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Abstract

The model for disordered actomyosin bundles recently derived in [6] includes the ef-
fects of cross-linking of parallel and anti-parallel actin filaments, their polymerization and
depolymerization, and, most importantly, the interaction with the motor protein myosin,
which leads to sliding of anti-parallel filaments relative to each other. The model relies
on the assumption that actin filaments are short compared to the length of the bundle.
It is a two-phase model which treats actin filaments of both orientations separately. It
consists of quasi-stationary force balances determining the local velocities of the filament
families and of transport equation for the filaments. Two types of initial-boundary value
problems are considered, where either the bundle length or the total force on the bundle
are prescribed. In the latter case, the bundle length is determined as a free boundary.
Local in time existence and uniqueness results are proven. For the problem with given
bundle length, a global solution exists for short enough bundles. For small prescribed
force, a formal approximation can be computed explicitly, and the bundle length tends to
a limiting value.

1 Introduction

In many biological processes such as wound healing, muscle contraction, or cytokinesis, con-
traction of actomyosin bundles plays a central role. Actin is a polar protein that forms
filaments by polymerization. If filaments of myosin II, a motor protein, bind to two ’anti-
parallel’ actin filaments with opposing plus ends (also called barbed ends as opposed to the
so-called pointed or minus ends), it moves along both filaments towards their respective barbed
ends, thus sliding the filaments past one another and changing the length of the actomyosin
ensemble [10].

In sarcomeres, the highly structured subunits of muscle cells, contractility has been the
focus of research for decades and is well understood by now [3]. The dynamics of non-
sarcomeric actomyosin structures (and what the minimal requirements for contraction are),
however, is a field of ongoing research. Non-sarcomeric bundles include the contractile ring
in cytokinesis [1], stress fibres in motile cells such as fibroblasts [8], or rear bundles in fish
epidermal keratocytes [9]. They typically consist of actin filaments of varying and changing
lengths and of both orientations, moving relative to each other, interspersed with myosin II
filaments, cross-linkers such as α-actinin (a protein that binds to two anti-parallel filaments
[2]), and fascin (which connects actin filaments of the same orientation [4]). Length changes
are typically due to depolymerization.
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A one-dimensional model for the dynamics of such disordered actomyosin bundles has been
derived by the second author [6], taking into account the aforementioned protein dynamics
(for details and an overview of other modelling approaches see [6] and the references therein).
Its derivation starts on a microscopic level and describes each actin filament by the movement
of its plus and minus ends. A force-balance equation accounts for the influences of myosin, of
cross-linking, and possibly of external forces (e.g. due to linkages to the substrate). Assuming
that proteins act as transient elastic springs that bind and unbind in the overlapping region
of filaments, an average over these effects can be described by friction [5, 7]. An effective
interaction coefficient between two filaments is derived, where the length of the overlap is
modified by a factor reducing the interaction probability in thick bundles.

A continuous description is introduced by replacing individual filaments by a position
(of the filament center of gravity) and length dependent density function. The force-balance
equation now becomes an integral equation, where the effective interaction coefficient involves
integrals over all the actin material within the overlapping region.

A significant simplification of the model is achieved by the assumption that individual
filaments are short compared to the length of the bundle. In the corresponding asymptotic
limit the force balance equations are localized and turn into two coupled elliptic equations
for the quasistationary velocities of left- and right-moving filaments. The effective interaction
coefficients now depend on moments of the actin densities with respect to filament length.
On the other hand, the velocities appear in transport equations for the densities.

This derivation of the model does not consider ends of the bundle. Considering the model
for a bundle of finite, time-dependent length, two-point boundary conditions for the velocities
and inflow boundary conditions for the densities are needed. Two choices seem natural: If
the total force acting at the ends of the bundle is prescribed, its length has to be treated as
an unknown, resulting in a free boundary problem. If, on the other hand, the dynamics of
the bundle length is prescribed, the applied force can be computed as post-processing. These
scenarios consider the force-velocity relationship of the contractile bundle either as a function
of force or of contraction rate, respectively. The aim of this study is to examine the solvability
of both problems.

We shall first introduce the mathematical model in Section 2, then transform both prob-
lems to a fixed boundary by a coordinate transform in Section 3, where we also specify
reqirements on initial and boundary data. Furthermore we explicitly solve the problem for
the case, where no forces act on the tips. In Section 4, the free boundary problem with pre-
scribed force is considered. Since in general there is no control of the bundle length, solutions
can only be expected to exist locally in time. Similarly, the solution behaviour necessary
for the well posedness of the initial-boundary value problem can only be expected for small
enough forces. We therefore prove a local-in-time existence and uniqueness result under the
assumption of a small force. In Section 5, the problem corresponding to the situation with
prescribed bundle length is treated. A local existence and uniqueness result can be shown,
which is very similar to the free boundary problem. Under the additional assumption of small
enough bundle length solutions are proven to exist globally. The local existence results are
proven by decoupling the problems for the filament densities and for the velocities and by an
analysis of the resulting fixed point operator. The main difficulty is to avoid the occurrence of
regions, where all filaments of one of the two families are completely decomposed. This defi-
nitely happens after some time, if the bundle becomes too long, which explains the shortness
assumption for the global existence result. Finally, in Section 6 we return to the problem with
prescribed force and investigate a situation, where global existence can be expected. For small

2



force and bundle length and for time independent boundary data, a formal approximation of
the solution can be computed explicitly. Under the assumption of a contractive bundle and
a pulling force, convergence to a steady state with finite bundle length is obtained.

