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Abstract

The Keller-Segel model is the classical model for chemotaxis of cell populations. It
consists of a drift-diffusion equation for the cell density coupled to an equation for
the chemoattractant. Here a variant of this model is studied in one-dimensional
position space, where the chemotactic drift is turned off for a limiting cell density
by a logistic term and where the chemoattractant density solves an elliptic equation
modeling a quasistationary balance of reaction and diffusion with production of the
chemoattractant by the cells. The case of small cell diffusivity is studied by as-
ymptotic and numerical methods. On a time scale characteristic for the convective
effects, convergence of solutions to weak entropy solutions of the limiting nonlinear
hyperbolic conservation law is proven. Numerical and analytic evidence indicates
that solutions of this problem converge to irregular patterns of cell aggregates sep-
arated by entropic shocks from vacuum regions as time tends to infinity. Close to
each of these patterns an ’almost’ stationary solution of the full parabolic problem
can be constructed up to an exponentially small (in terms of the cell diffusivity)
residual. Based on a metastability hypothesis, the methods of exponential asymp-
totics are used to derive systems of ordinary differential equations approximating
the long time behaviour of the parabolic problem on exponentially large time scales.
The observed behavior is a coarsening process reminiscent of phase change models.
A hybrid asymptotic-numerical approach for its simulation is introduced and its
accuracy is shown by comparison to numerical simulations of the full problem.
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1 Introduction

Chemotaxis, the active motion of organisms influenced by chemical gradients, has been
studied both experimentally and theoretically by a large number of authors. The first
mathematical model for chemotaxis was derived by Patlak [11], Keller and Segel [6]. In
its most widely used formulation, the cell density ̺(x, t) at position x ∈ IRn and time
t > 0 solves the convection diffusion equation

∂t̺+ ∇ · (χ(̺, S)̺∇S −D(̺, S)∇̺) = 0. (1)

This equation is coupled to an equation for the chemical concentration S(x, t), typically a
parabolic or elliptic equation with a reaction term describing production and degradation
of the chemoattractant.

The Keller-Segel model has been applied to many different problems, ranging from
bacterial chemotaxis to cancer growth or the immune response of the body. For some
applications, it turns out that the diffusivity of cells plays only a minor role. In Dolak and
Schmeiser [3], a convection equation with a small diffusion term as higher order correction
is derived from a kinetic model for chemotaxis. Taking this case as a motivation, we will
study a Keller-Segel model with a small diffusion constant and its limit of vanishing
diffusivity. More precisely, we investigate

∂t̺+ ∂x(χ(̺)̺∂xS) = D∂2
x̺, (2)

with x ∈ (0, L) and t > 0. We assume the diffusion D to be constant and the chemotactic
sensitivity χ(̺) to be of the form

χ(̺) = χ0

(

1 − ̺

̺max

)

, (3)

the maximal cell density ̺max and χ0 being positive constants. Thus, the chemotactic
response of the cells is shut off when a maximal density is reached. Models of this type
have been first investigated by Hillen and Painter in [5]. In [10], the authors derive a
chemotaxis model comprising a chemotactic sensitivity of the above form from a master-
equation describing a random walk on a one-dimensional lattice by taking into account
the finite size of cells.

The evolution of the chemoattractant S is described by

∂2
xS = βS − α̺. (4)

This elliptic equation, instead of the more frequently used parabolic equation, is ap-
propriate if we assume that diffusion of the chemoattractant is large in relation to the
characteristic time and length scales of the problem.

We non-dimensionalize the equations (2) and (4) by choosing reference values for time,
length, cell density and the chemical concentration, respectively:

x0 =
1√
β
, t0 =

1

αχ0̺max

, ̺0 = ̺max, S0 =
α̺max

β
.
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By introducing the dimensionless quantities

x̄ =
x

x0

, t̄ =
t

t0
, ¯̺ =

̺

̺0

and S̄ =
S

S0

and immediately dropping the bars, we obtain the non-dimensionalized system

∂t̺+ ∂x(̺(1 − ̺)∂xS) = ε∂2
x̺ (5)

∂2
xS = S − ̺. (6)

The only remaining dimensionless parameter is now

ε =
Dβ

αχ0̺max

.

and in the following, we will shall assume ε ≪ 1. This corresponds to a situation where
the cells react to chemotactic signals strongly enough such that their velocity distribution
is significantly biased towards the chemoattractant gradient as opposed to the case where
unbiased reorientation dominates the behaviour of individual cells. In such a situation, a
small diffusion term can be derived as a correction to the purely convective macroscopic
limit of a kinetic transport model (see, e.g., [3], as mentioned above).

The initial condition is given by

̺(x, 0) = ̺ε
I . (7)

We choose homogeneous Neumann boundary conditions, i.e.

∂x̺(0, t) = ∂x̺(L, t) = 0, ∂xS(0, t) = ∂xS(L, t) = 0. (8)

In the next section, we will analyze the limit ε → 0 of system (5), (6). By deriving
estimates which are uniformly valid for ε > 0, we will, by a compactness argument, show
convergence of ̺ and S to entropy solutions of the corresponding hyperbolic system,

∂t ¯̺+ ∂x(¯̺(1 − ¯̺)∂xS̄) = 0, (9)

∂2
xS̄ = S̄ − ¯̺, (10)

with
∂xS̄(0, t) = ∂xS̄(L, t) = 0 (11)

and subject to the initial condition

¯̺(x, 0) = ¯̺I . (12)

As a consequence of (11), the characteristics of (9) are parallel to the boundary and no
boundary conditions for ¯̺ are needed.

In sections 3 and 4, we study the long time behaviour of solutions of the hyperbolic and
the full parabolic system, respectively. In the latter, the formation of so-called pseudo-
stationary or metastable states can be observed. We will use formal asymptotic methods
to derive a system of ordinary differential equations describing the exponentially slow
movement of these patterns. Finally, in section 5, we will investigate the long-time be-
haviour of solutions numerically. The metastability analysis is strongly related to recent
work by Potapov and Hillen [13]. However, different scaling assumptions are used there
and, consequently, a direct comparison of results is not straightforward.
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2 Convergence of Solutions

In this section, we investigate the limit ε→ 0 in (5), (6), (7), (8). A similar problem from
semiconductor physics is considered in Markowich and Szmolyan [8]. There, however, the
non-linearity of the flux is only due to a coupling with an electric field (the equivalent to
the chemical concentration here), and the formation of shocks in the hyperbolic problem
is not observed.

The equations (5), (6) differ from the system analyzed in Hillen and Painter [5] by
the fact that an elliptic instead of a parabolic equation for S is considered here. In [5]
existence of an invariant region for (̺, S) in IR2 and, consequently, global existence of
smooth solutions is shown. In our case, the proof (based on a straightforward maximum
principle) is much simpler and presented below for completeness.

We make the following assumption on the initial data:

(A1) 0 ≤ ̺ε
I ≤ 1 , ̺ε

I ∈ W 1,1(0, L) , uniformly in ε.

Theorem 2.1 Let assumption (A1) hold. Then there exists a unique, global, smooth
solution of (5), (6), (7), (8) satisfying

0 ≤ ̺(x, t), S(x, t) ≤ 1 and

∫ L

0

̺(x, t) dx =

∫ L

0

̺I(x) dx (13)

and
S ∈ L∞((0,∞);W 2,∞(0, L)), (14)

uniformly in ε as ε→ 0.

Proof. With the Greens’s function

G(x, y) =
1

2
e−|x−y| +

ex+y + e2L−x−y + ex−y + ey−x

2(e2L − 1)
, (15)

the chemoattractant density can be computed from (6), (8), in terms of the cell density:

S(x, t) = S[̺](x, t) :=

∫ L

0

G(x, y)̺(y, t)dy . (16)

Using this in (5), the resulting equation

∂t̺ = ε∂2
x̺− ∂x(̺(1 − ̺)∂xS[̺])

falls into the class of abstract semilinear parabolic equations. Local existence of unique,
smooth solutions can be shown by semigroup techniques [12]. Then global existence
follows from a comparison principle: writing (5) as

∂t̺+ (2̺− 1)∂xS∂x̺+ ̺(1 − ̺)(S − ̺) = ε∂2
x̺,

it follows immediately that ̺ = 0 and ̺ = 1 are lower and upper solutions, respectively.
A uniform (in time) bound for S is an obvious consequence of (16). 2

We continue with estimates for the derivatives of ̺.
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Lemma 2.2 Let assumption (A1) hold. Then the solution of (5)-(8) satisfies

̺ ∈ L∞
loc((0,∞);W 1,1(0, L)), uniformly in ε.

