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STABILITY OF SOLITARY WAVES IN A SEMICONDUCTOR
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Abstract. We consider a macroscopic (drift-diffusion) model describing a simple microwave
generator, consisting of a special type of semiconductor material that, when biased above a certain
threshold voltage, generates charge waves. These waves correspond to travelling wave solutions of the
model equation which, however, turn out to be unstable in a standard formulation of the travelling
wave problem. Here a different formulation of this problem is considered, where an external voltage
condition is applied in the form of an integral constraint. Global existence of this novel Cauchy
problem is proven and the results of numerical experiments are presented, which suggest the stability
of solitary waves. In addition, a small amplitude limit is considered, for which linearized orbital
stability of solitary waves can be proven.
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1. Introduction. In this paper we consider the nondimensionalized one-
dimensional semiconductor drift-diffusion model

∂tn = ∂x(∂xn− v(E)n) ,(1.1)

∂xE = n− 1(1.2)

for (x, t) ∈ R×(0,∞), where n(x, t) denotes the electron density and E(x, t) the (neg-
ative) electric field. In the drift-diffusion equation (1.1), v(E) is the field dependent
drift velocity, and in the Poisson equation (1.2), the constant 1 represents the scaled
constant doping concentration. The special feature of the model is the nonmonotonic-
ity of v(E), made precise below.

The system will be considered subject to the initial condition

(1.3) n(0, x) = nI(x) for all x ∈ R ,

where initially and, thus, for all times, we assume global charge neutrality:∫
R

(nI − 1)dx = 0 .

This has the consequence that the field takes the same value

E∞(t) := lim
|x|→∞

E(t, x)
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1424 C. M. CUESTA AND C. SCHMEISER

at x = ±∞. Instead of prescribing E∞(t), we leave it as an unknown and pose the
integral constraint

(1.4)

∫
R

(E(t, x) − E∞(t)) dx = U(t) ,

where the function U(t) is given for t ≥ 0.
This problem arises from a one-dimensional model of a simple microwave gener-

ator. When biased above a certain voltage threshold, the generator produces current
oscillations based on dipole charge waves travelling through the semiconductor mate-
rial. This is known as the Gunn effect; see [4] and [5].

The system (1.1), (1.2) subject to (1.3), (1.4) will be motivated below by scaling
arguments. We start with the unscaled equations describing the flow of electrons in a
piece of homogeneous n-type semiconductor material of length L (cf. [9]),

∂tn = ∂x(D∂xn− v(E)n) , with t > 0, x ∈ (−L,L) ,(1.5)

εs∂xE = q(n− C), with x ∈ (−L,L) .(1.6)

This is the standard unipolar drift-diffusion model where the transport of holes is
neglected. The constant parameters are the diffusivity D, the permittivity εs of the
semiconductor material, the elementary charge q, and the donor concentration C > 0.
Since this fixed background charge density is positive, the negatively charged electrons
will dominate among the mobile charges, satisfying the omission of the positively
charged holes from the model. The function v stands for the drift velocity of electrons
and depends on the field, thus leading to a nonlinear coupling of the system, which
is supplemented by an initial condition n(0, x) = nI(x) and by Dirichlet boundary
conditions for the electron concentration:

(1.7) n(t,−L) = n(t, L) = C for t > 0 .

In addition, the application of an exterior (given) voltage Ū is described by the integral
condition

(1.8)

∫ L

−L

E(t, x) dx = Ū(t) .

For standard semiconductor materials such as silicon, measurements of the drift
velocity v(E) yield an odd nonlinear increasing function of the field E, almost linear
for small fields, and bounded from above by a velocity saturation value vsat. However,
there are semiconductor materials such as gallium arsenide (GaAs), for which the
velocity v reaches a maximum at a certain threshold value of the field ET (cf. [13]),
with the profile of v decreasing for E > ET to vsat; see Figure 1. This nonmono-
tonicity of the velocity is responsible for the existence of pulse like solutions, namely
solitary (travelling) waves, which are necessary for the Gunn effect. We are interested
in studying the stability of these waves.

Using L as characteristic length, L/vsat as characteristic time, vsat as charac-
teristic velocity, C as characteristic electron density, and ET as characteristic field
strength, one obtains the dimensionless equations

∂tn = ∂x(ν∂xn− nv(E)) ,(1.9)

λ2∂xE = n− 1 ,(1.10)
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Fig. 1. Electron drift velocity.

subject to the conditions

n(t,−1) = n(t, 1) = 1 ,(1.11) ∫ 1

−1

E(t, x) dx = Ū(t) ,(1.12)

where the drift velocity v is now normalized in the sense that it takes its maximum
at E = 1 and satisfies limE→∞ v(E) = 1. The dimensionless parameters

λ2 =
εsET

L2qC
, ν =

D

Lvsat

are, respectively, the square of the scaled Debye length and the relative strength
of diffusive and convective terms. We are interested in the case of a high doping
concentration and a long device; therefore the parameters λ2 and ν are both small.
We shall make the scaling assumption that they are of the same order of magnitude
and, for simplicity, actually set ν = λ2.