2 The mathematical model

Let the bundle at time t ≥ 0 be located in the x-interval [0, X(t)], and let ρ+(t, x, l) and,
respectively, ρ−(t, x, l) be the densities of actin filaments (with their pointed ends directed
in the positive and, respectively, the negative x direction) with respect to their centers x ∈
[0, X(t)] and to their lengths l ≥ 0. Note that this is a two-scale model, where the length
variables x and l vary on different scales. By V ±(t, x) we denote the velocities of the filaments
centered at x (independent of filament length because of the strong friction between co-
localized filaments of the same family), and by the given constant sl > 0 the difference between
the depolymerization and the polymerization speeds, i.e. depolymerization dominates and
filaments become shorter with time.

By actin-myosin interaction, the plus-filaments are expected to move to the right relative
to the minus-filaments. Concerning the ends of the bundle, we want to describe a situation,
where plus-filaments enter the bundle from the left end and leave it at the right end, and vice
versa for the minus-filaments, meaning

V +(x = 0) > 0, V +(x = X) > Ẋ, V −(x = 0) < 0, V −(x = X) < Ẋ. (1)

This will be a consequence of assumptions on the data formulated below. If it holds, the
following initial-boundary value problem for the densities can be expected to be well posed
for given V ± and X:

∂tρ
± + ∂x(V ±ρ±)− sl ∂lρ± = 0 ,

ρ+(t, 0, l) = ρ+
0 (t, l), ρ−(t,X(t), l) = ρ−1 (t, l) ,

ρ±(0, x, l) = ρ±I (x, l) ,
(2)

where the boundary data ρ+
0 , ρ−1 and initial data ρ±I are given. This subproblem is coupled

to the problem for the velocities:

∂x (D±∂xV
±)± C (η − V + + V −) = 0 ,

V +(t, 0) = u+
0 (t) , ∂xV

+(t,X(t)) = 0 ,

∂xV
−(t, 0) = 0 , V −(t,X(t)) = Ẋ(t)− u−1 (t) ,

(3)

where the differential equation is a force balance, with the first term (reminiscent of the
viscous term in fluid models) describing friction caused by filaments of the same family as a
consequence of the building and breaking dynamics of connections by bundling proteins. The
second term models the interactions between the two families with the contributions Cη from
actin-myosin interaction and C(V + − V −) from the cross-linking of antiparallel filaments.
The parameter η > 0 measures the strength of the actin-myosin interaction relative to the
cross-linking, and the viscosity coefficients and the interaction strength coefficient between
antiparallel filaments are given by

D± =
D0µ

±
1 µ
±
3

µ+
1 + µ−1

, C =
C0µ

+
1 µ
−
1

µ+
1 + µ−1

, µ±j (t, x) =

∫ ∞
0

ljρ±(t, x, l)dl , j = 1, 3 , (4)
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with D0, C0 > 0. Note that both coefficients increase only linearly (instead of quadratically)
with the local total filament length, taking into account that in a thick bundle interaction
between two filaments becomes less likely.

Plus-Filaments are pushed into the bundle at x = 0 with speed u+
0 > 0, and minus-

filaments at x = X with (relative) speed u−1 > 0. The absence of forces on the plus-filaments
at x = X and on the minus-filaments at x = 0 are described by the homogeneous Neumann
boundary conditions.

Adding the differential equations in (3) shows that the quantity

F := D−∂xV
− +D+∂xV

+

is independent of x. It can be interpreted as the total force acting on the ends of the bundle,
pulling it apart when positive. In the following, two different situations will be considered. On
the one hand, for given bundle length X(t), (2), (3), (4) is a closed system for the computation
of ρ±, V ±, and the computation of the force can be considered as post-processing. On the
other hand, the force

F (t) = D−(t,X(t))∂xV
−(t,X(t)) (5)

may be considered as given, and the bundle length X as an unknown. In this case (5) provides
an additional equation for the determination of the free boundary X, and its initial position
X(0) = X0 > 0 has to be prescribed.

3 Preliminary Assumptions and Strategy

In this section, our strategy for proving well posedness of the free boundary problem (2)–(5)
for the determination of (ρ+, ρ−, V +, V −, X) will be presented. It will be carried out in detail
in the following section. The last section will be concerned with the simpler proofs for the
case with prescribed bundle length, where only the main differences will be highlighted.

As a preliminary step, the problem is transformed to a fixed domain by introducing the
new variable

y :=
x

X(t)
∈ [0, 1] . (6)

The proof of a local existence result will be based on a fixed point iteration on the triple
(ρ+(t, y, l), ρ−(t, y, l), X(t)). Given these quantities, the first step is the computation of the
coefficients

D± =
D0µ

±
1 µ
±
3

µ+
1 + µ−1

, C =
C0µ

+
1 µ
−
1

µ+
1 + µ−1

, µ±j (t, y) =

∫ ∞
0

ljρ±(t, y, l)dl , j = 1, 3 . (7)

Then the velocities V +(t, y), V −(t, y) are computed from the rescaled subproblem

0 = ∂y (D±∂yV
±)±X2C (η − V + + V −) ,

V +(y = 0) = u+
0 , ∂yV

+(y = 1) = 0,
∂yV

−(y = 0) = 0, (D−∂yV
−)(y = 1) = XF.