Proof. Differentiation of (5) with respect to x yields

∂t∂x̺+ ∂x((1 − 2̺)∂x̺∂xS + ̺(1 − ̺)∂2
xS) = ε∂3

x̺. (17)

We define an approximation of the sign function by σδ(z) = σ(z/δ), 0 < δ ≪ 1, with
σ smooth, increasing, σ(0) = 0 and σ(z) = sign z for |z| > z0. Then, with abs δ(z) :=
∫ z

0
σδ(ξ)dξ, the convergence of abs δ(z) to |z| as δ → 0 is uniform in z ∈ IR. Multiplying

(17) with σδ(∂x̺) and integrating with respect to x yields

∫ L

0

σδ(∂x̺)∂t∂x̺ dx+

∫ L

0

σδ(∂x̺)∂x(∂x̺∂xS(1 − 2̺)) dx

+

∫ L

0

σδ(∂x̺)∂x(̺(1 − ̺)(S − ̺)) dx = ε

∫ L

0

σδ(∂x̺)∂
3
x̺ dx.

(18)

We integrate (18) by parts. The boundary terms vanish and we obtain

d

dt

∫ L

0

abs δ(∂x̺) dx−
∫ L

0

σ′
δ(∂x̺)∂x̺∂

2
x̺∂xS(1 − 2̺) dx

+

∫ L

0

σδ(∂x̺)∂x(̺(1 − ̺)(S − ̺)) dx = −ε
∫ L

0

σ′
δ(∂x̺)(∂

2
x̺)

2 dx ≤ 0.

(19)

The function fδ(z) = σδ(z)z−abs δ(z) satisfies f ′
δ(z) = σ′

δ(z)z and converges to 0 uniformly
in z ∈ IR. We integrate the second term in (19) by parts, which gives

d

dt

∫ L

0

abs δ(∂x̺) dx ≤ −
∫ L

0

fδ(∂x̺)∂x(∂xS(1−2̺)) dx−
∫ L

0

σδ(∂x̺)∂x(̺(1−̺)(S−̺)) dx.
(20)

The last term can be estimated by

−
∫ L

0

σδ(∂x̺)∂x(̺(1 − ̺)(S − ̺)) dx = −
∫ L

0

σδ(∂x̺)̺(1 − ̺)∂xS dx

−
∫ L

0

σδ(∂x̺)∂x̺(3̺
2 − 2̺(S + 1) + S) dx ≤ c1 + c2

∫ L

0

|∂x̺| dx.

In the limit δ → 0, the first term of the right hand side of (20) vanishes and we obtain

d

dt

∫ L

0

|∂x̺| dx ≤ c1 + c2

∫ L

0

|∂x̺|dx. (21)

The assertion of lemma 2.2 now follows from the Gronwall inequality. 2
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Lemma 2.3 Let (A1) hold. Then the solution of (5)-(8) satisfies

√
ε∂x̺, ∂t∂xS ∈ L2

loc((0,∞) × [0, L]), uniformly in ε.

Proof. We write (5) as
∂t̺ = ∂x(ε∂x̺− ̺(1 − ̺)∂xS). (22)

Multiplication by ̺ and integration with respect to x leads to

1

2

d

dt

∫ L

0

̺2 dx+ ε

∫ L

0

(∂x̺)
2 dx =

∫ L

0

̺(1 − ̺)∂xS∂x̺ dx. (23)

Since the integrand in the last term is in L1((0, L)) uniformly in t and ε by the previ-
ous result, we obtain the boundedness of

√
ε∂x̺ by integration with respect to t. As

a consequence, the flux density J = ̺(1 − ̺)∂xS − ε∂x̺ is also uniformly bounded in
L2

loc((0,∞) × [0, L]). Differentiating equation (6) with respect to x and t and using
∂t̺+ ∂xJ = 0, we obtain

∂t∂
3
xS − ∂t∂xS = ∂2

xJ.

Thus, ∂t∂xS = −S[∂2
xJ ]. Since the expression on the right hand side is a bounded opera-

tor applied to J ∈ L2
loc((0,∞) × [0, L]), the proof is complete. 2

Theorem 2.4 Let the assumption (A1) hold, (̺, S) be a solution of (5) - (8), and T > 0.
Then, as ε→ 0 (restricting to subsequences),

̺→ ¯̺ in C([0, T ];L1((0, L))) and S → S̄ in C([0, T ];C1([0, L])). (24)

The limit (¯̺, S̄) ∈ L∞((0, T );BV ((0, L)) × W 2,∞((0, L))) solves (9), (10), (11), where
¯̺I ∈ BV ((0, L)) is an accumulation point of ̺ε

I . Moreover, ¯̺ is an entropy solution of
(9), i.e.

∂tη(¯̺) + ∂x(ψ(¯̺)∂xS̄) + (¯̺(1 − ¯̺)η′(¯̺) − ψ(¯̺)) (S̄ − ¯̺) ≤ 0 (25)

holds in the weak sense for every smooth, convex η and with ψ′(¯̺) = (1 − 2¯̺)η′(¯̺).

Remark: Note that the entropy inequality does not give rise to a decaying entropy
functional.
Proof. The boundedness of the flux density (proof of lemma 2.3) gives ∂t̺ ∈ L2((0, T );H−1((0, L)).
Together with lemma 2.2 this implies that ̺ is in a compact set in C ([0, T ];L1((0, L)))
(see Simon [15]). From theorem 2.1, lemma 2.3 and an anisotropic generalization of the
Sobolev embedding of W 1,p in C0,1−n/p, p > n (see Haskovec and Schmeiser [4]), it fol-
lows that ∂xS is uniformly bounded in C0,1/3([0, T ] × Ω̄), T > 0. An application of the
Arzela-Ascoli theorem concludes the proof of (24). The strong convergence of ̺ and ∂xS
allows to pass to the limit in the weak formulation of (5)-(8) giving the weak formulation
of (9)-(11) for ¯̺ and S̄. The entropy inequality (25) follows analogously. 2
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3 Long-time behaviour of the hyperbolic system

In this section, we investigate the stability and the asymptotic behaviour of entropy
solutions of the hyperbolic system. Stationary solutions of (9), (10), (11) satisfy

¯̺(1 − ¯̺)∂xS̄ = 0 (26)

∂2
xS̄ = S̄ − ¯̺. (27)

It can be immediately seen that ¯̺ = S̄ = const is a solution.

Lemma 3.1 The constant solution, ¯̺ = S̄ = m
L
, where 0 < m < L is the total mass, of

system (9), (10), (11) is unstable.

Proof. We multiply (9) by S̄ and differentiate (10) with respect to t to obtain

1

2

d

dt

∫ L

0

(S̄2 + (∂xS̄)2)dx =

∫ L

0

¯̺(1 − ¯̺)(∂xS̄)2dx. (28)

For small non constant perturbations, the right hand side of this equation is positive ∀ t,
hence

∫ L

0
(S̄2 + (∂xS̄)2)dx is increasing in time. We rearrange this integral by writing

∫ L

0

(S̄2 + (∂xS̄)2)dx =

∫ L

0

[(m

L
+ S̄ − m

L

)2

+ (∂xS̄)2
]

dx (29)

=
m2

L
+ 2

∫ L

0

m

L

(

S̄ − m

L

)

dx+

∫ L

0

[(

S̄ − m

L

)2

+ (∂xS̄)2
]

dx.