We recall that for a given constant voltage, the homogeneous steady state solution

n ≡ 1, E ≡ 1

2
Ū

of (1.9), (1.10) is stable if Ū ≤ 2 (E ≤ 1) and unstable if Ū > 2 (E > 1); cf. [14],
[1]. Stable solitary waves are expected to arise in the latter case. The appropriate
space-time scaling for these waves is achieved by (t, x) → (t/λ2, x/λ2), which expands
both the temporal and the spatial domains. It leads to (1.1)–(1.2), and the integral
condition (1.12) becomes

(1.13) λ2

∫ 1
λ2

− 1
λ2

E(t, x) dx = Ū(t) .

In the “Gunn operation mode” we expect waves travelling through the device, whose
typical length is of order one in terms of the new x-variable. Away from the wave,
i.e., in most of the device, we expect an almost constant electric field, and we denote
an approximation by E1/λ2(t). The condition (1.13) can then be rewritten as

λ2

∫ 1
λ2

− 1
λ2

(E(t, x) − E1/λ2(t)) dx = Ū(t) − 2E1/λ2(t) .(1.14)
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1426 C. M. CUESTA AND C. SCHMEISER

Passing to the limit λ2 → 0 formally gives E∞(t) = Ū(t)/2 with E(t, x) → E∞(t)
as |x| → ∞. In [15] Szmolyan considered the problem (1.1), (1.2) subject to this
boundary condition and an initial condition for n. It is striking that, with standard
linearization techniques, he proved that solitary waves are unstable in this case.

These results are rather unexpected if compared with the experimental evidence
on Gunn diodes. The aim of this work is to study a reformulation of the problem,
which seems to stabilize the solitary waves. Formally, the reformulation can be derived
by introducing

U(t) := lim
λ→0

1

λ2

(
Ū(t) − 2E1/λ2(t)

)
and passing to the limit in (1.14) after dividing by λ2. Obviously, this leads to the
integral condition (1.4).

In the language of asymptotic analysis, the assumption that the small parameters
ν and λ2 are of the same order of magnitude leads to a significant limit, since the
small parameters can then be eliminated from the differential equations by the above
rescaling. However, since the ratio λ2/ν depends on both the device length and the
doping concentration, situations where this ratio is either very small or very large can
also be physically relevant. An asymptotic analysis of travelling waves in the former
case can be found in [9]. It turns out that in this case all travelling wave solutions
have a far-field value of the electric field close to Esat (see Figure 1). This result can
be seen as a (not very strong) physical justification of prescribing U(t), since this is
then close to prescribing the contact voltage Ū(t).

For convenience we introduce the unknown

e(t, x) := E(t, x) − E∞(t) =

∫ x

−∞
(n(t, y) − 1) dy with t > 0, x ∈ R .

Substituting n = ∂xe+1 into (1.1) and integrating with respect to x gives the equation

(1.15) ∂te = ∂2
xe− v(e + E∞) ∂xe + v(E∞) − v(e + E∞) ,

subject to the initial condition

(1.16) e(0, x) = eI(x) =

∫ x

−∞
(nI(y) − 1) dy ,

with nI as in (1.3), and to the integral constraint (1.4), which now simply reads

(1.17)

∫
R

e(t, x) dx = U(t) .

Differentiation with respect to time gives

(1.18) U ′(t) =

∫
R

(v(E∞(t)) − v(E∞(t) + e(t, x)))dx .

We shall solve (1.15) subject to (1.18) instead of (1.17). This will be favorable since
(1.18) can be seen as an equation for E∞ for given U ′(t) and e.

The formulation of the problem will be completed by specifying the precise as-
sumptions on the drift velocity.
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Assumption 1. We assume v ∈ C3
B([0,∞)), v(0) = 0, sign v′(E) = sign(1 − E),

limE→∞ v(E) = 1, ∃Ei > 1 such that sign v′′(E) = sign(E − Ei). Finally, v′′′ ≥ 0 on
(1, Ei).

The equation v(Esat) = 1 uniquely defines Esat < 1. We also introduce σi =
supE>0 |div/dEi(E)|, i = 1, 2, 3.