(8)

A new version of X(t) can be obtained by integration:

Ẋ = V −(y = 1) + u−1 , X(0) = X0 . (9)
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Finally, the new version of (ρ+(t, y, l), ρ−(t, y, l)) can be computed from

∂tρ
± + 1

X

(
V ± − (V −(y = 1) + u−1 )y

)
∂yρ
± − sl∂lρ± = − 1

X ρ
±∂yV

±,
ρ+(y = 0) = ρ+

0 , ρ−(y = 1) = ρ−1 ,
ρ±(0, y, l) = ρ±I (X0y, l).

(10)

It is instructive to consider the case F = 0, where (8) has the simple explicit solution

V̄ +(t, y) = u+
0 (t) , V̄ −(t, y) = u+

0 (t)− η . (11)

The bundle length can also be computed explicitly:

X̄(t) = X0 +

∫ t

0
(u+

0 (s) + u−1 (s)− η)ds . (12)

In view of (1), we now pose our assumptions on the boundary data for the velocities: We
shall assume the existence of a positive constant δ ≤ η/2, such that

0 < δ ≤ u+
0 , u

−
1 ≤ η − δ , u+

0 , u
−
1 ∈ C([0,∞)) . (13)

The problems for the densitites can then be solved by the method of characteristics. We
introduce the age τ+(y, t) ∈ [0, t] of a plus-filament with position y at time t, which has
entered the bundle at y = 0. Because of the positivity of u+

0 , it is determined uniquely by

X̄(t)y =

∫ t

t−τ+(y,t)
u+

0 (s)ds .

The density of plus-filaments is then given by

ρ̄+(t, y, l) =

{
ρ+
I

(
X̄(t)
X0

y − 1
X0

∫ t
0 u

+
0 (s)ds, l + slt

)
, for X̄(t)y >

∫ t
0 u

+
0 (s)ds ,

ρ+
0 (t− τ+(y, t), l + slτ

+(y, t)) , for X̄(t)y <
∫ t

0 u
+
0 (s)ds .

(14)

Analogously, we obtain for the minus-filaments

ρ̄−(t, y, l) =

{
ρ−I

(
X̄(t)
X0

(y − 1) + 1 + 1
X0

∫ t
0 u
−
1 (s)ds, l + slt

)
, for X̄(t)(1− y) >

∫ t
0 u
−
1 (s)ds ,

ρ−1 (t− τ−(y, t), l + slτ
−(y, t)) , for X̄(t)(1− y) <

∫ t
0 u
−
1 (s)ds ,

(15)
where τ−(y, t) ∈ [0, t] (the age of a minus-filament with position y at time t, which has entered
the bundle at y = 1) is determined by

X̄(t)(1− y) =

∫ t

t−τ−(y,t)
u−1 (s)ds .

The explicit solution (11), (12), (14), (15) already reveals several obstacles for the existence of
global solutions. Obviously, the length of the bundle (12) might shrink to zero in finite time,
but it might also grow above all bounds, which then also holds for the ages τ±. If, in this case,
the boundary data for the densities have compact supports in terms of the filament length l,
the filaments pushed in at one end might be completely depolymerized before reaching the
other end. In other words, for certain (t, y), ρ±(t, y, ·) = 0 will hold, whence the diffusivity
D±(t, y) vanishes and the elliptic nature of the equation for V ± is lost. In the following, this
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Figure 1: The properties of ρ+ ∈ Rρ,T and the boundary datum ρ+
0 as functions of l

situation will be avoided by smallness assumptions on the data (although the bundle should be
able to support pulling forces as long as the supports of D+(t, ·) and D−(t, ·) overlap and their
union covers [0, 1]). In the following, we collect our boundedness, regularity, and compatibility
assumptions on the data for the densities. We shall use the notation ΩT := (0, T )× (0, 1) and
assume the existence of positive constants α0 ≤ β0, L < L, and M , such that

ρ+
0 (t, l), ρ−1 (t, l), ρ±I (y, l) ≥ α0 , for (t, y, l) ∈ Ω∞ × [0, L] ,
ρ+

0 , ρ
−
1 , ρ

±
I ≤ β0 , in Ω∞ × [0,∞) ,

ρ+
0 = ρ−1 = ρ±I = 0 , in Ω∞ × [L,∞) ,
|∂yρ±I |, |∂tρ

+
0 |, |∂lρ

+
0 |, |∂tρ

−
1 |, |∂lρ

−
1 | ≤M , in Ω∞ × [0,∞) ,

ρ+
0 (0, l) = ρ+

I (0, l) , ρ−1 (0, l) = ρ−I (1, l) , for l ≥ 0 .

(16)

The first of these assumptions guarantees that the complete depolymerization described
above is avoided at least in the explicit solutions (14), (15) for short times t < L/sl.

Another difficulty results from a possible violation of (1) for large applied forces. The
existence result in the following section will therefore be local in time under the additional
assumption of small enough F (t).

4 Prescribed Force – Local Existence and Uniqueness

In this section, we consider the situation where the force F (t) acting on the tips of the bundle
is prescribed, and the problem (7)–(9) is expected to determine the coefficients D±, C, the
velocities V ±, the densities ρ±, and the bundle length X. We shall prove local existence and
uniqueness of solutions for small enough F .

