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Abstract

For one-dimensional kinetic BGK models, regarded as relaxation models for scalar conser-

vation laws with genuinely nonlinear fluxes, we prove that the macroscopic density converges

to the rarefaction wave solution of the corresponding scalar conservation law in the long

time limit, and that the phase space density approaches an equilibrium distribution with the

rarefaction wave as macroscopic density. The proof requires a smallness assumption on the

amplitude of the rarefaction waves and uses a micro-macro decomposition of the perturbation

equation.

Keywords: BGK type kinetic model, relaxation to conservation laws, rarefaction waves.

Mathematics Subject Classification (2000): 35Q99, 35B40, 35L99, 76P05.

1 Introduction

We study the convergence to macroscopic rarefaction waves as t → ∞ of solutions of the BGK-type
equation

∂tf + v ∂xf = M(ρf , v) − f , with t > 0 , x ∈ R , v ∈ Ω ⊂ R . (1.1)

Here f(t, x, v) can be interpreted (in analogy to the Boltzmann equation) as a time dependent
phase space density of particles with time t, position x, and velocity v.

The function ρf (t, x) in (1.1) is the macroscopic density corresponding to the distribution f ,
i.e., the zeroth order velocity moment

ρf (t, x) =

∫

f(t, x, v) dv . (1.2)

We assume (Ω, dv) to be a measure space and omit here in the following to write Ω under the
integral sign in integrals with respect to v. The ‘Maxwellian’ M(ρ, v) is an equilibrium distribution
satisfying the moment conditions

∫

M(ρ, v) dv = ρ ,

∫

v M(ρ, v) dv = a(ρ) , (1.3)

for a macroscopic flux function a(ρ). In addition we assume that the Maxwellian is a smooth and
strictly increasing function of ρ and that it has certain decay properties with respect to v:

∂ρM(ρ, v) > 0 ,

∫

v4∂ρM(ρ, v)dv < ∞ ,

∫

v2k(∂m
ρ M(ρ, v))2

∂ρM(ρ∗, v)
dv < ∞ , (1.4)
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for all ρ, ρ∗ ∈ R, k = 0, 1, m = 1, 2. The last two properties here are required for technical reasons.
The first and (1.3) ensure that the macroscopic limit equation (scaling with (t, x) → (t/ε, x/ε)
and taking ε → 0) of (1.1) is the scalar conservation law

∂tρ + ∂xa(ρ) = 0 . (1.5)

Key to proving this limit rigorously is the first assumption in (1.4) that guarantees the construction
of kinetic entropy inequalities (or H-theorems) with a macroscopic counterpart, as explained in
e.g. [1]: There exists a function θ(f, v) such that f = M(ρ, v) is equivalent to ρ = θ(f, v). With
the primitive Θ(f, v) (∂f Θ = θ), solutions of (1.1) satisfy for any convex function η and letting

h(f, v) =
∫ f

f̄
η′(θ(g, v)) dg

∂t

∫

h(f, v) dv + ∂x

∫

v h(f, v) dv =

∫

(M(ρf , v) − f)(η′(θ(f, v)) − η′(ρf )) dv ≤ 0 .

But more to the point here, this property guarantees that the linearised collision operator is
negative semidefinite in the L2 space with weight 1/∂ρM (evaluated at the perturbation). This
can be interpreted from the kinetic entropy inequality that corresponds to the macroscopic entropy
η(ρ) = ρ2/2.

After applying the macroscopic scaling, the model (1.1) can be seen as a hyperbolic system
with relaxation, (see e.g. [9] for a review, and [11] for an account of related models). Examples of
smooth Maxwellians satisfying (1.3) as well as (1.4) are given in [4] for Ω = R. A related kinetic
model for scalar conservation laws is the Perthame-Tadmor model (see [12]), although there the
equilibrium distribution is not continuous.

We recall that a Chapman-Enskog expansion gives the viscous regularisation of (1.5)

∂tρf + ∂xa(ρf ) = ∂x(D(ρf )∂xρf ) , (1.6)

with D(ρ) =
∫

(v − a′(ρ))2∂ρM(ρ, v) dv > 0, where again the monotonicity of M is essential for
parabolicity.

