dx���� � 2�pm2I(�M j�1M)H(f j�M) ; (9)����ZTd hQs(f); Q(f)iM dx���� = ����ZTd hQs(f � �M); Q(f � �M)iM dx���� � 4�2H(f j�M) :And �nally, the most 
ompli
ated termZTd hQs(f); v � rxfiM dx= ZTd ZB 1MQs(f � �M)v � rx(f � �M)dk dx+ ZTd ZB Qs(f)v � rx� dk dx:(10)6



The �rst term on the right hand side is again split into two parts a

ording to thegain and loss terms in Qs. The se
ond part originating from the loss term 
an bewritten as the integral of a divergen
e and, thus, vanishes by the divergen
e theoremdue to the periodi
 boundary 
onditions. Therefore we haveZTd ZB 1MQs(f � �M)v � rx(f � �M)dk dx= ZTd ZB ZB �(k0; k)MM 0 (f 0 � �M 0)v � rx(f � �M)dk0 dk dx :With the boundedness assumption on the s
attering kernel and the Cau
hy-S
hwarzinequality the modulus of this term 
an be estimated by�pm2I(f j�M)H(f j�M) � �pm22 �I(f j�M) +H(f j�M)� :The last term in (10) is estimated analogously to (9):����ZTdrx� � ZB vQs(f) dk dx���� � 2�pm2I(�M j�1M)H(f j�M) :Combining all these estimates, we haved2dt2H(f j�M) � KI(�M j�1M)� C1qI(�M j�1M)�H(f j�M) + I(f j�M)�� C2H(f j�M)� C3I(f j�M) ; (11)with positive 
onstants K, C1, C2, C3. We simplify this inequality using the fa
t that8 Æ > 0 9CÆ > 0, su
h thatqI(�M j�1M)�H(f j�M) + I(f j�M)� � ÆI(�M j�1M) +CÆH(f j�M) +CÆI(f j�M) ;and the Poin
ar�e inequality [7℄I(�M j�1M) = ZTd jrx�j2dx � C ZTd (�� �1)2 dx = CH(�M j�1M) :Choosing Æ small enough, (11) takes the formd2dt2H(f j�M) � KH(�M j�1M)� C1H(f j�M)� C2I(f j�M) ; (12)with di�erent, but still positive 
onstants.In the next step we use the additivity of the relative entropy, i.e.,H(f j�M) +H(�M j�1M) = H(f j�1M) ;7



to derive d2dt2H(f j�M) � KH(f j�1M)� ~C1H(f j�M)� C2I(f j�M) : (13)Now we need an estimate for the term I(f j�M). This is done by standard interpola-tion [12℄ in the position variable:krxukL2(Td) � Ckuk1�1=nL2(Td)kuk1=nHn(Td) ; 8 u 2 Hn(Td) ; n � 1 :We deriveI(f j�M) = ZB 1M krx(f � �M)k2L2(Td)dk� C ZB � 1M kf � �Mk2L2(Td)�1�1=n� 1M kf � �Mk2Hn(Td)�1=n dk� CH(f j�M)1�1=n�ZB 1M kf � �Mk2Hn(Td)dk�1=n ; (14)where the last estimate is due to the H�older inequality. The boundedness of the lastfa
tor on the right hand side is ensured by the Lemma:ZB 1M kf � �Mk2Hn(Td)dk � kf(t; �; �)k2L2(B;dkM ;Hn(Td)) � kf0k2L2(B;dkM ;Hn(Td)) :Re
alling (6), we have derived the following system of di�erential inequalities for therelative entropies with respe
t to lo
al and global equilibrium:ddtH(f j�1M) � �
H(f j�M) ;d2dt2H(f j�M) � KH(f j�1M)� C1H(f j�M)� C2H(f j�M)1�1=n : (15)Sin
e H(f j�M) is bounded, the term C1H(f j�M) 
an be dropped by in
reasing C2.Theorem 6.2 from [6℄ now ensuresH(f j�1M) � Ct�n+1 ;
ompleting the proof. Note that for n = 1 in (15), we would have exponential
onvergen
e by Theorem 6.2 of [6℄.The Csis
�ar-Kullba
k inequality (
ompare [1℄),kfkL1(Td�B) � CkfkL2(Td�B;dxdk=M) ;a simple 
onsequen
e of the normalization of M and of the boundedness of Td, 
anbe used to estimate de
ay of the L1-norm rather than of the weighted L2-norm:Corollary. Under the assumptions of the Theorem, the following estimate holds:kf � �1MkL1(Td�B) � Ct(1�n)=2 :8