Since the total mass is conserved, we consider only perturbations with mass 0. Thus, we
have

∫ L

0
S̄ dx =

∫ L

0
¯̺dx = m ∀ t, and the second term on the right hand side vanishes.

Hence,

minR
S̄dx=m

∫ L

0

(

S̄2 + (∂xS̄)2
)

dx =
m2

L
,

which is only achieved for S̄ = m
L

. As the integral on the left hand side is increasing in
time, lemma 3.1 follows. 2

Lemma 3.2 As t→ ∞, ¯̺(1 − ¯̺)(∂xS̄)2 → 0 in the following sense:

∫ ∞

τ

∫ L

0

¯̺(1 − ¯̺)(∂xS̄)2dx dt
τ→∞−−−→ 0. (30)

Proof. Integration of (28) from t = 0 to ∞ shows that

∫ ∞

0

∫ L

0

¯̺(1 − ¯̺)(∂xS̄)2dxdt <∞, (31)

which implies the assertion. 2

From this, and the steady state equations (26), (27), we expect convergence to piecewise

7



constant steady states, with ¯̺ = 0, ¯̺ = 1 or S̄x = 0. Going back to the time-dependent
problem (9), (10) and applying the method of characteristics, we find that along char-
acteristics given by ẋ = (1 − 2¯̺)∂xS̄, ¯̺ evolves according to ˙̺̄ = (¯̺ − S̄)¯̺(1 − ¯̺). It
immediately follows that ¯̺ = S̄ = const, with 0 < const < 1, is unstable. If ¯̺ gets
sufficiently small such that S̄ > ¯̺, then ¯̺ = 0 is attracting, and a similar argument holds
for ¯̺ = 1. Hence, we expect solutions to approach (as t→ ∞) functions of the form

¯̺∞(x) =
1 − (−1)ki

2
for xi < x < xi+1 , (32)

with 0 = x0 < x1 < ... < xM+1 = L, ki = k0 + i, and

S̄∞ = S[ ¯̺∞] . (33)

Plateaus where ¯̺∞ = 1 alternate with vacuum regions (¯̺∞ = 0). At the left, it starts
with a plateau for k0 = 1, or with a vacuum region for k0 = 0. The union of all plateau
regions is denoted by

P =
⋃

ki odd

(xi, xi+1) .

It follows from mass conservation that

l(P ) =
∑

ki odd

(xi+1 − xi) =

∫ L

0

¯̺I dx.

Not all possible stationary solutions ¯̺∞ are indeed entropy solutions. For scalar con-
servation laws the sign of the jump of the density ¯̺∞ at an entropic shock is related to
the convexity behaviour of the flux ¯̺∞(1 − ¯̺∞)∂xS̄∞. This leads to a condition on the
sign of ∂xS̄∞ at the plateau edges:

(−1)kiS̄∞,x(xi) < 0, 1 ≤ i ≤M. (34)

Formally, ∂xS̄∞ would also be allowed to be zero. Such a solution would however be
unstable, since a small perturbation would lead to a violation of the entropy condition.
A possible derivation of (34) is given in the following section by the construction of shock
profiles for the full parabolic problem, i.e., boundary layer solutions smoothing the jumps
of ¯̺∞.

Next, we investigate the stability of the stationary solution (¯̺∞, S̄∞) with respect to
a particular class of perturbations. We introduce the initial data

¯̺I(x) =
1 − (−1)ki

2
+ εuI(x) for x ∈ (xi + εξi(0), xi+1 + εξi+1(0)) = Ii(0) , (35)

where uI is a piecewise smooth function and |ε| ≪ 1. Then, solutions of (9), (10) have
jumps at xi + εξi(t), and

¯̺(x, t) =
1 − (−1)ki

2
+ εu(x, t) for x ∈ (xi + εξi(t), xi+1 + εξi+1(t)) = Ii(t) . (36)
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The Rankine-Hugoniot jump condition reads

εξ̇i[ ¯̺] = [¯̺(1 − ¯̺]∂xS̄
∣

∣

∣

x=xi+εξi

which, at leading order, yields

ξ̇i(t) = − (u(xi+, t) + u(xi−, t)) S̄∞,x(xi).

Using (36) in (9), it follows that u(x, t) approximately satisfies

∂tu− ∂x(u∂xS̄∞) = 0 in P ,

∂tu+ ∂x(u∂xS̄∞) = 0 in Z := (0, L) \ P .

By the method of characteristics, we derive

ẋ = −∂xS̄∞, u̇ = u∂2
xS̄∞ = u(S̄∞ − 1) in P ,

ẋ = ∂xS̄∞, u̇ = −u∂2
xS̄∞ = −uS̄∞ in Z.

Since S̄∞ is concave in P and convex in Z, exactly one extremum x̄i+1/2 exists between
xi and xi+1 for 1 ≤ i ≤M − 1. Since the derivative of S̄∞ also vanishes at the boundary
points, we introduce the notation x̄1/2 := 0, x̄M+1/2 = L. All of the characteristics
except those starting at x̄i+1/2, 0 ≤ i ≤ M , go into one of the xi, and u decays along
characteristics. The limit of the length of the plateau Ii(t) (ki odd) as t→ ∞ is given by

l(Ii(∞)) = l(Ii(0)) + ε

∫ ∞

0

(

ξ̇i+1 − ξ̇i

)

dt

= l(Ii(0)) + ε

∫ ∞

0

[−(u∂xS̄∞)(xi+1+) − (u∂xS̄∞)(xi+1−)

+ (u∂xS̄∞)(xi+) + (u∂xS̄∞)(xi−)]dt

= l(Ii(0)) − ε

∫ ∞

0

∫ xi+1

xi

∂x(u∂xS̄∞)dxdt+ ε

∫ ∞

0

∫ x̄i+3/2

xi+1

∂x(u∂xS̄∞)dxdt

+ ε

∫ ∞

0

∫ xi

x̄i−1/2

∂x(u∂xS̄∞)dxdt

= l(Ii(0)) − ε

(

∫ xi+1

xi

u dx+

∫ x̄i+3/2

xi+1

u dx+

∫ xi

x̄i−1/2

u dx

)∞

t=0

Since u
t→∞−−−→ 0, we obtain

l(Ii(∞)) = l(Ii(0)) + ε

∫ x̄i+3/2

x̄i−1/2

uIdx. (37)

Thus, as t → ∞, each plateau attracts all the mass initially distributed between the
neighbouring minima of S̄∞. We can interpret this as a neutral stability of steady states
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(f) t = 100

Figure 1: Temporal evolution of the cell density ¯̺, starting from random initial data
¯̺I ∈ [0.3, 0.31] and with L = 1.
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0.31
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Figure 2: Cell density ¯̺ (dark) and chemical concentration S̄ (light) at t = 100.

with alternating plateau and vacuum regions with respect to perturbations of the type
(35).

In Fig. 1 and 2, we solved the problem (9) - (11) numerically. At each time step,
first the new chemical concentration is calculated from the old cell density, then the cell
density is updated using an upwind method. In Fig. 1, we can observe the formation of
shocks and rarefaction waves, until, in the last picture, the stationary state is reached
and no further movement of the plateaus can be observed. In Fig. 2, the corresponding
chemical concentration S̄ is shown. Note that as discussed above, the chemical follows
the course of the cell density ¯̺, even in the case of the slim plateau on the right side of
the domain.
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4 Long-time behaviour of the parabolic system

In this section, we will be concerned with the stability and the asymptotic behaviour
of solutions of the full parabolic problem (5)-(8). All stationary solutions have been
characterized by Potapov and Hillen in [13] by a phase plane analysis. They are the
restrictions of periodic solutions of the stationary differential equations to the interval
(0, L).

The dynamic problem studied in [13] differs from (5)–(8) by the fact that S is given
by a parabolic equation. The authors show that all stationary solutions lie on branches
bifurcating from the spatially uniform stationary solution in dependence of a bifurcation
parameter inversely proportional to ε. It turns out that the constant solution is linearly
stable for large enough diffusivity. After a first bifurcation its stability is transferred to a
bifurcating solution. For the model (5)–(8), the linear stability result can be extended to
global nonlinear stability.