Collecting our assumptions on the data, we assume C0, D0, η, sl, X0 > 0, (13), and (16).
When we say in the following that a quantity depends on the data, it means that it depends
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on all the constants appearing in these assumptions. For a time T > 0 to be chosen below,
the fixed point operator discussed in the previous section will act on the set R2

ρ,T ×RX,T with

Rρ,T := {ρ ∈ L∞(ΩT × (0,∞)) : ρ(t, y, l) ≥ α0/2 for 0 ≤ l ≤ L/2, ρ±(t, y, l) ≤ 2β0 for l ≥ 0,

ρ±(t, y, l) = 0 for l ≥ L, |∂yρ±(t, y, l)| ≤ γ for l ≥ 0} ,

RX,T := {X ∈ C([0, T ]) : X0/2 ≤ X(t) ≤ 2X0} ,

where γ > 0 depends on the data in a way defined below.

Lemma 1. Let, for an arbitrary T > 0, (ρ+, ρ−) ∈ R2
ρ,T . Then there exist κ, κ, c > 0,

depending on the data, such that C and D±, defined by (7), satisfy

κ ≤ C, D± ≤ κ , |∂yD±| ≤ c , in ΩT . (17)

Proof. The proof is straightforward using

(L/2)j+1

j + 1

α0

2
≤ µ±j ≤

L
j+1

j + 1
2β0 .

Lemma 2. Let, for an arbitrary T > 0, X ∈ RX,T and let C,D± satisfy (17). Then (8) has
a unique solution (V +, V −) ∈ L∞(0, T ;W 2,∞(0, 1))2 satisfying

|V + − u+
0 | ≤ Γ|F | , |V − + η − u+

0 | ≤ Γ|F | , |∂yV ±|, |∂2
yV
±| ≤ c+ Γ|F | , in ΩT ,

(18)
with Γ, c > 0 depending on the data.

Proof. We introduce the new unknowns

U+(t, y) := V +(t, y)−u+
0 (t) , U−(t, y) := V −(t, y)−u+

0 (t)+η+F (t)X(t)

∫ 1

y

ỹ

D−(t, ỹ)
dỹ ,

satisfying the differential equations

∂y(D
+∂yU

+)−X2C(U+ − U−) = FXVr ,

∂y(D
−∂yU

−) +X2C(U+ − U−) = −FX (Vr + 1) ,

with

Vr(t, y) := C(t, y)X(t)2

∫ 1

y

ỹ

D−(t, ỹ)
dỹ ,

and the homogeneous boundary conditions

U+(y = 0) = 0 , ∂yU
+(y = 1) = 0 , ∂yU

−(y = 0) = 0 , ∂yU
−(y = 1) = 0 .

Accordingly, for each fixed t ∈ [0, T ], we shall construct solutions U = (U+, U−) in the Hilbert
space

H∂ :=
{
φ = (φ+, φ−) ∈ H1(0, 1)2 : φ+(0) = 0

}
,
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equipped with the natural norm

||φ||2H∂
:= ||φ+||2H1(0,1) + ||φ−||2H1(0,1).

The problem for U ∈ H∂ can then be written in the weak form a(U, φ) = G(φ) for all φ ∈ H∂

with

a(U, φ) :=

∫ 1

0

(
D+∂yU

+∂yφ
+ +D−∂yU

−∂yφ
− +X2C(U+ − U−)(φ+ − φ−)

)
dy ,

G(φ) := −FX
∫ 1

0

(
Vrφ

+ − (Vr + 1)φ−
)
dy .

As a consequence of the assumptions on X, C, and D−, Vr is bounded in terms of the data,
and there exists a constant c depending on the data, such that the linear functional G is
bounded by

‖G‖H′∂ ≤ c|F | .

In order to show that the bilinear form a is coercive, we use the Poincare inequality

‖U+‖L2(0,1) ≤ ‖∂yU+‖L2(0,1) for U ∈ H∂ ,

and the elementary inequality

Au2 +B(u− v)2 ≥ AB

A+ 2B
(u2 + v2) , for A,B, u, v > 0 .

We therefore have

a(U,U) ≥ κ

∫ 1

0

(
(∂yU

+)2 + (∂yU
−)2 +

X2
0

4
(U+ − U−)2

)
dy

≥ κ

∫ 1

0

(
1

2
(∂yU

+)2 + (∂yU
−)2 +

1

2
(U+)2 +

X2
0

4
(U+ − U−)2

)
dy

≥ κmin

{
1

2
,

X2
0

4(1 +X2
0 )

}
‖U‖2H∂

.

Continuity of a with a bound depending on the data is straightforward. The Lax-Milgram
Lemma implies existence and uniqueness of a weak solution (V +, V −) of (8) and the bound

‖V + − u+
0 ‖H1(0,1) + ‖V − − u+

0 + η‖H1(0,1) ≤ c|F | ,

with c depending on the data. The Sobolev embedding H1(0, 1) ↪→ L∞(0, 1) completes the
proof of the first two estimates in (18).