Uniqueness of weak solutions of (1.5) is guaranteed only if they are derived as limits (D → 0 of
such a regularized equation, see, e.g., [13]). In the case of Riemann data this defines admissibility
conditions for shocks waves.

Regarding the long time behaviour of solutions of (1.6) with Riemann initial data, it is well-
known that for genuinely nonlinear fluxes (i.e., a′′(ρ) 6= 0) solutions converge either to a travelling
wave solution (viscous shock profile) or to a rarefaction wave, whichever is the admissible solution
of the inviscid equation (cf. [5] and [6]). In recent papers we have studied existence and long-time
stability of small and large amplitude travelling wave solutions of (1.1), see [3] (small amplitude),
[4] and [2] (no assumption in the amplitude). The construction of these waves relies on the
assumption that the flux is genuinely nonlinear and that the far-field values of the wave satisfy
the Lax shock admissibility condition, i.e. these travelling waves are regularisations of admissible
shock solutions (kinetic shock profiles).

We now turn to the question, whether rarefaction waves of (1.5) describe the long time be-
haviour of (1.1) for appropriate initial data. As a solution of a Riemann problem, a rarefaction
wave is a function of the similarity variable x/t. In other words, the rarefaction wave is a stationary
solution, if the space variable x is replaced by the similarity variable. Because of the singularity
of this transformation at t = 0, we introduce the alternative change of variables

ξ =
x

t + 1
, τ = ln(t + 1) , (1.7)

where the usefulness of the rescaling of time becomes apparent in the rewritten version of (1.6):

∂τρ − ξ∂ξρ + ∂ξ(a(ρ)) = e−τ∂ξ(D(ρ)∂ξρ) . (1.8)

When the solution satisfies appropriate far-field conditions, we may expect convergence as τ → ∞
of ρ to a rarefaction wave solution of

−ξ∂ξρ∞ + ∂ξa(ρ∞) = 0 , (1.9)
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which is explicitly given by

ρ∞(ξ) =







ρ− ξ < a′(ρ−)
(a′)−1(ξ) a′(ρ−) ≤ ξ ≤ a′(ρ+)
ρ+ ξ > a′(ρ+) .

(1.10)

Clearly ρ∞ is monotone and satisfies

∂ξa
′(ρ∞) ≥ 0 . (1.11)

The far-field values ρ− and ρ+ necessarily have to satisfy

(ρ+ − ρ−)a′′(ρ) > 0 for ρ between ρ− and ρ+ .

In terms of the new variables, the BGK-model (1.1) becomes

∂τf + (v − ξ) ∂ξf = eτ (M(ρf , v) − f) . (1.12)

Since for large τ , e−τ plays the role of the Knudsen number (ε in the macroscopic scaling mentioned
above), f formally approaches feq = M(ρeq , v) for some ρeq that satisfies the macroscopic limiting
equation

∂τρeq − ξ∂ξρeq + ∂ξ(a(ρeq)) = 0 . (1.13)

So convergence to an equilibrium distribution with a rarefaction wave as macroscopic density can
be hoped for.

The main difference to the analysis of travelling waves is the explicit appearance of time
in the rescaled regularized equations, reflecting the fact that they are not invariant under the
transformations (t, x) → (λt, λx) for any λ ∈ R. We expect that the effect of the regularisations
is negligible as t → ∞.

For initial conditions with the far-field limits M(ρ±, v), we shall prove that solutions of (1.12)
converge to M(ρ∞, v) as τ → ∞ under the conditions that the initial data have some smoothness
in the ξ-direction and that they are L∞-close to an equilibrium distribution, which is constant in
ξ. In other words, small perturbations of small amplitude rarefaction waves are considered.

Theorem 1.1 Let the equilibrium distribution M(ρ, v) satisfy (1.4). Let f be a global solution of
(1.12) satisfying f(t = 0) = f0. Let the macroscopic flux a(ρ) be smooth and genuinely nonlinear,
and let the far-field densities ρ± ∈ R satisfy a′(ρ−) < a′(ρ+). Let

∫

Ω×R

(f0 − M(ρ∗, v))2 + (∂ξf0)
2

∂ρM(ρ+, v)
dv dξ < ∞ (1.14)

for a smooth ρ∗(ξ), constant outside a bounded interval and satisfying ρ∗(±∞) = ρ±. Then there
exists a δ > 0 such that under the further condition

M(ρ+ − δ, v) ≤ f0(ξ, v) ≤ M(ρ+ + δ, v) , (1.15)

(implying |ρ+ − ρ−| ≤ δ)

∫

Ω×R

(f(τ, ·, ·) − M(ρ∞, v))2

∂ρM(ρ+, v)
dv dξ ≤ ce−κτ ∀ τ > 0 , (1.16)

holds with c, κ > 0, where κ ≤ 1 and depends on δ.