Lemma 4.1 Let assumption (A1) hold and let ε > 1
4
. Then the solution of (5)–(8)

converges to the constant stationary solution as t→ ∞.

Proof. Similarly to the proof of lemma 3.1, we multiply (5) by S and differentiate (6)
with respect to t to obtain, after integration by parts of the last term on the right hand
side,

1

2

d

dt

∫ L

0

(S2 + (∂xS)2)dx =

∫ L

0

̺(1 − ̺)(∂xS)2dx− ε

∫ L

0

((∂xS)2 + (∂2
xS)2)dx. (38)

We can estimate the left hand side by

1

2

d

dt

∫ L

0

(S2 + (∂xS)2)dx =

∫ L

0

̺(1 − ̺)(∂xS)2dx− ε

∫ L

0

((∂xS)2 + (∂2
xS)2)dx (39)

≤
(1

4
− ε
)

∫ L

0

((∂xS)2 + (∂2
xS)2)dx.

For ε > 1
4
, the right hand side of (39) is negative. Integration from 0 to t yields

∫ L

0

(∂xS)2(x, t) dx ≤
(1

2
− 2ε

)

∫ t

0

∫ L

0

(∂xS)2dx+

∫ L

0

(S2 + (∂xS)2)dx
∣

∣

∣

t=0
.

Applying Gronwall’s lemma, it follows that ‖∂xS‖L2(0,L) → 0 and as a consequence,
S → const as t→ ∞. 2

The result is sharp in the sense that a linear stability analysis yields ε = 1
4

as the first
bifurcation point, where the constant steady state looses its stability.

We motivate our study of the dynamics for small values of ε by presenting the result of
a numerical experiment. Fig. 3 shows a numerical solution of (5)–(8) with ε = 2×10−4. We
used the same numerical scheme as in the previous section with an explicit discretization
of the diffusion term. Starting from homogeneous initial data with small perturbations, a
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Figure 3: Numerical solution of the parabolic system (5), (6) with random initial data
̺I ∈ [0.3, 0.31], L = 10 and ε = 2 × 10−4.

pattern with several plateaus is formed as for the hyperbolic problem. Once this pattern
has formed, it remains structurally stable for a long time, with the plateaus moving very
slowly. Eventually, neighbouring plateaus merge with each other. This merging process
occurs on a comparatively fast time scale. The new pattern, now with one peak less,
undergoes the same coarsening process.

Experimentally, this so called metastable behaviour is a well known phenomenon in
many fields, for instance solid-state physics. Mathematically, it has been studied in various
contexts such as the movement of viscous shocks [7], [14] or the Cahn-Hillard equation
(for instance [1] and [2]). A chemotaxis model featuring the formation of spike solutions
is considered in [16].

The peculiar long-time behaviour of system (5), (6) can be interpreted as follows.
Each pseudo-stationary state of the parabolic system is exponentially close to a station-
ary entropy solution of the hyperbolic system. In contrast to the latter however, the
small diffusion allows plateaus to communicate with each other, and smaller plateaus
are attracted by neighbouring larger ones producing more chemoattractant. The whole
phenomenon depends on a non-zero diffusion coefficient ε. Eventually, plateaus will get
so close to each other that in general, the corresponding stationary solutions of the hy-
perbolic system cannot satisfy the entropy condition any more. Then, a fast transition
takes place and the smaller plateau merges with the larger one. On this fast time scale,
solutions behave practically like in the hyperbolic case, and a smoothened version of a
rarefaction wave can be observed.

After the two peaks have merged, it is again diffusion that dominates the behaviour.
The whole process repeats itself, until only one single plateau is left, which will typically
move to one of the domain boundaries. Thus, the only stable stationary state seems to
be one plateau at the left or right boundary of the domain.
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By construction of approximate solutions, it is shown numerically and analytically
in [13] that the eigenvalues describing the slow movement of the peaks exponentially
approach zero as the length of the domain increases. These exponentially small eigenvalues
are typical features of metastable systems. The authors also derive an ODE describing
the dynamics of a structure with two plateaus at the domain boundaries. Here, we will
use exponential asymptotics to formally derive a system of ordinary differential equations
describing the slow movement of the plateaus. This method has been successfully used in
various applications, see for instance Ward [19] and references therein.

Metastable dynamics of the parabolic system

In the following analysis of the long-time behaviour of system (5), (6), now rewritten as

∂t̺+ ∂xJ = 0 , J = ̺(1 − ̺)∂xS[̺] − ε∂x̺ , J = 0 at x = 0, L , (40)

we will assume that the formation of patterns from the initial data has already taken
place, and that a quasi-stationary pattern with plateaus (close to (32)) has been formed.
Our aim is to derive a system of equations describing the evolution of the positions of the
plateau boundaries x1(t), . . . , xM(t).

A first approximation to a solution of the parabolic problem with plateaus is a station-
ary entropy solution of the hyperbolic problem (¯̺∞, S̄∞) solving (32) and (33). However,
we need a much better approximation (˜̺, S̃) with boundary layer corrections close to the
jumps of ¯̺∞. Actually we shall try to solve the parabolic steady state problem

ε∂x̺− ̺(1 − ̺)∂xS[̺] = 0 , (41)

as precisely as possible. The approximation S̃ for the chemoattractant density will be
constructed such that it is close to S̄∞ with the same qualitative behaviour. In particular,
it has the same monotonicity behaviour at the plateau boundaries and extrema x̃i+1/2

with the ordering 0 = x̃1/2 < x1 < x̃3/2 < . . . < x̃M−1/2 < xM < x̃M+1/2 = L as the
extrema x̄i+1/2 of S̄∞ introduced above. For the construction of the approximating cell
density, we consider the boundary layer problem

ε∂x ˆ̺i = ˆ̺i(1 − ˆ̺i)∂xS̃ , ˆ̺i(xi) = 1/2 , (42)

where the auxiliary condition fixes the position of the boundary layer. The solution

ˆ̺i[S̃](x) =

[

1 + exp

(

S̃(xi) − S̃(x)

ε

)]−1

(43)

will be used for x̃i−1/2 < x < x̃i+1/2. The shape of ˆ̺i depends on the monotonicity of

S̃ in this interval: for increasing S̃, ˆ̺i(x̃i−1/2) ≈ 0 and ˆ̺i(x̃i+1/2) ≈ 1, and vice versa for

decreasing S̃. Thus, the boundary layer solution has the appropriate behaviour for jumps
satisfying the entropy condition (34).

The construction of the boundary layer solution is nonstandard from the point of view
of singular perturbation theory, where the standard procedure would lead to evaluation
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of ∂xS̃ at x = xi in (42) and, consequently, ˆ̺i[S̃](x) =
[

1 + exp
(

∂xS̃(xi)(xi − x)/ε
)]−1

.

This is, of course, an approximation of (43), obtained by Taylor expansion of S̃. The
better accuracy of (43) is needed in the exponential asymptotics here.

By patching together the boundary layer solutions at the points x̃i+1/2, exponentially
small jump discontinuities would be created. By shifting the contributions appropriately,
a continuous (actually continuously differentiable) approximate cell density is constructed:

˜̺[S̃](x) = ˆ̺i[S̃](x) − ∆̺i[S̃] , for x̃i−1/2 < x < x̃i+1/2 (44)

with

∆̺i[S̃] =
i−1
∑

j=1

[

ˆ̺j+1[S̃](x̃j+1/2) − ˆ̺j[S̃](x̃j+1/2)
]

.

Note again that these corrections are exponentially small as ε → 0. There is a certain
arbitrariness in their choice. They would also serve their purpose if they would all be
shifted by the same constant, which could be fixed by prescribing the total mass, i.e. the
total number of cells. However, since our final result will only contain differences of the
∆̺i[S̃], this issue is not important for us.