The paper is organized as follows. In section 2 we review the existence of solitary
waves but incorporate the condition (1.4) into the problem. It turns out that for all
U > 0 there exists a unique (up to translation) solitary wave having E∞ < 1. In
section 3 we prove existence of solutions of (1.15)–(1.18) for positive U(t). Actually
there is also a restriction on the values of U ′(t), which is required to be in the range of
the right-hand side of (1.18). The existence proof uses a fixed point argument involving
the operator defined by solving the condition (1.18) (for given e). This operator is only
locally Lipschitz in L1

x(R). This difficulty does not ensue in bounded domains; see [8].
There is still no general result on the stability of solitary waves. In section 4, however,
we provide strong numerical evidence that we succeeded in stabilizing the travelling
waves by the new formulation. Moreover, in section 5 we consider a small wave limit by
imposing a small external voltage. We prove linear asymptotic stability of the limiting
solitary waves. It turns out that the limit equation is the so-called conserved Fisher
equation with a constant competition rate, a model of population dynamics with
global regulation [11]. In particular, our proof shows linearized asymptotic stability
of its stationary solutions.

2. Solitary waves. In this section we prove existence of solitary waves subject
to the constraint (1.4). Let ξ =: x− ct be the travelling wave variable, where c > 0 is
the wave speed. Then a solitary wave solution (E(ξ), n(ξ)) of (1.1)–(1.2) is a solution
of

n′ = n(v(E) − c) − v(E∞) + c ,

E′ = n− 1

that satisfies

(2.1) n → 1 and E → E∞ as |ξ| → ∞ .

A straightforward computation using both differential equations leads to

n− 1

n
n′ − (v(E) − v(E∞))E′ =

(n− 1)2

n
(v(E∞) − c) .

Since the right-hand side does not change sign, integration with respect to ξ and the
far-field conditions imply that a solution exists only if c = v(E∞) holds, which we
assume in the following:

n′ = n(v(E) − v(E∞)),(2.2)

E′ = n− 1.(2.3)

We incorporate the condition (1.4), which in the travelling wave variable reads

(2.4)

∫
R

(E(ξ) − E∞) dξ = U,

where U is a given constant, and E∞ will be determined as part of the solution of
(2.1)–(2.4). The main result of this section is the following theorem.
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Theorem 2.1. For each U > 0 there exists a solution (n,E,E∞) of (2.1)–(2.4)
which is unique up to translation in ξ and satisfies Esat < E∞ < 1. The far-field value
E∞ of the field is a strictly decreasing function of U , satisfying

(2.5) lim
U→0

E∞(U) = 1 and lim
U→∞

E∞(U) = Esat .

Before we prove the theorem we recall the existence result of (2.1)–(2.3) for a
given value of E∞.

Lemma 2.2. For every E∞ ∈ (Esat, 1), there exists a unique (up to translation in
ξ) solution (n,E) of (2.1)–(2.3) that satisfies E > E∞. The total charge density n− 1
has one simple zero, to the left of which it is positive (and negative to the right).

This lemma is just a reformulation of the existence result that appears in [15].
The proof uses the fact that (2.2), (2.3) is a conservative system and uses the first
integral relation

(2.6) n− log n− 1 =

∫ E

E∞

(v(y) − v(E∞)) dy .

Proof of Theorem 2.1. By Lemma 2.2 it is sufficient to prove that the relation
between E∞ and U is one-to-one. With the solution (n,E) of (2.1)–(2.3) for given
E∞ ∈ (Esat, 1), we define

U(E∞) :=

∫
R

(E(ξ) − E∞)dξ .

The derivative can be written as U ′ :=
∫

R
(Ê(ξ)−1)dξ, where we define Ê = dE/dE∞

and n̂ = dn/dE∞. The latter satisfy the equations

Ê′ = n̂ ,
n− 1

n
n̂ = (v(E) − v(E∞))Ê − v′(E∞)(E − E∞) ,

by differentiating (2.3) and (2.6) with respect to E∞. Let us, without loss of generality,
fix the point where n − 1 changes sign at ξ = 0, i.e., n(0) = 1. The second equation
above implies that

Ê(0) = v′(E∞)
E(0) − E∞

v(E(0)) − v(E∞)
.

The properties of v, E∞ < 1, and E > E∞ imply that Ê(0) < 1. Away from ξ = 0,
Ê solves

Ê′ =
n

n− 1
[v(E) − v(E∞)](Ê − 1)

+
n

n− 1
[v(E) − v(E∞) − v′(E∞)(E − E∞)] .

The term in the second line is negative for large negative ξ and positive for large
positive ξ. This implies Ê < 1 for large |ξ|. Extrema of Ê away from ξ = 0 satisfy
Ê = v′(E∞) E−E∞

v(E)−v(E∞) < 1 analogously to the above. This shows that Ê(ξ) < 1 for

all ξ and, thus, U ′(E∞) < 0.
The assertion (2.5) then also follows since the amplitude of the wave tends to zero

for E∞ → 1 and to infinity for E∞ → Esat.
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3. Existence. In this section existence of solutions of (1.15), (1.16), (1.18) will
be proven for given bounded U(t) ∈ C1

B(R+) and for initial data eI satisfying

(3.1) eI ∈ L1
x(R) ∩ L∞

x (R), eI(x) > 0 a.e. in x .