3 A one-dimensional exampleIn this se
tion we shall present a simple one dimensional problem that 
an be solvedexpli
itly by spe
tral methods. We will show the relation between spe
ular re
e
tionand periodi
 boundary 
onditions and 
ompare the de
ay estimate of the pre
edingse
tion to the optimal result.One advantage of the spe
tral theory approa
h is that it is not relying on smooth-ness of the solutions. While the assumption f0 2 L2(B;H1(Td)) in Chapter 2 isne
essary to give d2d2tH(f j�M) a meaning and even more regularity is needed to guar-antee fast 
onvergen
e, spe
tral theory shows exponential 
onvergen
e for every L2solution.We treat the following problem:�tf + k�xf = hfi � f (16)with k 2 f+1;�1g, initial 
ondition f(t = 0) = f0, and periodi
 boundary 
onditionsin x with period 2L, i.e., T 1 = (�L; L) is a possible 
hoi
e. The expression hfi is themean value hfi (t; x) := f(t; x; 1) + f(t; x;�1)2 :This 
an be 
onsidered as a one dimensional neutron transport or radiative trans-fer equation and falls into the 
lass of equations treated in this paper. We 
hose asimple one dimensional example be
ause eigenfun
tions and eigenvalues 
an be 
al
u-lated expli
itly, however our 
onvergen
e result from Se
tion 2 also applies to similarproblems, i.e. for example mass preserving neutron transport or radiative transferin higher dimensions. The entropy method was used to show exponential 
onver-gen
e for the homogeneous radiative transfer equation in [8℄. For a review of neutrontransport and spe
tral 
onsiderations leading to 
onvergen
e results, see [3℄.Equation (16) will be solved by spe
tral methods. The spe
tral problem�f + k�xf = hfi � f
an be written as the system of ordinary di�erential equations��� + �xj� = 0 ;�j� + �x�� = �j� ; (17)by using the ma
ros
opi
 density and 
ux�(x) = f(x;+1) + f(x;�1) ; J(x) := f(x;+1)� f(x;�1) :The eigenvalues are solutions of�l (�l + 1) = �� l�L �2 ; i.e., �l;� = �12 �s14 � � l�L �2 ; l � 0 :9



The eigenvalues �0;+ = 0 and �0;� = �1 are simple with the eigenspa
es E0;+ =spanf(1; 0)gand E0;� =spanf(0; 1)g. All the other eigenvalues have multipli
ity two with theeigenspa
esEl;� = span��� l��l;�L 
os l�xL ; sin l�xL � ; � l��l;�L sin l�xL ; 
os l�xL �� :It is easily seen that the eigenfun
tions form a basis of L2�(�L; L)�2. Therefore, theinitial value problem is solved 
ompletely for initial data f0(�;�1) 2 L2�(�L; L)�.Observe that all eigenvalues have their real part in the interval [�1; 0℄. There isa spe
tral gap g of positive length between �0;+ = 0 and the nearest eigenvalue �1;+:g = ( 12 if L < 2�;12 �q14 � ��L�2 else.So we derived 
onvergen
e of f as t!1 (with respe
t to the L2-norm) tof1 = 14L Z L�L(f0(x; 1) + f0(x;�1))dxat the exponential rate e�tg.As noted before, exponential 
onvergen
e 
ould be re
overed in the entropy ap-proa
h by showing that I(f j�M) � CH(f j�M) (18)holds and, thus, (15) is valid with n =1. However straightforward 
al
ulations showthat this is not even possible in this simple 
ase. It is well known [1℄ that validity ofa Sobolev inequality of type (18) would imply the existen
e of a spe
tral gap of posi-tive length. Our example, as many others, demonstrates that the 
onverse is not true.We 
on
lude our work by 
ommenting on spe
ular re
e
tion boundary 
onditions.Let us 
onsider equation (16) on 
 = (0; L) with spe
ular re
e
tion boundary 
ondi-tions f(t; 0;+1) = f(t; 0;�1) ; f(t; L;+1) = f(t; L;�1) :Pro
eeding as proposed in the introdu
tion, the initial data have to be 
ontinued to(�L; L) by f0(x; k) = f0(�x;�k) ; (19)and the problem with periodi
 boundary 
onditions is solved. However, this peri-odi
 
ontinuation has to satisfy regularity assumptions when the entropy approa
h isapplied. It is of 
ourse not suÆ
ient that f0(�;�1) 2 Hn�(0; L)�. Additionally theinitial data have to satisfy the following 
ompatibility 
onditions:�mx f0(0; k) = (�1)m�mx f0(0;�k) ; 0 � m � n� 1 : (20)10



Conversely, for smooth periodi
 initial data satisfying (19), this symmetry (and, thus,also (20)) is propagated by the transport equation (being invariant under the map(x; k)! (�x;�k)). Thus, if the solution is redu
ed to the interval (0; L), it satis�esspe
ular re
e
tion boundary 
onditions.Similar 
ompatibility 
onditions arise in higher dimensional re
tangular domains.For domains with 
urved boundaries and spe
ular re
e
tion boundary 
onditions,appropriate 
ompatibility 
onditions are hard to formulate and are only expe
ted toexist under 
onvexity assumptions on the domain. Related results 
an be found inthe re
ent work [10℄ on 
lassi
al solutions of Vlasov-Poisson with spe
ular re
e
tion.There, only �rst order derivatives have to be 
ontrolled, whi
h turns out to be diÆ
ultenough.A
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