Finally, we require the chemoattractant density to satisfy

S̃ = S[ ˜̺[S̃]] . (45)

This is a highly nonlinear problem whose solvability is not trivial at all. In the appendix we
prove, for small ε, existence of a unique solution close to S̄∞ and satisfying the qualitative
assumptions mentioned above. The fact that (˜̺, S̃) is completely determined by the po-
sitions x1, . . . , xM of the plateau boundaries motivates the notation ˜̺ = ˜̺(x;x1, . . . , xM),
S̃ = S̃(x;x1, . . . , xM). If these coincide with the points where a stationary cell density
takes the value 1/2, then all the ∆̺i vanish and (˜̺, S̃) is an exact steady state, since it
also satisfies the Neumann boundary conditions ∂x ˜̺ = 0, x = 0, L, by its construction
and by the boundary conditions for S̃. In general, however, we obtain the residual

R := ε∂x ˜̺− ˜̺(1 − ˜̺)∂xS̃ = ∆̺i(1 − 2ˆ̺i + ∆̺i)∂xS̃ in (x̃i−1/2, x̃i+1/2) . (46)

The following procedure is an adaption of the methodology developed by Ward et
al. for an asymptotic approximation of the metastable dynamics of the Ginzburg-Landau
equation, viscous shocks, and the viscous Cahn-Hilliard equation (for an overview, see for
instance [18]). The term ’metastable’ can be made more precise by considering the lin-
earization of the problem around the M -parameter family of approximate steady states.
The exponential smallness of the residuals leads to expectingM exponentially small eigen-
values. Metastability means that all the other eigenvalues are nonnegative. We do not
have any results on the spectral problem, but the assumption of metastability is strongly
supported by our numerical experiments and, even stronger, by the numerical studies of
the eigenvalue problem in [13].

We start by introducing a correction term for our approximate solution:

̺(x, t) = ˜̺(x;x1(t), ..., xM(t)) + r(x, t) . (47)
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Since the approximate solution satisfies the boundary conditions, we have ∂xr = 0 at
x = 0, L. Just as in [18], we now consider an approximate version of (40), dropping
nonlinear terms in r and assuming |∂tr| ≪ |∂t ˜̺|:

∂t ˜̺+ ∂xJ = 0 , Lr + J +R = 0 , J = 0 at x = 0, L , (48)

with the linearization of (41),

Lr = ε∂xr − (1 − 2˜̺)∂xS̃r − ˜̺(1 − ˜̺)∂xS[r] . (49)

The nonlocal term S[r] is one of the major differences to the work in the above mentioned
references. As a first step, J will be computed by integrating the first equation in (48).
From the definition of ˜̺ in (x̃i−1/2, x̃i+1/2) we have

∂t ˜̺ =
ˆ̺i(1 − ˆ̺i)

ε

[

−∂xS̃(xi)ẋi +
M
∑

j=1

(

∂xj
S̃(x) − ∂xj

S̃(xi)
)

ẋj

]

−
M
∑

j=1

∂xj
∆̺iẋj .

From the differential equation (42) for the boundary layer term ˆ̺i we see that ˆ̺i(1− ˆ̺i)/ε
is an approximate Delta-distribution concentrated at x = xi and with weight |∂xS̃(xi)|−1.
The derivatives of the corrections ∆̺i with respect to the xj are expected to be exponen-
tially small just as the ∆̺i themselves. With these observations and (34), integration of
the first equation in (48) gives

J(x) ≈
i
∑

j=1

(−1)kj ẋj for xi < x < xi+1 .

Here the boundary condition J(0) = 0 has been used. The other boundary condition
J(L) = 0 leads to the equation

M
∑

j=1

(−1)kj ẋj = 0 , (50)

representing conservation of mass.
Now the second equation in (48) is multiplied by a test function ψ(x, t) and integrated:

εψr|Lx=0 +

∫ L

0

(rL∗ψ + ψ(J +R))dx = 0 , (51)

with the formally adjoint operator

L∗ψ = −ε∂xψ − (1 − 2˜̺)∂xS̃ψ + ∂xS[ ˜̺(1 − ˜̺)ψ] . (52)

In the computation of L∗, the symmetry of the Green’s function G (see (15)) has been
used.

The further procedure is motivated by the following observations: With (˜̺, S̃) we
have constructed a M -parameter family of approximate solutions of the steady state
problem (41) producing exponentially small residuals R (see (46)). Therefore we expect
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the linearized operator L to possess M exponentially small eigenvalues with eigenfunc-
tions approximately given by the derivatives of (˜̺, S̃) with respect to the parameters
x1, . . . , xM . As a consequence, the inverse of L will only act as a bounded operator on the
inhomogeneity J + R in the equation for r, if this inhomogeneity satisfies M solvability
conditions characterized by the eigenfunctions of L∗ corresponding to the exponentially
small eigenvalues. Since L is not self adjoint (the other major difference compared to
earlier work for, e.g., the Cahn-Hilliard equation), the computation of approximations for
these eigenfunctions is not immediate. We proceed pragmatically by trying to determine
candidates for ψ, such that the terms involving the unknown r in (51) become negligibly
small.

The first two terms in (52) constitute a singularly perturbed differential operator with
turning points (see [9]) close to x = xi (where ˜̺ = 1/2) and at x = x̃i+1/2 (the extrema

of S̃). These turning points are of different character since the sign of the coefficient
(1− 2˜̺)∂xS̃ changes from positive to negative close to the xi and vice versa at the x̃i+1/2.
The second group of turning points is interesting for us, since their character allows for
spike layer solutions of the differential equation

ε∂xψ + (1 − 2˜̺)∂xS̃ψ = 0 .

Such spike layer solutions will be the basis for our construction of appropriate ψs. More
precisely, we choose (for i = 1, . . . ,M − 1)

ψi+1/2(x) = ci+1/2 exp

(

−1

ε

∫ x

x̃i+1/2

(1 − 2˜̺(z))∂xS̃(z)dz

)

for xi ≤ x ≤ xi+1. Outside of this interval we extend ψi+1/2 as a smooth function satisfying

ψi+1/2(x) = 0 for 0 ≤ x ≤ x̃i−1/2 ,

|ψi+1/2(x)| ≤ ψi+1/2(xi) for x̃i−1/2 ≤ x ≤ xi ,

|ψi+1/2(x)| ≤ ψi+1/2(xi+1) for xi+1 ≤ x ≤ x̃i+3/2 ,

ψi+1/2(x) = 0 for x̃i+3/2 ≤ x ≤ L ,

which is possible under the basic assumption of the whole asymptotic procedure that
all the points xj and x̃j+1/2 are well separated from each other. The constant ci+1/2 is
chosen such that ψi+1/2 approximately becomes a Delta-family for ε → 0. This involves
the computation of the integral

∫ L

0

exp

(

−1

ε

∫ x

x̃i+1/2

(1 − 2˜̺(z))∂xS̃(z)dz

)

dx

≈
∫ xi+1

xi

exp

(

−|∂2
xS̃(x̃i+1/2)|(x− x̃i+1/2)

2

2ε

)

dx ≈
√

2πε

|∂2
xS̃(x̃i+1/2)|

,

leading to

ci+1/2 =

√

|∂2
xS̃(x̃i+1/2)|

2πε
.
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In this construction we have neglected the last term in the adjoint operator (52) so far.
Since ˜̺(1− ˜̺)ψi+1/2 is uniformly exponentially small, the same holds for ∂xS[ ˜̺(1− ˜̺)ψi+1/2],
and, thus, also for L∗ψi+1/2.

Using the functions ψi+1/2 in (51), we have to compute

∫ L

0

ψi+1/2J dx ≈ J(x̃i+1/2) ≈
i
∑

j=1

(−1)kj ẋj ,

as well as
∫ L

0

ψi+1/2Rdx .