We shall follow an approach similar to that in [3]. A micro-macro decomposition of the per-
turbation will be introduced. Then we derive L2-estimates for both the microscopic and the
macroscopic contributions, which can be combined into a Lyapunov functional. These computa-
tions would involve second order derivatives of ρ∞, which is only Lipschitz continuous. Therefore
ρ∞ will be replaced by a smooth approximation converging to ρ∞ as τ → ∞. This idea has been
introduced by Matsumura and Nishihara [8]. The precise definition of the smooth approximation
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and its properties will be given in Section 3. This section also contains some assumptions, results
and notation that are used in our convergence proof. In the following section we prove convergence
to rarefaction waves for the viscous regularization (1.6). We shall use the macroscopic estimate
later in Section 4, where the desired convergence result is proven.

We remark that convergence to rarefaction waves has been proved for some hyperbolic systems
with relaxation by energy methods without assumption on the amplitude of the wave, see for
instance [7] and [10]. This is possible by employing clever combinations of estimates which are
not readily available for the current problem. The main reason is that the velocity space is rather
general and not a finite set of velocities as it can be interpreted for hyperbolic systems with
relaxation.

2 The macroscopic estimate

In this section we present a proof by means of L2-estimates of convergence to rarefaction waves
for solutions of (1.8). We recall that convergence to rarefaction waves has been proved by Oleinik
in [6] by direct methods. The macroscopic estimate derived here will be used in Section 4, and
will be combined with estimates on the microscopic terms. We use the notation (L∞

ξ (R), ‖ · ‖∞),

(L2
ξ(R), ‖ · ‖ξ).
Let ρ be the solution of (1.8), subject to the initial condition

ρ(τ = 0) = ρ0 , with ρ+ − δ ≤ ρ0 ≤ ρ+ + δ , ρ0(±∞) = ρ± .

We recall that (1.8) satisfies a maximum principle, implying

ρ+ − δ ≤ ρ(τ, ξ) ≤ ρ+ + δ for all τ ≥ 0 , ξ ∈ R . (2.1)

The error ρ̃ := ρ − ρ∞ satisfies

∂τ ρ̃ − ξ∂ξρ̃ + ∂ξ (a′(ρ∞)ρ̃) + ∂ξr(ρ∞, ρ̃) = e−τ∂ξ [D(ρ∞ + ρ̃)(∂ξ ρ̃ + ∂ξρ∞)] (2.2)

with the nonlinear correction of the linearized flux

r(ρ∞, ρ̃) := a(ρ∞ + ρ̃) − a(ρ∞) − a′(ρ∞)ρ̃ . (2.3)

The fact that ρ∞ lies between ρ+ and ρ− and (2.1) imply

‖ρ̃‖∞ ≤ 2δ . (2.4)

As a consequence, 0 < D ≤ D(ρ∞ + ρ̃) ≤ D < ∞ holds.

Lemma 2.1 There exists a constant C > 0 such that

d

dτ
‖ρ̃‖2

ξ + (1 − Cδ) ‖ρ̃‖2
ξ + e−τD‖∂ξρ̃‖

2
ξ ≤ e−τD ‖∂ξρ∞‖2

ξ (2.5)

Proof. We test (2.2) with ρ̃

1

2

d

dτ

∫

R

ρ̃2 dξ +
1

2

∫

R

(1 + ∂ξa
′(ρ∞))ρ̃2 dξ +

∫

R

ρ̃ ∂ξr(ρ∞, ρ̃)dξ

= −e−τ

∫

R

D(ρ∞ + ρ̃) (∂ξ ρ̃)2 dξ − e−τ

∫

R

D(ρ∞ + ρ̃) ∂ξρ∞∂ξ ρ̃ dξ . (2.6)