The boundedness of ∂yV
± is a consequence of the formula

∂yV
−(t, y) =

X(t)2

D−(t, y)

∫ y

0
C(t, ỹ)

(
η − V +(t, ỹ) + V −(t, ỹ)

)
dỹ ,

with a corresponding version for ∂yV
+. The boundedness of the second order derivatives for

bounded ∂yD
± follows from elliptic regularity.
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Finally, we consider the problems (9) and (10) for the bundle length and, respectively, the
densities. This is the point where smallness of the applied force will be needed. We require
that, with the velocities obtained in Lemma 2, the y-characteristics of the equation for ρ+

(the plus-characteristics) enter the domain at y = 0 and leave it at y = 1, and vice versa for
ρ−. The velocity of the plus-characteristics at y = 0 is V +(y = 0) = u+

0 ≥ δ > 0 by (13). At
y = 1, we have by (18) and again (13),

V +(y = 1)− V −(y = 1)− u−1 ≥ η − u
−
1 − 2Γ|F | ≥ δ − 2Γ|F | .

Similarly, for the velocity of the minus-characteristics at y = 1, −u−1 ≤ −δ < 0, and at y = 0

V −(y = 0) ≤ u+
0 − η + Γ|F | ≤ −δ + Γ|F | .

Obviously, the assumption

|F (t)| ≤ δ

4Γ
for t ∈ [0, T ] , (19)

guarantees the desired properties. Apart from it, the time interval will have to be short
enough for the fixed point operator to be a self map.

Lemma 3. There exists T > 0 depending on the data such that, if V ± and F satisfy (18)
and, respectively, (19), the unique solution X of (9) satisfies X ∈ RX,T .

Proof. The result follows immediately, since the assumptions imply a bound of Ẋ depending
on the data (actually |Ẋ| ≤ η).

Lemma 4. There exists T > 0 depending on the data such that, if X ∈ RX,T , and V ± and
F satisfy (18) and, respectively, (19), the problem (10) has a unique solution ρ± ∈ Rρ,T with
γ > 0 depending on the data.

Proof. Since, as a consequence of (19), the plus- and minus-characteristics have the desired
sign properties as discussed above, and by the regularity of V ±, the problem can be solved
by the method of characteristics. The condition sl > 0 implies that the l-characteristics are
outgoing at the boundary l = 0, such that no boundary conditions are required there and the
support of ρ± in terms of l shrinks. The characteristic equation

d

dt
ρ± = − 1

X
ρ±∂yV

± ,

and the bound |∂yV ±/X| ≤ c depending on the data already imply the required inequalities
for T ≤ L/(2sl) and ecT ≤ 2, except the bound on ∂yρ

±. The latter is shown by differentiating
the differential equation with respect to y and solving for ∂yρ

± again by the method of
characteristics. A boundary condition for ∂yρ

+ is obtained from the differential equation:

∂yρ
+(y = 0) = −X(∂tρ

+
0 − sl∂lρ

+
0 ) + ρ+

0 ∂yV
+(y = 0)

V +(y = 0)
.

The right hand side and the initial data ∂yρ
+(t = 0) = ∂yρ

+
I are bounded by (16) and by

the assumption on V +. An exponentially increasing bound for ∂yρ
+ (as for ρ±) follows. The

bound for ∂yρ
− is shown analogously.
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We now prove Lipschitz continuity of the maps defined by the previous four lemmas. For
this purpose, we need norms for the solution components. We choose

‖ρ±‖density := sup
t∈(0,T )

‖ρ±(t, ·, ·)‖L2((0,1)×(0,∞)) , ‖X‖length := sup
t∈(0,T )

|X(t)| ,

‖V ±‖vel := sup
t∈(0,T )

‖V ±(t, ·)‖H1(0,1) , ‖D±‖coeff := sup
t∈(0,T )

‖D±(t, ·)‖L2(0,1) .

Differences will be denoted by ∆ρ± := ρ±1 − ρ
±
2 and analogously for the other components

X,V ±, C,D±.

Lemma 5. a) Let ρ±1 and ρ±2 satisfy the assumptions of Lemma 1. Then there exists a
constant c > 0 depending on the data, such that the corresponding coefficients (D±1 , C1) and
(D±2 , C2) defined by (7) satisfy

‖∆D+‖coeff + ‖∆D−‖coeff + ‖∆C‖coeff ≤ c
(
‖∆ρ+‖density + ‖∆ρ−‖density

)
.

b) Let (D±1 , C1, X1) and (D±2 , C2, X2) satisfy the assumptions of Lemma 2 and let (19) hold.
Then there exists a constant c > 0 depending on the data, such that the corresponding solutions
V ±1 and V ±2 of (8) satisfy

‖∆V +‖vel + ‖∆V −‖vel ≤ c
(
‖∆X‖length + ‖∆C‖coeff + ‖∆D+‖coeff + ‖∆D−‖coeff

)
.

c) Let V −1 and V −2 satisfy the assumptions of Lemma 3 and let (19) hold. Then there exists
a constant c > 0 depending on the data, such that the corresponding solutions X1 and X2 of
(9) satisfy

‖∆X‖length ≤ cT‖∆V −‖vel .

d) Let (X1, V
±

1 ) and (X2, V
±

2 ) satisfy the assumptions of Lemma 4 and let (19) hold. Then
there exist constants c1, c2 > 0 depending on the data, such that the corresponding solutions
ρ±1 and ρ±2 of (10) satisfy

‖∆ρ+‖density + ‖∆ρ−‖density ≤ c1

(
ec2T − 1

) (
‖∆V +‖vel + ‖∆V −‖vel + ‖∆X‖length

)
.