The approximation of the second integral is less straightforward since, by (46), the in-
tegrand vanishes at x̃i+1/2 where the mass of ψi+1/2 concentrates. We therefore split
the integral into four parts A, B, C, and D, corresponding to the subintervals (0, xi),
(xi, x̃i+1/2), (x̃i+1/2, xi+1), and (xi+1, L), respectively. Using (46) and the properties of
ψi+1/2, we easily estimate the first and the last terms:

|A| ≤ cψi+1/2(xi)|∆̺i| ,
|D| ≤ cψi+1/2(xi+1)|∆̺i+1| ,

with an ε-independent constant c. In a neighbourhood of x̃i+1/2, the residual can be

approximated up to an exponentially small relative error by R ≈ ∆̺i(1 − 2˜̺)∂xS̃ for
x < x̃i+1/2, and by R ≈ ∆̺i+1(1 − 2˜̺)∂xS̃ for x > x̃i+1/2. For the other two subintegrals
we therefore obtain

B ≈ ci+1/2∆̺i

∫ x̃i+1/2

xi

exp

(

−1

ε

∫ x

x̃i+1/2

(1 − 2˜̺(z))∂xS̃(z)dz

)

(1 − 2˜̺(x))∂xS̃(x)dx

≈ −εci+1/2∆̺i ,

and, similarly,
C ≈ εci+1/2∆̺i+1 .

Since ∆̺i is multiplied by the O(
√
ε)-constant εci+1/2 in B and by the exponentially small

ψi+1/2(xi) in A, A is negligible compared to B and, analogously, D is negligible compared
to C.

Collecting our results and using that ψi+1/2 vanishes on the boundary, (51) with ψ =
ψi+1/2 leads to

i
∑

j=1

(−1)kj ẋj = εci+1/2(∆̺i+1 − ∆̺i) , (53)

for 1 ≤ i ≤ M − 1. As previously announced, a common additive constant in the ∆̺i

would not change this result. From (53) with i = 1 we obtain an ODE for x1:

ẋ1 = (−1)k1εc3/2(∆̺2 − ∆̺1) . (54)
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Equations for xi, 2 ≤ i ≤M − 1, are derived by taking differences of consecutive versions
of (53):

ẋi = (−1)kiε
[

ci+1/2(∆̺i+1 − ∆̺i) − ci−1/2(∆̺i − ∆̺i−1)
]

. (55)

Finally, the difference between the mass conservation equation (50) and (53) with i =
M − 1 gives

ẋM = (−1)kMεcM−1/2(∆̺M−1 − ∆̺M) . (56)

In principal, this completes the asymptotic procedure, and the dynamics of x1(t), . . . , xM(t)
is completely determined by (54)–(56). However, the right hand sides in (54)–(56) are
given in terms of S̃, the solution of (45), which is not known explicitly. On the other hand,
it will be shown in the appendix that the explicitly computable S̄∞ is a good enough ap-
proximation (essentially up to O(ε2)) for S̃ to maintain the accuracy of the leading terms
in (54)–(56). Therefore, the final result of our asymptotics is the system (54)–(56) with

∆̺i+1 − ∆̺i =

[

1 + exp

(

S̄∞(xi+1) − S̄∞(x̄i+1/2)

ε

)]−1

−
[

1 + exp

(

S̄∞(xi) − S̄∞(x̄i+1/2)

ε

)]−1

,

ci+1/2 =

√

|S̄∞(x̄i+1/2) − ¯̺∞(x̄i+1/2)|
2πε

,

S̄∞(x) =
∑

ki odd

∫ xi+1

xi

[

1

2
e−|x−y| +

ex+y + e2L−x−y + ex−y + ey−x

2(e2L − 1)

]

dy .

The whole asymptotic approach is based on the fact that the movement of the boundary
layers is exponentially slow. It is valid only as long as x1 and xM stay away from the
boundaries and an extremal point x̄i+1/2 ∈ (xi, xi+1) of S̄∞ exists for every pair xi < xi+1.
These conditions are equivalent to the requirement that all plateau boundaries satisfy the
entropy conditions (34). As soon as they are violated, the hyperbolic dynamics starts to
dominate.

With the above approximations, the right hand sides of (54)–(56) can be evaluated
explicitly in terms of x1, . . . , xM . However, in the general case the formulas are very long
and not very instructive. They involve not only the evaluation of the integrals in the
last equation above, but also the computation of all the extremal points x̄3/2, . . . , x̄M−1/2

of S̄∞. As an example, we discuss the simplest situation M = 2 with k0 = 1, i.e., two
plateaus adjacent to the boundaries with one vacuum region in the middle. In this case,
the system (54)–(56) reduces to

ẋ1 = ẋ2 = εc3/2(∆̺2 − ∆̺1) . (57)

Conservation of the initial mass m implies x1 + (L − x2) = m, and the system can be
reduced to a scalar equation for x1, substituting x2 = L−m+ x1. The chemoattractant
density is given by

S̄∞(x) =
sinh(x1) cosh(L− x) + sinh(m− x1) cosh(x)

sinh(L)
,
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for x1 ≤ x ≤ x2 with one interior minimum at

x̄3/2 =
1

2
log

eL sinh(x1) + sinh(m− x1)

e−L sinh(x1) + sinh(m− x1)
.

Steady states of (57) have to satisfy S̄∞(x1) = S̄∞(x2). It is easily seen that x1 = m/2
is the only solution, i.e., the only steady state is the symmetric one, where the mass is
distributed equally between the two plateaus. In general, sign(x1−m/2) = sign(S̄∞(x1)−
S̄∞(x2)) = sign(ẋ1), showing the instability of the steady state. If initially one of the
plateaus is bigger, then it will grow at the expense of the smaller one until all the mass
is concentrated adjacent to one of the boundaries. This is expected to be the stable
stationary state.

In the general case M > 2, our understanding of the qualitative behaviour of (54)–(56)
is less complete. It is easy to see that steady states are characterized by the requirement
that S̄∞ takes the same value at the plateau edges x1, . . . , xM . This implies that all
plateaus have the same length and that the same is true for the vacuum regions separating
them, with plateaus and/or vacuum regions adjacent to the boundary having half the
interior length. This shows that all stationary solutions of the full problem as characterized
in [13] are represented. We conjecture that all these solutions are unstable, but a proof
is missing.

About the dynamics we observe that, generically, one of the exponentially small terms
∆̺i+1 − ∆̺i will dominate all the others. As a consequence, effectively only to neigh-
bouring plateau edges xi and xi+1 will move (with the same velocity), while the others
are approximately stationary.

In fig. 4, we compare the numerical solution of the full system (5), (6) with the solution
of system (54)-(56) by plotting the position of the boundaries of a single plateau situated at
x1 = 0.6 and x2 = 0.8 for different values of ε. Light lines represent the solution obtained
by solving the full system with an Upwind scheme with grid size ∆x = ∆t = 3 × 10−4,
dark lines were obtained by solving system (54)-(56) for M = 2 using the MAPLE routine
lsode (a Livermore Stiff ODE solver). The two lowest branches in the figure correspond to
ε = 4×10−4, and it can be observed that the time it takes the plateau to advance towards
the boundary calculated by the two different approaches differs slightly. However, as we
decrease ε (ε = 2× 10−4 for the middle branches, ε = 1× 10−4 for the top branches) and
thus the error introduced by the approximating assumptions we had to take in order to
obtain the ODEs (54)-(56), the distance between the lines decreases until, for ε = 1×10−4,
the trajectories of x1 and x2 obtained by the Upwind scheme and the ODE-system are
practically identical.

5 A hybrid numerical-asymptotic approach

Developing a numerical scheme that captures both the short and the long-time behaviour
of the parabolic system correctly is a non-trivial task. If we use a standard discretization
of (5), (6) with a grid size that is too large, the long-time behaviour of the system will
be driven by numerical errors dominating the exponentially small terms responsible for
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Figure 4: Comparison of the numerical solution of system (5), (6) with ε = 4 × 10−4,
2×10−4 and 1×10−4 obtained with an upwind-scheme (light) and the numerical solution
of the corresponding ODE-system (dark). The different length of the branches is due to
the fact that as ε becomes smaller, solutions keep their plateau-like shape even when they
get quite close to the boundary, whereas for larger ε, the hyperbolic dynamics start to
take over much faster.

the exact dynamics. Choosing a grid that is fine enough to reduce numerical errors in a
sufficient way leads to very long computation times (for instance, the solution of the full
system (5), (6) for fig. 3 took several days on a Linux workstation). Another approach
is to solve the equations for the positions of the plateau edges (54) - (56), and then to
specify an approximate solution ˜̺ at each time step according to (44). However, this
solution is only valid as long as the conditions (34) are satisfied.