Clearly U(t) is fixed by U(0) =
∫

R
eI(x) dx > 0 and by U ′(t) appearing in (1.18).

Assumption 2. There are positive constants δ and K, such that

0 < δ ≤ U(t) ≤ K and ‖eI‖∞ ≤ K ,

where ‖ · ‖p denotes the norm in Lp
x(R).

The derivative U ′(t) will have to be small enough as specified below. We start by
the derivation of an a priori estimate.

Proposition 3.1. For solutions of (1.15), (1.16), (1.18), ‖e(t, ·)‖∞ ≤ C(σ1)K
with C(σ1) =

√
2 max{2, c√σ1} holds for all t ≥ 0.

Proof. The proof follows the idea of a similar result in [7]. Multiplying (1.15) by
ep−1 for p ≥ 2 and integration gives the estimate

(3.2)
d

dt

∫
R

ep dx ≤ −4
(p− 1)

p

∫
R

(∂xe
p/2)2 dx + pσ1

∫
R

ep dx .

We observe that, by interpolation,

‖eI‖p ≤ ‖eI‖(p−1)/p
∞ ‖eI‖1/p

1 ≤ K .

Our aim is to derive a uniform-in-p and uniform-in-time estimate on ‖e(t, ·)‖p for a
sequence of p such that p → ∞. We use the Nash inequality [10]

‖u‖3
2 ≤ c‖u‖2

1‖∂xu‖2

in one space dimension with u = ep/2; thus, with the notation zp(t) = ‖e(t, ·)‖pp,

(3.3)
dzp
dt

≤ pσ1zp

(
1 − c̃(p− 1)

p2

z2
p

z4
p/2

)
,

where c̃ = 4/(c2σ1). Starting with z1(t) = U(t) ≤ K, the above inequality can be
used recursively for obtaining bounds Mk for z2k(t). Suppose z2k−1(t) ≤ Mk−1; then

z2k(t) ≤ Mk = max

{
K2k

,
2k√

c̃(2k − 1)
M2

k−1

}
.

Let us now examine the sequence Mk, defined by the recursion and by M0 = K. Since,

obviously, Mk−1 ≥ K2k−1

and 2k/
√

2k − 1 ≥ 1,

K2k ≤ 2k√
2k − 1

M2
k−1

holds. Thus, we make the upper bound Mk larger by the new definition

Mk = B2(k+1)/2M2
k−1 , M0 = K , B := max{1, c̃−1/2} ,

where we have used 2k/
√

2k − 1 ≤ 2(k+1)/2. This recursion can be solved explicitly:

Mk = (
√

2B)ak2bk/2K2k

,
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where ak =
∑k−1

n=0 2n = 2k − 1 < 2k and bk =
∑k−1

n=0(k− n)2n = 2k+1 − 2− k < 2k+1.
Thus, since B ≥ 1,

Mk ≤ (2
√

2BK)2
k

,

and hence

‖e(t, ·)‖2k ≤
√

2K max{2, c√σ1} for all k .

The proof is completed by passing to the limit k → ∞.
Now we prepare a decoupled solution approach and examine (1.18) as an equation

for E∞(t).
Proposition 3.2. Let the function e ∈ L1

x(R) ∩ L∞
x (R) satisfy ‖e‖1 ≥ γ > 0

and ‖e‖∞ ≤ M . Then the function F (E; e) :=
∫

R
(v(E) − v(E + e(x)))dx is strictly

increasing on (0, Ē) with

Ē(γ,M) = 1 − v′(1 + M)γ

2M2σ3
> 1 .

Furthermore,

F (0; e) ≤ −v(M)
γ

M
, F (Ē; e) ≥ 3v′(1 + M)2γ2

8M3σ3
,

F ′(E; e) ≥ −v′(1 + M)γ

2M
for 0 ≤ E ≤ Ē .

Proof. By the convexity of v′ on (0, Ei) and by the fact that v′ is increasing and
negative on (Ei,∞), the secant between E and E + M lies above the graph of v′ for
E ≤ 1. Therefore

F ′(E) ≥
∫

R

(
v′(E) − v′(E)

(
1 − e

M

)
− v′(E + M)

e

M

)
dx

=

∫
R

(v′(E) − v′(E + M))
e

M
dx ≥ (v′(E) − v′(E + M))

γ

M

for 0 ≤ E ≤ 1. Again by the same properties of v′, the right-hand side takes its
minimum value for E = 1, so F ′(E) ≥ −v′(1 + M)γ/M for 0 ≤ E ≤ 1.