Proof. a) Noting that, by the boundedness of the support, the l-moments of the densitites
can be bounded in terms of the L2

l -norm, the proof is a straightforward computation.
b) We proceed analogous to the existence proof, and introduce auxiliary functions

U+
i (t, y) := V +

i (t, y)− u+
0 (t), U−i (t, y) := V −i (t, y)− u+

0 (t) + η + F (t)Xi(t)

∫ 1

y

ỹdỹ

D−i (t, ỹ)︸ ︷︷ ︸
=:V i

r (y)

.

Then ∆U := (∆U+,∆U−) satisfies a (∆U, φ) = G(φ) for all φ := (φ+, φ−) ∈ H∂ , where the
space H∂ , together with the corresponding norm, and the bilinear form a are defined in the
same way as in Lemma 2. The functional G is given by

G(φ) =

∫ 1

0

(
−∆C((U+

2 − U
−
2 ) + FV 1

r )(φ+ − φ−)− ∆D+

X2
1

∂yU
+
2 ∂yφ

+ − ∆D−

X2
1

∂yU
−
2 ∂yφ

−

+ ∆X
X1 +X2

X1X2

(
D+

2 ∂yU
+
2 ∂yφ

+ +D−2 ∂yU
−
2 ∂yφ

−)−∆X
F

X1X2
φ−

− (φ+ − φ−)FC2

∫ 1

y
ỹ

(
∆X

D−2 (ỹ)
−∆D−(ỹ)

X1

D−1 (ỹ)D−2 (ỹ)

)
dỹ

)
dy .
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We derive an estimate on this functional by using the boundedness of the functions U±2 , ∂yU
±
2 ,

X1,2, D±2 , and C2. The Hilbert space norms, together with the L2
y−norms of the coefficients

∆D±,∆C, are extracted with the Cauchy-Schwarz inequality as well as the elementary in-
equalities (a± b)2 ≤ 2(a2 + b2) and

√
x+ y ≤

√
x+
√
y ≤ 2

√
x+ y for x, y ≥ 0.

c) Since ∆Ẋ = ∆V −(t, 1), the proof is straightforward using the Sobolev embeddingH1(0, 1) ↪→
L∞(0, 1), and integrating the differential equation with ∆X(t = 0) = 0.
d) We drop the superscript ±, since the proof is the same for both cases. Multiplication of
the difference of the equations for ρ1 and ρ2 by 2∆ρ and integration with respect to l and y
gives

d

dt

∫ 1

0

∫ ∞
0

(∆ρ)2dl dy = 2

∫ 1

0

∫ ∞
0

A∆ρ dl dy − 1

X1

∫ 1

0

∫ ∞
0

(
∂yV1 + Ẋ1

)
(∆ρ)2dl dy

− 1

X1

∫ ∞
0

(
V1 − Ẋ1y

)
(∆ρ)2

∣∣∣1
y=0

dl − sl
∫ 1

0
∆ρ(l = 0)2dy ,(20)

where in the first term we have used the abbreviation

A := −∂yρ2

X1
∆V − ρ2

X1
∂y∆V +

y∂yρ2

X1
∆Ẋ + ∆X

1

X1X2
((V2 −X2y)∂yρ2 + ρ2∂yV2) .

The terms in the second line are nonpositive, which is obvious for the second. Concerning
the first term, in the plus-equation V1 − Ẋ1y is positive and ∆ρ(y = 0) = 0, and for the
minus-equation V1 − Ẋ1y is negative and ∆ρ(y = 1) = 0. Since X1,2, V1,2, ∂yV1,2, ρ2, and
∂yρ2 are bounded, and because ∆Ẋ can be bounded by ∆V − due to c), this implies

d

dt
‖∆ρ‖L2((0,1)×(0,∞)) ≤ c1‖∆ρ‖L2((0,1)×(0,∞)) + c2

(
‖∆V +‖H1(0,1) + ‖∆V −‖H1(0,1) + ‖∆X‖L∞t

)
.

In the estimate of the first term the fact that ∆ρ has bounded support as a function of l has
been used. The proof of d) is completed by an application of the Gronwall inequality and
noting that ∆ρ(t = 0) = 0 holds.

Theorem 6. Let C0, D0, η, sl, X0 > 0, (13), (16), and (19) hold. Then there exists T > 0,
such that problem (2)–(5) has a unique solution

(ρ+, ρ−, V +, V −, X) ∈ L∞
(
0, T ; W 1,∞

x (L∞l )2 × (W 2,∞
x )2 × R

)
,

such that ρ+, ρ− > 0 are uniformly bounded away from zero in {(t, x, l) : 0 < t < T, 0 < x <
X(t), 0 < l < L/2}, V + > max{0, Ẋ}, and V − < min{0, Ẋ}.

Proof. By first scaling the system according to (6), Lemma 5 a)–d) shows that the fixed point
map on (Rρ,T )2×RX,T is Lipschitz continuous with respect to the L∞t ((L2

y,l)
2×R)-topology.

By Lemma 5 c), d), it is a contraction for T small enough, proving existence and uniqueness
of the scaled version and therefore also of the original problem. The properties of the solution
are a consequence of the Lemmas 1, 3, and 4.