The second term can be estimated from below by (1.11). We write the term involving r as

∫

R

ρ̃ ∂ξr(ρ∞, ρ̃)dξ = −

∫

R

r(ρ∞, ρ̃)∂ξ ρ̃ dξ =

∫

R

∫ ρ̃

0

∂ρ∞r(ρ∞, ρ′)dρ′∂ξρ∞dξ

=

∫

R

a′′′(ρ̂)
ρ̃3

6
∂ξρ∞dξ ,
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with ρ̂ between ρ∞ and ρ∞ + ρ̃. The smoothness of a, the boundedness of the densities, and the
Lipschitz continuity of ρ∞ imply the existence of a constant C > 0 such that

∣

∣

∣

∣

∫

R

ρ̃ ∂ξr(ρ∞, ρ̃)dξ

∣

∣

∣

∣

≤
Cδ

2
‖ρ̃‖2

ξ .

In the last term of (2.6) ab ≤ a2/2 + b2/2 is used. �

In order to get convergence it is enough to choose δ small enough.

Theorem 2.2 Let ρ be a smooth solution of (1.8) satisfying

ρ(t = 0) − ρ∞ ∈ L2
ξ and ‖ρ(t = 0) − ρ+‖∞ =: δ < 1/C

with the constant C from the previous lemma. Then there exists a constant C1 > 0, independent
from δ, such that

‖ρ(τ, ·) − ρ∞‖2
ξ ≤

C1

δ

(

e(Cδ−1)τ − e−τ
)

. (2.7)

Proof. By Lemma 2.1 the left hand side y(τ) of (2.7), writing y(τ) = ‖ρ̃‖2
ξ, satisfies the differ-

ential inequality

ẏ + (1 − Cδ)y ≤ e−τC2 ,

for C2 > 0 independent of δ. The statement of the theorem is a consequence of the Gronwall
lemma. �

3 Preliminaries and notation

The analysis of the following section is based on linearizaton of (1.1) around the far-field equilib-
rium state M(ρ+, v). The linearized collision operator is given by

Lf := ρfF − f , with F (v) = ∂ρM(ρ+, v) .

It is easily seen that L is symmetric and negative semidefinite with respect to the scalar product

〈f, g〉v =

∫

fg

F
dv .

The corresponding weighted L2-space is denoted by (L2
v, ‖ · ‖v). Just as in [3], we also consider

the space L2
ξ,v defined by the scalar product

〈f, g〉ξ,v =

∫

R

〈f, g〉vdξ ,

with the induced norm ‖ · ‖ξ,v. Finally, Hk
ξ , k ≥ 0 denotes the standard L2-based Sobolev spaces

for functions of ξ (with ‖ · ‖ξ := ‖ · ‖L2

ξ
).

To avoid differentiating the rarefaction wave, we shall consider a smooth approximation of ρ∞

that satisfies (1.5). We use the regularisation introduced in [8]. They consider w to be the solution
of the following initial value problem

∂tw + w∂xw = 0 ,
w(0, x) = 1

2 [(w+ − w−) + (w+ − w−) tanh(x)] .
(3.1)

They also prove the following properties of w

Lemma 3.1 ([8]) If w+ > w−, then (3.1) has a unique global solution satisfying

(i) w− < w(t, x) < w+, ∂xw(t, x) > 0 for t ≤ 0, x ∈ R.
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(ii) For any p ∈ [0,∞], there exist a positive constant C (depending only on p) such that for
t ≥ 0,

‖∂xw(t, ·)‖Lp
x
≤ C min{|w+ − w−|, |w+ − w−|(1 + t)−1+ 1

p } ,

‖∂k
xw(t, ·)‖Lp

x
≤ C min{|w+ − w−|, (1 + t)−1} for k = 2, 3 .

(iii) If w∞ denotes the rarefaction wave of (3.1) then

lim
t→∞

sup
x∈R

|w(x, t) − w∞(x/t)| = 0 .

The approximation we use is defined by setting ρas := (a′)−1(w). We need the following
properties

Lemma 3.2 Let w satisfy (3.1) with w+ = (a′)−1(ρ+) and w− = (a′)−1(ρ−), and let

ρas(τ, ξ) := (a′)−1(w(eτ − 1, ξeτ )) .