Since

|F ′′(E)| ≤
∫

R

|v′′(E) − v′′(E + e)|dx ≤ σ3M ,

the derivative of F for E > 1 can be estimated by

F ′(E) ≥ −v′(1 + M)
γ

M
− (E − 1)σ3M ,

proving that F is increasing on (0, Ē) and the lower bound on F ′ in the statement
of the proposition. The lower bound for F (Ē) is obtained by integrating the above
inequality from E = 1 to E = Ē and using that F (1) > 0, which holds, obviously,
since v has its maximum at E = 1.

For estimating F (0) = −
∫

R
v(e)dx, we use the L∞-bound on e and the fact that

secants between the origin and other points on the graph of v lie below the graph by
the properties of v:

F (0) ≤ −
∫

R

v(M)
e

M
dx ≤ −v(M)

γ

M
,

where the second inequality is due to the lower bound on the L1-norm of e.
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On the other hand, we consider the problem for e with given E∞. In this case,
the integral of e will not necessarily be equal to U(t), which was the basis of the proof
of Proposition 3.1. As a consequence, the estimates below are not uniform in time.

Proposition 3.3. Let E∞(t) be given. Then the problem (1.15), (1.16) for e has
a unique positive solution satisfying∫

R

e(t, x)dx ≥ U(0)e−tσ1 and e(t, x) ≤ Ketσ1 , x ∈ R, t > 0 .

Proof. Existence and uniqueness are standard results for semilinear parabolic
equations. Positivity is a consequence of the maximum principle. The first estimate
follows easily from integration of (1.15). The upper bound in the second estimate is a
supersolution.

We are now ready to formulate the main existence result.
Theorem 3.4. Let M = C(σ1)K denote the bound from Proposition 3.1 and let

−v(M)
δ

M
< U ′(t) <

3v′(1 + M)2δ2

8M3σ3
, t ≥ 0 .

Then the problem (1.15)–(1.18) has a unique global solution satisfying 0 < E∞(t) <
Ē(δ,M) and 0 < e(t, x) ≤ M .

Remark 3.5. It seems unsatisfactory that the bounds on U(t) (in Assumption 2)
and on its derivative (in the formulation of the theorem) are required. However, exam-
ples of nonexistence of a solution for data violating such bounds are easily constructed.
The range of the function F (E∞, e(t, ·)) (the right-hand side of (1.18)) as a function of
E∞ is a subset of (−σ1U(t), σ1U(t)). Therefore it is a necessary condition for the exis-
tence of a solution that U ′(t) lies in this interval for all t. The more restrictive bounds
of the theorem guarantee stable (unique) solvability. For an example of nonexistence
see the following section.

Proof. The first step is the construction of a local solution by a fixed point iteration
on E∞ acting on the set E := {E(t) ∈ L∞

t ((0, T )) : 0 ≤ E(t) ≤ Ē} with T > 0. For
a given E ∈ E , we first solve the problem (1.15), (1.16) with E∞ replaced by E. By
Proposition 3.3, this problem has a unique solution e[E] satisfying

Ketσ1 ≥
∫

R

e[E](t, x)dx ≥ U(0)e−tσ1 ≥ δe−Tσ1 =: γT

and

e[E](t, x) ≤ Ketσ1 ≤ MeTσ1 =: MT

for 0 ≤ t ≤ T . With Proposition 3.2, the range of F (· ; e[E]) includes the interval

(−v(MT ) γT

MT
,

3v′(1+MT )2γ2
T

8M3
Tσ3

). For T small enough, this in turn includes the range of

U ′(t) as given in the formulation of the theorem. Therefore the equation F (Ê; e[E]) =
U ′ has a unique solution Ê = F(E) ∈ [0, Ē] which completes the definition of the
fixed point operator F : E → E .

We shall prove that, for T small enough, F is a contraction and start with the
mild formulation of (1.15), (1.16):

e(t, ·) = G(t, ·) ∗ eI +

∫ t

0

∂xG(t− s, ·) ∗ [V (E(s) + e(s, ·)) − V (E(s))]ds

+

∫ t

0

G(t− s, ·) ∗ [v(E(s)) − v(E(s) + e(s, ·))]ds ,
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where G(t, x) = (4πt)−1/2e−x2/(4t) is the fundamental solution of the one-dimensional
heat equation, ∗ denotes convolution with respect to x, and V is a primitive of v. For
estimating the difference between e1 = e[E1] and e2 = e[E2], we start with

|v(E1) − v(E1 + e1) − v(E2) + v(E2 + e2)|

≤
∣∣∣∣∣
∫ E1

E2

(v′(E) − v′(E + e1))dE

∣∣∣∣∣ + |v(E2 + e2) − v(E2 + e1)|

≤ e1 σ2|E1 − E2| + σ1|e1 − e2| ,

and, analogously,

|V (E1) − V (E1 + e1) − V (E2) − V (E2 + e2)|
≤ e1σ1|E1 − E2| + σ0|e1 − e2| .