These observations motivate a combined approach for the numerical solution of (5),
(6): As long as (34) holds, we use the asymptotic approximations (54) - (56). We solve the
equations with MAPLE and calculate the corresponding ˜̺ at each time step. When the
velocities of the plateau edges become O(ε), we switch to a full numerical solution with
the finite difference scheme described above. A similar numerical-asymptotic approach
was developed in [17] to solve the viscous Cahn-Hillard equation in one space dimension.

Example: Behaviour near a stationary state

As an example, we investigate the dynamics of the parabolic system when solutions are
initially close to an unstable stationary state.

For a given initial mass m, this stationary solution consists of two plateaus of equal
mass, with the outer edges being exactly half the distance between the plateaus away
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from the boundaries. The stationary solution is given by

x1 =
L−m

4
, x2 =

L+m

4
, x3 =

3L−m

4
, x4 =

3L+m

4
. (58)

In our experiments, we set m = 0.4 and L = 1 to obtain the boundary layer positions
x1 = 0.15, x2 = 0.35, x3 = 0.65 and x4 = 0.85 from (58). Then we choose two different
sets of initial conditions close to this stationary point and calculate the temporal evolution
of the boundary layers according to (54) - (56) with M = 4. After a plateau has moved
to the domain boundary or merged with another plateau, we solve the system for M = 3
or M = 2 respectively.

In Fig. 5(a), the left plateau has initially been made smaller and moved towards the
left boundary. The evolution proceeds in three steps: 1. The left plateau moves to the
left, until it reaches the boundary. 2. The right plateau moves to the right boundary. 3.
The two remaining plateau edges move to the left, meaning that the bigger right plateau
attracts cells from the left. The evolution stops after the left plateau has disappeared and
one plateau adjacent to the right boundary is left as stable steady state. As mentioned
in the previous section, during each step only one pair of plateau edges moves in parallel.

Fig. 5(b) features an initial condition, where the left plateau has again been made
smaller but now moved towards the center compared to the unstable steady state. We
observe a two-step evolution: 1. The left plateau moves to the right until it looses
stability and is absorbed by the bigger right plateau. 2. The remaining plateau moves
to the right until it reaches the boundary. An animation (obtained with the combined
numerical-asymptotic approach described above) corresponding to fig. 5(b) can be found
at http://www.ricam.oeaw.ac.at/people/page/dolak/animation.html.

Details of the fast hyperbolic dynamics at the end of step 1 are shown in Fig. 6. As
the left plateau moves towards the right one, a rarefaction wave starts to form when
the entropy condition for the corresponding hyperbolic system becomes violated. The
outer plateau edge of the right plateau is not affected by this merging process and does
not move, since locally, the entropy condition is still satisfied. In general, however, it
is an open problem to predict the outcome of the hyperbolic evolution because of the
nonlocal coupling. After the loss of stability of a plateau edge, the hyperbolic evolution
could induce stability losses of other plateau edges. Therefore it cannot be ruled out that
several plateaus disappear within one ’hyperbolic transition layer’.

Appendix

We shall prove solvability of the approximate steady state problem (45) and an approx-
imation result for its solution. Recalling the definition (32), (33) of the plateau state
(¯̺∞, S̄∞) and of the extremal points x̄i+1/2 ∈ (xi, xi+1) of S̄∞, we define

xi±1/4 :=
xi + x̄i±1/2

2
for 1 ≤ i ≤M , x1/4 := 0 , xM+3/4 := L ,

and

A1 :=
M
⋃

i=1

(xi−1/4, xi+1/4) , A2 := [0, L] \ A1 =
M
⋃

i=0

[xi+1/4, xi+3/4] .
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(a) x1 = 0.13, x2 = 0.32 (b) x1 = 0.15, x2 = 0.36

Figure 5: Solutions of the ODE-system (54) - (56) with different initial conditions and
ε = 2 × 10−4. The position of the right plateau is x3 = 0.65, x4 = 0.85 in all pictures.

(a) t = 48000 (b) t = 48130 (c) t = 48158 (d) t = 48165

Figure 6: Fast dynamics of the parabolic system, corresponding to the dashed lines in
Fig. 5(b). The first picture shows the cell density calculated according to the asymptotic
approximations (54) - (56) and (44) shortly before the hyperbolic dynamics start to dom-
inate. The middle pictures show a rarefaction wave obtained by solving (5), (6) with an
upwind scheme until, as shown in the last picture, only one plateau is left.
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Since A1 stays away from the extremal points of S̄∞, and A2 stays away from its turning
points xi, there exists a δ > 0 such that

|∂xS̄∞| ≥ 2δ in A1 , |∂2
xS̄∞| ≥ 2δ in A2 .

For chemoattractant densities we shall use the Banach space B1 := C1([0, L]) ∩ C2(A2)
with its natural norm

‖S‖1 := ‖S‖L∞((0,L)) + ‖∂xS‖L∞((0,L)) + ‖∂2
xS‖L∞(A2) ,

and the ball
Bδ := {S : ‖S − S̄∞‖1 < δ} .

Then S ∈ Bδ implies

|∂xS| ≥ δ in A1 , |∂2
xS| ≥ δ in A2 .

Therefore, in every subinterval [xi+1/4, xi+3/4] of A2, S has a unique local extremum
xi+1/2[S] of the same character as x̄i+1/2 = xi+1/2[S̄∞]. Consequently ˜̺[S] is well defined
by (44). A fixed point operator for solving (45) is now defined on Bδ by

F [S](x) := S[ ˜̺[S]] . (59)

Our Banach space for cell densities will be B2 := L1((0, L)) ∩ C(A2) with the norm

‖̺‖2 := ‖̺‖L1((0,L)) + ‖̺‖L∞(A2) .

First we prove that the map S from ̺ to S given by solving the elliptic S-problem is
continuous.

Lemma 5.1 There exists a c > 0 such that for every ̺ ∈ B2, S[̺] ∈ B1 holds and
‖S[̺]‖1 ≤ c‖̺‖2.

Proof. The result is a consequence of the facts that G and ∂xG are uniformly bounded
and that S = S[̺] solves the differential equation ∂2

xS = S − ̺. 2

Now we are ready to prove the main result of this section.

Theorem 5.2 For ε small enough, the problem (45) has a unique solution in Bδ.

Proof. For every S ∈ Bδ, ˜̺[S] deviates from ¯̺∞ only by boundary layer corrections
close to the discontinuities x1, . . . , xM ∈ A1. The thickness of the boundary layers is
O(ε). In A2, ˜̺[S] and ¯̺∞ are exponentially close as ε → 0. This immediately implies
‖ ˜̺[S]− ¯̺∞‖2 = O(ε) and, thus, from Lemma 5.1, ‖F [S]− S̄∞‖1 = O(ε). This proves that
for ε small enough, F maps Bδ into itself.

23



Now let S1, S2 ∈ Bδ and set xl
i+1/2 := xi+1/2[Sl], ˆ̺l

i := ˆ̺i[Sl], ∆̺l
i := ∆̺i[Sl], l = 1, 2.

Assume ∂xS1(xi), ∂xS2(xi) > 0 and xi < x < min{x1
i+1/2, x

2
i+1/2}. Then we have

| ˆ̺1
i (x) − ˆ̺2

i (x)| ≤
∣

∣

∣

∣

exp

(

S1(xi) − S1(x)

ε

)

− exp

(

S2(xi) − S2(x)

ε

)∣

∣

∣

∣

≤ exp

(

δ(xi − x)

ε

)

1

ε
|S1(xi) − S1(x) − S2(xi) + S2(x)|

≤ exp

(

δ(xi − x)

ε

)

x− xi

ε
‖S1 − S2‖1 .