Then

(i) ρas is a smooth solution of (1.13) with values between ρ+ and ρ− satisfying

∂ξ(a
′(ρas(τ, ξ))) > 0 for τ ≥ 0 .

(ii) There exists C > 0 such that for every τ ≥ 0

‖∂ξρas(τ, ·)‖∞ ≤ C|ρ+ − ρ−| , ‖∂2
ξρas(τ, ·)‖∞ ≤ Ceτ ,

‖∂ξρas(τ, ·)‖ξ ≤ C|ρ+ − ρ−| , ‖∂2
ξρas(τ, ·)‖ξ ≤ Ceτ/2 .

(iii) There exists C > 0 such that for every 0 < δ < 1, τ ≥ 0,

‖ρas(τ, ·) − ρ∞‖2
ξ ≤

C

δ
e(δ−1)τ , lim

τ→∞
‖ρas(τ, ·) − ρ∞‖∞ = 0 .

Proof. The proof follows easily from Lemma 3.1 except the L2 estimate in (iii). Note however,
that the proof of Theorem 2.2 also works for smooth solutions of the hyperbolic equation (D = 0).
By the L∞ convergence result, ρ(τ, ξ) := ρas(τ0 + τ, ξ) satisfies the assumptions of Theorem 2.2
with arbitrary δ for τ0 large enough. �

4 Convergence to macroscopic rarefaction waves

In this section Theorem 1.1 will be proven. With ρas as in Lemma 3.2 we define

fas(τ, ξ, v) := M(ρas(τ, ξ), v) .

The perturbation

G := f − fas

satisfies

∂τG + (v − ξ)∂ξG = eτ [M(ρas + ρG) − M(ρas) − G] − (v − a′(ρas))∂ξM(ρas) , (4.1)

where

∂τfas + (v − ξ)∂ξfas = (v − a′(ρas))∂ξM(ρas) (4.2)
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has been used. We introduce the micro-macro decomposition of G according to the linearized
collision operator around the far field equilibrium M(ρ+, v):

G = ρF + g with ρ := ρG , g = −LG ,

where the notation has been introduced in the previous section. Since the maximum principle can
be applied to the BGK model (1.1), it also holds for the equation (1.12) in terms of the variables
(τ, ξ), with the consequence

M(ρ+ − δ, v) ≤ f(τ, ξ, v) ≤ M(ρ+ + δ, v) , ∀ τ, ξ, v .

Since the same estimate holds for fas,

‖ρ(τ, ·)‖∞ ≤ 2δ , for τ ≥ 0 (4.3)

holds (using the monotonicity of M with respect to ρ).
Equations for ρ and g are obtained by projection of (4.1), where the macroscopic projection

amounts to integration with respect to v, and −L is the microscopic projection:

∂τρ + (a′(ρ+) − ξ)∂ξρ + ∂ξmg = 0 , (4.4)

∂τg + (v − ξ)∂ξg − ∂ρM(ρ+)∂ξmg + (v − a′(ρ+))∂ρM(ρ+)∂ξρ

= eτ{R[ρas, ρ] + Λ[ρas]ρ − g} − (v − a′(ρas))∂ξM(ρas) , (4.5)

with the microscopic flux mg =
∫

vg dv, the nonlinear correction

R[ρas, ρ] := [M(ρas + ρ) − M(ρas) − ∂ρM(ρas)ρ] , (4.6)

for a linearization around M(ρas), and

Λ[ρas] = ∂ρM(ρas) − F ,

the correction due to actually linearizing around the constant (in ξ) state M(ρ+).
Now the macroscopic equation is rewritten by using the basic idea of the Chapman-Enskog

expansion: For large values of τ , the dominating term on the right hand side of (4.5) is used to
compute g and, after multiplication with v and integration,

mg = r(ρas, ρ) + (a′(ρas) − a′(ρ+))ρ

−e−τ [∂τmg + ∂ξPg − (ξ + a′(ρ+))∂ξmg + D+∂ξρ + Das∂ξρas] . (4.7)

with D+ := D(ρ+), Das(τ, ξ) := D(ρas(τ, ξ)), the second order moment Pg =
∫

v2g dv, and
r =

∫

vR dv has been defined in (2.3). Substituting (4.7) into (4.4) we obtain the macroscopic
equation