We shall also use the properties∫
R

G(t, x) dx = 1 ,

∫
|∂xG(t, x)| dx =

1√
tπ

for all t > 0

of the fundamental solution as well as the convolution inequality ‖f ∗g‖1 ≤ ‖f‖1‖g‖1.
A combination of these ingredients leads to an estimate of the form

sup
0<t<T

‖e1(t, ·) − e2(t, ·)‖1

≤ c
√
T

(
sup

0<t<T
‖e1(t, ·) − e2(t, ·)‖1 + sup

0<t<T
|E1(t) − E2(t)|

)

for T ≤ 1. It is an obvious consequence that the map E → e[E] from E to L∞
t ((0, T ),

L1
x(R)) is Lipschitz continuous with an arbitrarily small Lipschitz constant for small

enough T .
Denoting Ê1 = F(E1) and Ê2 = F(E2), then F (Êi; ei) = U ′(t) holds for i = 1, 2.

The difference of the two equations can be written as

F ′(Ẽ; e1)(Ê1 − Ê2) +

∫
R

[v(Ê2 + e2) − v(Ê2 + e1)]dx = 0 ,

with Ẽ between Ê1 and Ê2. This implies the estimate

sup
0<t<T

|Ê1(t) − Ê2(t)| ≤ − 2Mσ1

v′(1 + M)γ
sup

0<t<T
‖e1(t, ·) − e2(t, ·)‖1 ,

proving Lipschitz continuity also for the second step of the fixed point map. This
concludes the proof of existence and uniqueness of a local solution.

Since solutions satisfy the uniform-in-time bounds 0 < e ≤ M and
∫

R
e dx ≥ δ

and the above construction of local solutions works for initial conditions satisfying
these bounds, the solution actually exists for all times, concluding the proof.

4. Numerical results. In this section we present numerical experiments ap-
proximating (1.1)–(1.4) by solving the initial value problem for (1.15) subject to (1.18).
In the time iteration we solve alternatively (1.18) and (1.15); for a given bounded pos-
itive initial condition eI with finite mass we find the corresponding initial value of E∞
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by solving (1.18), this value is then used in (1.15) to get e in the next time step, and
so on.

We discretize the equations on a domain (0, L) and impose Neumann boundary
conditions for (1.15). The scheme treats the second order term implicitly (backward
Euler) and the first order term explicitly (forward Euler) in time. Also, the first order
term is discretized in space by first order upwinding. For a given U ′(t) we approximate
the integral (1.18) in the interval [0, L] as a Riemann integral by using the trapezoidal
rule. At each time step k a unique solution of the discretized equation∫ L

0

{v(Ek+1
∞ ) − v(Ek+1

∞ + ek)}dx− U ′(tk) = 0

is achieved by using the MATLAB implemented routine fzero, where the starting
guess is Ek

∞.
In all examples below we have taken L = 200, the spatial step h = 0.1, and the

time step τ = 0.01. As electron velocity function we use

v(E) = c e−aE − d e−bE + 1 ,(4.1)

with

a = ln(6)/3 , b = 4 ln(6)/3 , c = 2, and d = 3.

This v is normalized according to Assumption 1.

1 2 3 4 5

−10

−5

0

5

E∞

F

(a) F (E∞, eI) for eI as in (4.2) with l = 5.

1 2 3 4 5

−10

−5

0

5

E∞

F

(b) F (E∞, eI) for eI as in (4.2) with l = 1.

Fig. 2. The function F computed for the initial data (4.2).

As initial condition we take the piecewise linear function

(4.2) eI(x) =

⎧⎨
⎩

0 if 0 ≤ x ≤ 10 or x > 18,
l
4x− 5

2 l if 10 < x ≤ 14,
− l

4x + 9
2 l if 14 < x ≤ 18;

here l is the maximum of eI giving the initial voltage U(0) = 4l. The function E∞ →
F (E, eI) for eI with l = 1 and l = 5, respectively, is plotted in Figure 2(a). Observe
that the values at which F vanishes are, respectively, E∞(0) ≈ 0.77 and E∞(0) ≈ 0.37;
i.e., the smaller the integral of e, the closer is E∞ to 1, as expected for solitary waves
(see Theorem 2.1). Since the speed of the solitary waves is given by c = v(E∞), we
expect the profiles to move to the right faster for smaller values of l. From now on we
take l = 5 in (4.2); in this case U(0) = 20.
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We start with examples for constant U . Figures 3(a) and 3(b) show, respectively,
electric field and electron concentration profiles at t = 0 and t = 90, 100, 110. Fig-
ures 3(c) and 3(d) show the same solutions against the moving variable ξ = x − ct,
where the speed c = v(E∞(t)) is evaluated at t = 110. The profiles at times t =
90, 100, 110 overlap in this frame, suggesting the stability of solitary waves.