Analogous estimates for max{x1
i−1/2, x

2
i−1/2} < x < xi and for ∂xSl(xi) < 0 lead to

| ˆ̺1
i (x) − ˆ̺2

i (x)| ≤ exp

(

−δ|xi − x|
ε

) |x− xi|
ε

‖S1 − S2‖1 , (60)

for 1 ≤ i ≤M and max{x1
i−1/2, x

2
i−1/2} < x < min{x1

i+1/2, x
2
i+1/2}.

The mean value theorem gives

∂xS1(x
2
i+1/2) − ∂xS2(x

2
i+1/2) = ∂xS1(x

2
i+1/2) = ∂2

xS1(ξi+1/2)(x
2
i+1/2 − x1

i+1/2) ,

with ξi+1/2 ∈ A2. Since S1 ∈ Bδ,

|x1
i+1/2 − x2

i+1/2| ≤
1

δ
‖S1 − S2‖1 (61)

follows. Now assume x1
i+1/2 < x2

i+1/2. Then we can estimate

| ˆ̺1
i (x

1
i+1/2) − ˆ̺2

i (x
2
i+1/2)| ≤ | ˆ̺1

i (x
1
i+1/2) − ˆ̺2

i (x
1
i+1/2)| + | ˆ̺2

i (x
1
i+1/2) − ˆ̺2

i (x
2
i+1/2)| .

For the first term on the right hand side, (60) can be used to give a bound of the form
EST ‖S1 − S2‖1, where the abbreviation EST means ’exponentially small term’, i.e., a
term of the form exp(−κ/ε) with κ > 0. For the second term we use (61) and the fact that
∂x ˆ̺2

i is exponentially small in A2 to obtain an estimate of the same type. Interchanging
the roles of S1 and S2, the same can be done for x2

i+1/2 < x1
i+1/2. A consequence of these

results is
|∆̺1

i − ∆̺2
i | ≤ EST ‖S1 − S2‖1 (62)

for 1 ≤ i ≤M . Combining (60) and (62), we have

| ˜̺[S1](x) − ˜̺[S2](x)| ≤
[

EST + exp

(

−δ|xi − x|
ε

) |x− xi|
ε

]

‖S1 − S2‖1 , (63)

for 1 ≤ i ≤ M and max{x1
i−1/2, x

2
i−1/2} < x < min{x1

i+1/2, x
2
i+1/2}. It remains to consider

ηi+1/2 := min{x1
i+1/2, x

2
i+1/2} < x < max{x1

i+1/2, x
2
i+1/2}:

| ˜̺[S1](x) − ˜̺[S2](x)| ≤ | ˜̺[S1](ηi+1/2) − ˜̺[S2](ηi+1/2)| + EST |x− ηi+1/2| ,
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since ∂x ˜̺[Sl] is exponentially small in A2. For the first term on the right hand side we
use (63) and for the second (61), to obtain

| ˜̺[S1](x) − ˜̺[S2](x)| ≤ EST ‖S1 − S2‖1 , (64)

for 0 ≤ i ≤ M and min{x1
i+1/2, x

2
i+1/2} < x < max{x1

i+1/2, x
2
i+1/2}. Since the integral of

the second term in the bracket in (63) is O(ε), a combination of (63) and (64) leads to

‖ ˜̺[S1] − ˜̺[S2]‖2 ≤ c ε‖S1 − S2‖1 ,

and, with Lemma 5.1,
‖F [S1] − F [S2]‖1 ≤ c ε‖S1 − S2‖1 ,

showing that F is a contraction for ε small enough and, thus, completing the proof of the
theorem. 2

Finally, it will be shown by formal asymptotic arguments that it is asymptotically
correct to approximate S̃ by S̄∞ in the right hand sides of the ODEs (54)–(56). It is
easily seen that the exponentially small terms in the ∆̺i are approximated with a O(ε)
relative error if the chemoattractant density S̃ is approximated up to O(ε2). This holds
for S̄∞ since

S̃(x) − S̄∞(x) =

∫ L

0

G(x, y)(˜̺[S̃](y) − ¯̺∞(y))dy

=
M
∑

i=1

∫ x̃i+1/2

x̃i−1/2

G(x, y)(ˆ̺i[S̃](y) − ¯̺∞(y) − ∆̺i)dy

= ε
M
∑

i=1

(−1)kiG(x, xi)

(

∫ ∞

0

dξ

1 + exp(|∂xS̃(xi)|ξ)

−
∫ 0

−∞

dξ

1 + exp(−|∂xS̃(xi)|ξ)

)

+O(ε2)

= O(ε2) .

The third equality is due to the substitution y = xi + εξ and straightforward Taylor
expansion.

Acknowledgements. Y.D. wants to thank T. Hillen for valuable discussions. The
authors also owe thanks to two anonymous referees, whose comments motivated major
improvements in this work, which has been supported financially by the Austrian Science
Foundation, grant nos. W008 and P16174-N05, and by the European HYKE network.

25



References

[1] P. Bates and J. Xun. Metastable patterns for the Cahn-Hilliard equation I. J.
Differential Equations, 2(111):421–457, 1994.

[2] P. Bates and J. Xun. Metastable patterns for the Cahn-Hilliard equation II. Layer
dynamics and slow invariant manifold. J. Differential Equations, 1(117):165–216,
1995.

[3] Y. Dolak and C. Schmeiser. Kinetic models for chemotaxis: Hydrodynamic limits
and the back-of-the-wave problem. J. Math. Biol., 2005.

[4] J. Haskovec and C. Schmeiser. Transport in semiconductors at saturated velocities.
ANUM Preprint.

[5] T. Hillen and K. Painter. Global existence for a parabolic chemotaxis model with
prevention of overcrowding. Adv. in Appl. Math., 26(4):280–301, 2001.

[6] E.F. Keller and L.A. Segel. Initiation of slime mold aggregation viewed as an insta-
bility. J. Theor. Biol., 26:399–415, 1970.

[7] J. Laforgue and R. O’Malley. Shock layer movement for Burgers’ equation. SIAM J.
Appl. Math., 55(2):332–347, 1995.

[8] P.A. Markowich and P. Szmolyan. A system of convection-diffusion equations with
small diffusion coefficient arising in semiconductor physics. J. Differential Equations,
81:234–254, 1989.

[9] R. E. O’Malley. Introduction to singular perturbations. Academic Press, 1974.

[10] K. Painter and T. Hillen. Volume-filling and quorum sensing in models for chemosen-
sitive movement. Canad. Appl. Math. Quart., 10(4):280–301, 2003.

[11] C.S. Patlak. Random walk with persistence and external bias. Bull. Math. Biophys.,
15:311–338, 1953.

[12] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential
Equations. Springer, New York, 1983.

[13] A.B. Potapov and T. Hillen. Metastability in chemotaxis models. J. Dyn. Diff. Eq.,
17, 2005.

[14] L. Reyna and M. Ward. On the exponentially slow motion of a viscous shock. Comm.
Pure Appl. Math., 48(2):79–120, 1995.

[15] J. Simon. Compact sets in the space Lp(0, T ;B). Anal. Math. Pura Appl., 146:65–96,
1987.

26



[16] B. Sleeman, M. Ward, and J. Wei. Existence, stability and dynamics of spike patterns
in a chemotaxis model. in print.

[17] X. Sun and M. Ward. The dynamics and coarsening of interfaces for the viscous
cahn-hilliard equation in one-spatial dimension. Studies Appl. Math., 105(3):203–
234, 2000.

[18] M. Ward. Dynamic metastability and singular perturbations. In Michel C. Delfour,
editor, Boundaries, Interfaces, and Transitions, CRM Proc. Lecture Notes, vol-
ume 13, pages 237–263, AMS, Providence, R.I., 1998.

[19] M. Ward. Exponential asymptotics and convection-diffusion-reaction models. An-
alyzing Multiscale Phenomena Using Singular Perturbation Methods, Proceedings of
Symposia in Applied Mathematics, 56:151–184, 1998.

27