∂τρ − ξ∂ξρ + ∂ξ(a
′(ρas)ρ) + ∂ξr(ρas, ρ) − e−τD+∂2

ξ ρ

= e−τ ∂ξ [Das∂ξρas + ∂τmg + ∂ξPg − (ξ + a′(ρ+))∂ξmg] , (4.8)

Formally, this is a promising result, since we already know how to deal with the left hand side,
which is analogous to the macroscopic model analyzed in Section 2. The perturbation on the
right hand side however, although formally of order e−τ , contains second order derivatives of the
microscopic part g, and it is not obvious at the moment how to control these. We start by deriving
integral estimates as we did for the purely macroscopic case.

Lemma 4.1 There exists a positive constant C, such that

d

dτ

(

‖ρ‖2
ξ − 2e−τ

∫

ρ∂ξmg dξ

)

+(1− Cδ − e−τ )‖ρ‖2
ξ + e−τD+‖∂ξρ‖

2
ξ ≤ e−τC

(

‖∂ξg‖
2
ξ,v + 1

)

. (4.9)
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Proof. We test (4.8) with ρ. Observing that all the terms in the left-hand side can be estimated
in the same way as in Lemma 2.1, we obtain

1

2

d

dτ
‖ρ‖2

ξ +
1

2
(1 − Cδ)‖ρ‖2

ξ + e−τD+‖∂ξρ‖
2
ξ ≤ e−τ‖∂ξρ‖ξ‖Das∂ξρas‖ξ

+
d

dτ

(

e−τ

∫

ρ∂ξmg dξ

)

+ e−τC‖∂ξρ‖ξ(‖∂ξmg‖ξ + ‖∂ξPg‖ξ)

+e−τ‖ρ‖ξ‖∂ξmg‖ξ + e−τ‖∂ξmg‖
2
ξ . (4.10)

Since by our assumptions on the equilibrium distribution, F has velocity moments of order up to
four, an application of the Cauchy-Schwarz inequality shows

|∂ξmg |, |∂ξPg | ≤ C‖∂ξg‖v .

This fact as well as the boundedness of Das in L∞
ξ and of ∂ξρas in L2

ξ (see Lemma 3.2) complete
the proof. �

Two difficulties have to be overcome when using this result. First, the term under the time
derivative is indefinite and, second, the ξ-derivative of the microscopic part occurs on the right
hand side. As a remedy an estimate for the new unknown

W := e−τ∂ξG ,

will be derived. Note that, by orthogonality,

‖W‖2
ξ,v = ‖e−τ∂ξρ‖

2
ξ + ‖e−τ∂ξg‖

2
ξ,v . (4.11)

Differentiating (4.1) with respect to ξ and multiplying by e−τ we get the following equation for
W

∂τW + (v − ξ)∂ξW = ∂ξ (R[ρas, ρ] + Λ[ρas]ρ − g) − e−τ∂ξ[(v − a′(ρas))∂ξM(ρas)] . (4.12)

Lemma 4.2 There exists a positive constant C such that

d

dτ
‖W‖2

ξ,v + ‖W‖2
ξ,v + e−τ‖∂ξg‖

2
ξ,v ≤ C

(

e−τδ2‖ρ‖2
H1

ξ
+ e−2τ

)

. (4.13)

Proof. We compute the scalar product of (4.12) with W to obtain

1

2

d

dτ
‖W‖2

ξ,v +
1

2
‖W‖2

ξ,v = e−τ 〈∂ξ(R[ρas, ρ] + Λ[ρas]ρ − g), ∂ξg〉ξ,v

−e−2τ 〈∂ξ ((v − a′(ρas))∂ρM(ρas) ∂ξρas) , ∂ξg〉ξ,v . (4.14)

We have used that the integral with respect to v of the right hand side of (4.12) vanishes. For
estimating the first term on the right hand side, we compute

|∂ξ(R[ρas, ρ] + Λ[ρas]ρ)| = |[∂ρM(ρas + ρ) − ∂ρM(ρas)]∂ξρas + [∂ρM(ρas + ρ) − F ]∂ξρ|

≤ Cδ
[

|∂2
ρM(ρ′)ρ| + |∂2

ρM(ρ′′)∂ξρ|
]

,

where Lemma 3.2 has been used as well as the fact that both ρ− and ρas + ρ are O(δ) away from
ρ+. Now the assumptions on the equilibrium distribution can be employed to show that the first
term on the right hand side of (4.14) can be estimated from above by

e−τ

(

Cδ2‖ρ‖2
H1

ξ
−

3

4
‖∂ξg‖

2
ξ,v

)

.