0 50 100 150 200
0

1

2

3

4

5

6

x

E

t

(a) The electric field profile E = e + E∞ at
t = 0, 90, 100, 110.

0 50 100 150 200
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

x

n

t

(b) The electron concentration profile n at
t = 0, 90, 100, 110.

5 10 15 20 25
0.5

1

1.5

2

2.5

3

ξ

E

(c) The electric field profile E = e + E∞ at
t = 90, 100, 110 against the travelling wave
coordinate ξ.

−5 0 5 10 15 20 25 30
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

ξ

n

(d) The electron concentration profile n at
t = 90, 100, 110 against ξ.

Fig. 3. Numerical solutions for constant U . Figures 3(a) and 3(c) show electric field values,
and for completeness those corresponding to the electron concentration are shown to the right in
Figures 3(b) and 3(d). The wave speed used above has been computed by using the value of E∞ at
t = 110; here E∞(110) ≈ 0.5 and c ∼ v(E∞) ≈ 1.58.

For nonconstant U we first choose U ′(t) = 4 sin(4t)/(1 + t/10). Thus initially
U ′(0) = 0, and U ′(t) oscillates about this value, while the amplitude of the oscillations
decays to 0 as t → ∞. Figure 4(a) shows electric field profiles initially and at times
t = 10, 20, 30. In Figure 4(b) electric field profiles are shown at times t = 90, 80, 110
against the variable x−ct. Since U(t) → const. as t → ∞, we have taken c = v(E∞(t))
for t = 110, as before. The profiles now do not overlap precisely, but are fairly close
to each other, again suggesting convergence to a solitary wave as t → ∞ with wave
speed c = limt→∞ v(E∞(t)).

We now consider a t-periodic U , simply choosing U ′(t) = sin(t). Although U does
not approach a constant value as t → ∞ and convergence to solitary waves is not
expected, the solution profiles move to the right with an apparently constant speed.
Figure 5(a) shows the solution profiles at t = 31, 37 (left) and at t = 79, 85 (right),
i.e., profiles at, roughly, the beginning and the end of two time periods. The two
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E
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(a) Electric field profile at t = 0, 10, 20, 30.

5 10 15 20 25

0.5

1

1.5

2

2.5

3

x−ct

E

(b) Electric field profile at t = 90, 100, 110
against x− ct with c = v(E∞(110)) ≈ 1.55.

Fig. 4. Numerical solutions with U ′(t) = 4 sin(4t)/(1 + t/10). Only electric field profiles are
shown. Figure 4(a) shows profiles at early time steps, where the amplitude of the oscillations of
U ′(t) is appreciated. In Figure 4(b) late time steps are shown in the moving frame ξ.
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x

E
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(a) Electric field profile at t = 31, 37 (left)
and at t = 79, 85 (right).

5 10 15 20 25

0.5

1

1.5

2

2.5

3

3.5

x−ct

E

(b) Electric field profile at against x−ct with
average speed c ≈ 1.57.

Fig. 5. Numerical solutions with U ′(t) = sin(t). Only electric field profiles are shown. Figure
5(a) shows profiles at times t = 31, 37 (left) and at t = 79, 85 (right). Figure 5(b) shows the same pro-
files as Figure 5(a) against the coordinate x−ct with the average speed c =

∑100
tk=50 v(E∞(tk))/5000 ≈

1.57.

profiles to the left are almost a translation of each other, so are the two profiles on
the right. This indicates that, as t → ∞, a t-periodic “translating speed” is reached,
presumably given by c = v(E∞(t)). To support this idea, we have computed the
“averaged” speed of the solution at late time steps, including at least one period,
namely c =

∑100
tk=50 v(E∞(tk))/5000 ≈ 1.57. Figure 5(b) shows well-centered profiles

against the moving coordinate with the average speed; these are at times t = 51, 57
and at t = 79, 85 (on top).

Finally, as an illustration of nonexistence we take U ′(t) = t2+3.8, so that initially
U ′ is close to the maximum of F ; see Figure 2(b). In this case the (numerical) solution
ceases to exist at t = 1.23; i.e., U ′(1.22) exceeds the maximum of F . Electric field
profiles for t < 1.23 are shown in Figure 6(a). The function F for e at t = 1.2 is
shown in Figure 6(b). Observe that the maximum of F is approximately attained at
E∞ = 1.1 and that the solution (e, E∞) has E∞(1.2) ≈ 1.084.
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1
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x

E

(a) Electric field profile at t = 1, 1.1, 1.2.