5 Prescribed bundle length – existence and uniqueness

In this section, X(t) will be assumed as given, satisfying

X ∈ C1([0,∞)) , 0 < X0/2 ≤ X(t) ≤ 2X0 for t ≥ 0 . (21)

11



This assumption removes one of the obstacles for global existence in the preceding section
with the consequence that we prove a global existence result at the end of this section. The
problem (8) for the velocities is replaced by

0 = ∂y (D±∂yV
±)±X2C (η − V + + V −) ,

V +(y = 0) = u+
0 , ∂yV

+(y = 1) = 0 ,

∂yV
−(y = 0) = 0, V −(y = 1) = −u−1 + Ẋ ,

(22)

and the system (7), (22), (10) has to be solved for C, D±, V ±, and ρ±. The last equation
in (8) can be used as a posteriori information, to calculate the force the bundle exerts on its
neighborhood.

Since the subproblem (10) for the densities ρ± did not change, we will assume the same
bounds (16) on the data as before. For (10) to be well posed, the assumption (13) on the
boundary data for the velocities will be replaced by

δ + Ẋ(t)+ ≤ u+
0 (t), u−1 (t) ≤ η − δ − (−Ẋ(t))+ , t ≥ 0 , (23)

with δ > 0. Note that this implicitly contains the assumption |Ẋ| ≤ η − 2δ on the time
changes of the bundle length.

The local existence proof follows the strategy of the preceding section. Therefore we shall
only concentrate on the main differences. The fixed point iteration now acts on (ρ+, ρ−) ∈
(Rρ,T )2. The first step is again the computation of the friction coefficients C,D±, whose
properties are given in Lemma 1. In the elliptic problem (22) for the velocities, an inhomoge-
neous Neumann boundary condition has been replaced by a Dirichlet condition. In the proof
of the following result, this permits direct estimates by the maximum principle, replacing the
L∞-estimates by Sobolev embedding of the preceding section.

Lemma 7. Let, for an arbitrary T > 0, C,D± satisfy (17), and let (23) hold. Then (22) has
a unique solution (V +, V −) ∈ L∞(0, T ;W 2,∞(0, 1))2 satisfying

δ + Ẋ(t)+ ≤ V +(t, y) ≤ η − δ − (−Ẋ(t))+ , −η + δ + Ẋ(t)+ ≤ V −(t, y) ≤ −δ − (−Ẋ(t))+ ,

|∂yV ±|, |∂2
yV
±| ≤ c , in ΩT , (24)

with c depending only on the data (which means the same as in the preceding section).

Proof. As in Lemma 2, existence and uniqueness are a consequence of the Lax-Milgram
lemma, now for the new unknowns

(W+,W−) := (V + − u+
0 , V

− − Ẋ + u−1 ) ∈ Ĥ∂ ,

with
Ĥ∂ := {φ = (φ+, φ−) ∈ H1(0, 1)2 : φ+(0) = φ−(1) = 0} .

The necessary estimates are very similar and, thus, omitted. On the other hand, with V0 = u+
0 ,

V1 = Ẋ − u−1 , the maximum principle implies

min

{
V0(t), η + min

[0,1]
V −(t, ·)

}
≤ V +(t, y) ≤ max

{
V0(t), η + max

[0,1]
V −(t, ·)

}
,

min

{
V1(t),−η + min

[0,1]
V +(t, ·)

}
≤ V −(t, y) ≤ max

{
V1(t),−η + max

[0,1]
V +(t, ·)

}
,
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for (t, y) ∈ ΩT . These inequalities are consistent with (24) since, by (23), (24) is also satisfied
by (V0, V1). Thus, (8) could also be solved by a fixed point iteration (in the subset of L∞(0, 1)2

defined by (24)), where the problems for V + and V − are solved alternatingly, which proves
(24). The statements about the derivatives are proven analogously to the proof of Lemma
2.

The following result is concerned with the subproblem for the densities and corresponds
to Lemma 4 of the preceding section. Here it also provides the basis of a global existence
result under a smallness assumption on the data.

Lemma 8. Let the initial and boundary data for the densities, the bundle length, and the
velocities satisfy (16), (21), and, respectively, (24). Then
a) for T > 0 small enough, the problem (10) has a unique solution ρ± ∈ Rρ,T with γ > 0
depending on the data,
b) for arbitrary T and for X0 small enough, the problem (10) has a unique solution ρ±

satisfying

ρ±(t, y, l) ≥ αT > 0 for l ≤ L/2 , ρ± ≤ βT , |∂yρ±| ≤ γT in ΩT × (0,∞) . (25)

Proof. If V + − Ẋy > 0 for all y ∈ [0, 1] holds, it is guaranteed that the y-characteristics for
the plus family are ingoing at the left boundary and outgoing at the right. Indeed, by (24),

V + − Ẋy ≥ δ + Ẋ+ − (Ẋ+ − (−Ẋ)+)y = δ + Ẋ+(1− y) + (−Ẋ)+y ≥ δ .