For the last term in (4.14) we have

∂ξ [(v − a′(ρas))∂ρM(ρas) ∂ξρas] = (v − a′(ρas))∂
2
ρM(ρas)(∂ξρas)

2

−a′′(ρas)∂ρM(ρas))(∂ξρas)
2 + (v − a′(ρas))∂ρM(ρas) ∂2

ξ ρas (4.15)
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Again, Lemma 3.2 and the assumptions on M are used to show that the norm ‖ · ‖ξ,v of this term
is bounded by Ceτ/2. So the last term in (4.14) can be bounded from above by

1

4
e−τ‖∂ξg‖

2
ξ,v + 2C2e−2τ .

The proof is completed by combining our results. �

After these preparations we are ready to prove decay of the macroscopic part of the perturba-
tion.

Lemma 4.3 Under the assumptions of Theorem 1.1,

‖ρ(τ, ·)‖2
ξ ≤ ce−κτ , τ ≥ 0 .

Proof. We introduce

H = ‖ρ‖2
ξ − 2e−τ

∫

ρ∂ξmg dξ + α‖W‖2
ξ,v

≥ ‖ρ‖2
ξ − C‖ρ‖ξ‖e

−τ∂ξg‖ξ,v + α‖e−τ∂ξρ‖
2
ξ + α‖e−τ∂ξg‖

2
ξ,v

≥
1

2

(

‖ρ‖2
ξ + ‖e−τ∂ξg‖

2
ξ,v

)

+ α‖e−τ∂ξρ‖
2
ξ ,

for α ≥ (C2 + 1)/2. Combining the results of Lemmas 4.1 and 4.2 gives

dH

dτ
+ α‖W‖2

ξ,v + αe−τ‖∂ξg‖
2
ξ,v +

(

1− Cδ − e−τ
)

‖ρ‖2
ξ + e−τD+‖∂ξρ‖

2
ξ

≤ αCδ2e−τ
(

‖ρ‖2
ξ + ‖∂ξρ‖

2
ξ

)

+ Ce−τ‖∂ξg‖
2
ξ,v + Ce−τ

By choosing α and τ large enough and δ small enough, we easily obtain an inequality of the form

dH

dτ
+ κH ≤ Ce−τ ,

with κ > 0, implying the result, with κ replaced by min{1, κ}, by an application of the Gronwall
lemma. �

Since the functional H in the above proof only controls the macroscopic part of the pertur-
bation, an additional step is required. To get control of the microscopic part, we derive energy
estimates from the full kinetic perturbation equation (4.1). Testing (4.1) by G gives

1

2

d

dτ
‖G‖2

ξ,v +
1

2
‖G‖2

ξ,v

= eτ
(

〈R[ρas, ρ] + Λ[ρas]ρ, g〉ξ,v − ‖g‖2
ξ,v

)

− 〈(v − a′(ρas))∂ξM(ρas), G〉ξ,v .

By the properties of ρas, R, and Λ, this immediately implies

d

dτ
‖G‖2

ξ,v + ‖G‖2
ξ,v ≤ 2eτ

(

C‖ρ‖ξ‖g‖ξ,v − ‖g‖2
ξ,v

)

+ C‖G‖ξ,v

≤ eτ
(

C‖ρ‖2
ξ − ‖G‖2

ξ,v

)

+ ‖G‖2
ξ,v + C ,

being equivalent to

d

dτ
‖G‖2

ξ,v + eτ‖G‖2
ξ,v ≤ eτC

(

‖ρ‖2
ξ + e−τ

)

.

The Gronwall lemma implies that ‖G‖2
ξ,v decays like ‖ρ‖2

ξ + e−τ . This completes the proof of
Theorem 1.1 since, by Lemma 3.2 (iii), it is sufficient to estimate the distance of the solution to
ρas instead of ρ∞.
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