1 2 3 4 5

−15

−10

−5

0

5

E∞

F

(b) The function F for e at t = 1.2.

Fig. 6. Numerical solutions for U ′(t) = t2 +3.8 and the function F for e evaluated at e(1.2, x).
In this case the numerical solution ceases to exist at t = 1.23 when the value of U ′(t) exceeds the
maximum of F .

5. Small wave limit: Linearized stability. In this section we prove linearized
stability of small solitary waves. We consider a small given constant voltage:

U = ε � 1 .

We derive the limit ε → 0 formally. From Theorem 2.1, solitary waves have E∞ ∼ 1
as ε → 0, hence also c ∼ v(1) as ε → 0. The amplitude of the waves is also small by
(2.6). With this in mind we introduce the moving coordinate ξ = x − v(1)t and the
scaling

e = ε2e1 , E∞ = 1 − ε2E1 , τ = ε2t , η = εξ .

Then, in (1.15), after dividing by ε4 and formally passing to the limit ε → 0, we
obtain

(5.1) ∂τe1 = ∂2
ηe1 +

v′′(1)

2
(2E1e1 − e2

1)

and, from (1.17) and (1.18),

(5.2)

∫
R

e1 dη = 1 , 2E1 =

∫
R

e2
1 dη .

As mentioned in the introduction, problem (5.1)–(5.2) is the conserved Fisher equa-
tion; see [11]. We now look at stability of stationary solutions to (5.1), since these are
the limiting profiles of solitary waves as ε → 0.

With the abbreviation

κ := −v′′(1) > 0 ,

the family of stationary solutions is given explicitly by

(5.3) ē(η) =
κ

48
sech2

( κ

24
(η + C)

)
, Ē =

κ

144
,

with the shift C ∈ R.
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We observe that rescaling with

η → κ−1η , e1 → κe1 , E1 → κE1 , τ → κ−2τ ,

we can set κ = 1 in (5.1), with no changes in (5.2).
Denoting perturbations of e1 and E1 by u and A, respectively, the linearized

problem (with κ = 1) reads

∂τu = ∂2
ηu + (ē− Ē)u− ēA[u] ,(5.4) ∫

R

u dη = 0 , A[u] =

∫
R

ē u dη ,(5.5)

with

(5.6) ē(η) =
1

48
sech2

( η

24

)
, Ē =

1

144
,

where, without loss of generality, the shift has been set to zero. Note that there is a
one-dimensional family of stationary solutions spanned by u = ē′, A = 0. This fact
corresponds to the translation invariance of the nonlinear problem.

Theorem 5.1. The family of stationary solutions of (5.4), (5.5) is asymptotically
stable: for an initial condition u0 satisfying∫

R

u0 ē
′ dη = 0 ,

the solution of (5.4), (5.5) subject to u(τ = 0) = u0 satisfies

‖u(τ, ·)‖2 ≤ eμτ‖u0‖2 with μ ≤ − 1

192
< 0 .

Proof. The linearized operator can be written as the sum of two self-adjoint op-
erators on the space L2

0(R) = {u ∈ L2(R) :
∫

R
u dη = 0} equipped with the L2-inner

product 〈·, ·〉:

Lu = L1u + L2u , L1u = ∂2
ηu + (ē− Ē)u , L2u = −ēA[u] .

Obviously, L2 is nonpositive: 〈L2u, u〉 = −A[u]2 ≤ 0.
The spectrum of L1 considered on all of L2(R) can be computed explicitly; see

[6]: we obtain the essential spectrum (−∞,−Ē] and the isolated eigenvalues

λ1 = −3

4
Ē = − 1

192
, λ2 = 0 , λ3 =

5

4
Ē .

This can be obtained by using (5.6) and transforming the linear eigenvalue problem
for L1 into a hypergeometric equation; see [3] for details. In the computation of λ1

we also used (5.6).
The eigenfunction corresponding to λ3 has

∫
R
u dη �= 0, since, according to the

Sturm–Liouville theory (see, e.g., [2]), the eigenfunction corresponding to the largest
eigenvalue does not change sign. This implies that in the restricted space L2

0(R) we
actually have 〈L1u, u〉 ≤ 0.

Finally, ē′ is the eigenfunction corresponding to λ2 and ker(L1) = span{ē′}. If P
is the spectral projection onto ker(L1) then for u ∈ L2(R) satisfying (5.5), we have

(5.7) 〈L1(I − P )u, (I − P )u〉 ≤ λ1‖(I − P )u‖2
2 .

Since L1 is self-adjoint, P can be expressed as Pu = 〈u, ē′〉 ē′.
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By choosing the initial condition u0 of (5.4), (5.5) such that Pu0 = 0, it is easily
checked that also Pu = 0 for all t > 0, which finishes the proof.
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