Analogously, V − − Ẋy ≤ −δ is proven.
a) For small T , the rest of the proof is as in Lemma 4.
b) Since, by the above estimates and by (21), δ/(2X0) is the minimum y-speed of the charac-
teristics, the maximal life time of a characteristic before it leaves the bundle (i.e. the y-interval
[0, 1]) is 2X0/δ. By (16), the initial and boundary data for the densities are bounded away
from zero for l ∈ [0, L]. The right end of this interval moves to L − slτ on a characteristic
with life time τ , and it thus stays above L/2 for

X0 ≤
δL

4sl
,

completing the proof of the first estimate in (25), since the sign of the densities is preserved
along characteristics. The other estimates are proved as in Lemma 4.

For the local existence result we again need Lipschitz continuity. The following result can
be proved analogously to Lemma 5 and the proof is therefore omitted.

Lemma 9. a) Let (D±1 , C1) and (D±2 , C2) satisfy the assumptions of Lemma 7. Then there
exists a constant c > 0 depending on the data, such that the corresponding solutions V ±1 and
V ±2 of (22) satisfy

‖∆V +‖vel + ‖∆V −‖vel ≤ c
(
‖∆C‖coeff + ‖∆D+‖coeff + ‖∆D−‖coeff

)
.

b) Let the assumption of Lemma 8 hold for V ±1 and V ±2 and let T be small enough in the sense
of Lemma 8 a). Then there exist constants c1, c2 > 0, such that the corresponding solutions
ρ±1 and ρ±2 of (10) satisfy

‖∆ρ+‖density + ‖∆ρ−‖density ≤ c1

(
ec2T − 1

) (
‖∆V +‖vel + ‖∆V −‖vel

)
.
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The existence results will again be written for the problem in the original scaling.

Theorem 10. Let C0, D0, η, sl, X0 > 0, (16), (21), and (23) hold. Then for T > 0 small
enough the problem (2)–(4) has a unique solution

(ρ+, ρ−, V +, V −) ∈ L∞
(
0, T ; W 1,∞

x (L∞l )2 × (W 2,∞
x )2

)
,

such that ρ+, ρ− > 0 are uniformly bounded away from zero in {(t, x, l) : 0 < t < T, 0 < x <
X(t), 0 < l < L/2}, V + > max{0, Ẋ}, and V − < min{0, Ẋ}.

Proof. Lemmas 1, 7, 8 show that for small enough T the fixed point operator maps R2
ρ into

itself and that the solution components have the stated properties. By Lemmas 5 a) and
9 the fixed point map is a contraction with respect to the L∞t (0, T ; L2

y,l((0, 1) × (0,∞)))-
topology.

The only obstacle for the global existence of solutions is the possibility that all filaments,
pushed in at one end of the bundle, get completely depolymerized before reaching the other
end. Lemma 8 b) shows that this can be avoided in short enough bundles.

Theorem 11. Let the assumptions of Theorem 10 hold. Then, for X0 small enough the
problem (2)–(4) has a unique global solution.

Proof. By Lemma (8) b) the qualitative properties of the initial data ρ±I , requested in (16),
are propagated for arbitrary times, permitting continuation of the local solution.

6 Asymptotics for small prescribed force

In this section we show that it seems possible to improve the results of Section 4. For small
force and time independent data, global solvability and convergence to a steady state can be
expected.

We assume time independent boundary data and prescribed force, i.e. u+
0 (t) = ul, u

−
1 (t) =

ur, ρ
+
0 (t, l) = ρl(l), ρ

−
1 (t, l) = ρr(l), and F = const. Furthermore, the force is assumed to be

pulling, F > 0, and the force free bundle to be contractive, η > ul + ur.
With a small parameter ε > 0, we introduce the small force rescaling

F → εF , X → εX , x→ εx , t→ εt ,

expressing the expectation of a small bundle length of the same order of magnitude as the
force and of an accordingly faster relevant time scale. The rescaled problem for the velocities
with prescribed force reads

∂x (D±∂xV
±)± ε2C (η − V + + V −) = 0 ,

V +(t, 0) = ul , ∂xV
+(t,X(t)) = 0 ,

∂xV
−(t, 0) = 0 , (D−∂xV

−)(t,X(t)) = ε2F .
(26)

The dynamics of the bundle length is then determined by

Ẋ(t) = V −(t,X(t)) + ur . (27)

We shall pass to the limit ε → 0 formally and denote formal limits by the subscript 0.
Obviously, the formal limit of (26) has the solution V +

0 = ul, V
−

0 = V −0 (t) with the latter

14



to be determined by integration of the differential equation for V −, substitution of the last
boundary condition, division by ε2, and passing to the limit:

V −0 (t) =
F∫ X0(t)

0 C0(t, x)dx
+ ul − η .

The formal limit

∂tρ
±
0 + V ±0 ∂xρ

±
0 = 0 ,

ρ+
0 (t, 0, l) = ρl(l) , ρ−0 (t,X(t), l) = ρr(l) ,

(28)

of the equations for the densities has – after finite time – the solution ρ+
0 = ρl, ρ

−
0 = ρr,

producing a constant coefficient C0 and thus V −0 = F
C0X0

+ ul − η. The limiting dynamics of
the bundle length is therefore given by the ODE

Ẋ0 = ul + ur − η +
F

C0X0

with the stable positive steady state

X∞ =
F

C0(η − ul − ur)
.

We conjecture that the asymptotics of this section can be made rigorous in a rather straight-
forward way by tracking the dependence on ε in the estimates of Section 4. The convergence
to equilibrium will not hold for large forces, which might rip the bundle apart.
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