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Abstract. Scalar one-dimensional conservation laws with nonlocal diffusion

term are considered. The wellposedness result of the initial-value problem
with essentially bounded initial data for scalar one-dimensional conservation

laws with fractional Laplacian is extended to a family of Riesz-Feller operators.

The main interest of this work is the investigation of smooth traveling wave
solutions. In case of a genuinely nonlinear smooth flux function we prove the

existence of such traveling waves, which are monotone and satisfy the standard

entropy condition. Moreover, the dynamic nonlinear stability of the traveling
waves under small perturbations is proven, similarly to the case of the standard

diffusive regularization, by constructing a Lyapunov functional.

Apart from summarizing our results in the article Achleitner et al. (2011),
we provide the wellposedness of the initial-value problem for a larger class of

Riesz-Feller operators.

1. Introduction. We consider one-dimensional conservation laws with nonlocal
diffusion term

∂tu+ ∂xf(u) = ∂xDαu (1)

for a scalar quantity u : R+ ×R, (t, x) 7→ u(t, x), a smooth flux function f : R→ R
and a non-local operator

(Dαu)(x) =
1

Γ(1− α)

∫ x

−∞

u′(y)

(x− y)α
dy , (2)

with 0 < α < 1.
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1.1. Motivation. Conservation laws with nonlocal diffusion term of the form (1)
appear in viscoelasticity - modeling the far-field behavior of uni-directional vis-
coelastic waves [11] - as well as in fluid mechanics - modeling the internal structure
of hydraulic jumps in near-critical single-layer flows [9]. Moreover the nonlocal
operator D1/3 appears in Fowler’s equation

∂tu+ ∂xu
2 = ∂2

xu− ∂xD1/3u , (3)

which models the uni-directional evolution of sand dune profiles [7].
Equation (1) is closely related to

∂tu+ ∂xf(u) = Dα+1u (4)

with a fractional Laplacian Dα+1 = (−∂
2u
∂x2 )(α+1)/2, 0 < α < 1. This kind of

nonlinear conservation law with nonlocal regularization has been studied e.g. in [3,
5].

Remark 1. The nonlocal operators ∂xDα, 0 < α < 1, and the fractional Laplacian
Dα+1, 0 < α < 1, are Fourier multiplier operators, i.e.

F(∂xDαu)(ξ) = −(sin(απ/2)− i cos(απ/2) sgn(ξ))|ξ|α+1Fu(ξ)

and

F(Dα+1u)(ξ) = −|ξ|α+1Fu(ξ) ,

whereat the Fourier transform F is defined as Fϕ(ξ) = ϕ̂(ξ) = 1√
2π

∫
e−ixξϕ(x)dx.

1.2. Riesz-Feller operators. Riesz-Feller operators [6, 13, 8] are Fourier multi-
plier operators

(FDa,θf)(ξ) = −ψa,θ(−ξ)(Ff)(ξ)

whose multiplier ψa,θ(ξ) = |ξ|ae(i sgn(ξ)θπ/2) is the logarithm of the characteristic
function of a general Lévy strictly stable probability density with index of stabil-
ity 0 < a ≤ 2 and asymmetry parameter |θ| ≤ min(a, 2−a). The nonlocal operators
∂xDα, 0 < α < 1, and the fractional Laplacian Dα+1, 0 < α < 1, are Riesz-Feller
operators, see also Remark 1 and Figure 1.

Theorem 1.1. For 1 < a ≤ 2 and |θ| ≤ min{a, 2 − a}, the Riesz-Feller opera-
tor Da,θ generates a strongly continuous, convolution semigroup

T (t) : Lp(R)→ Lp(R) , u0 7→ T (t)u0 = K(t, ·) ∗ u0 ,

with 1 ≤ p <∞ and a convolution kernel K(t, x) = F−1 exp(−tψ(−.))(x) satisfying
- for all x ∈ R, t > 0 and m ∈ N - the properties

• (non-negative) K(t, x) ≥ 0,
• (integrable) ‖K(t, .)‖L1(R) = 1,

• (scaling) K(t, x) = t−
1
aK(1, xt−

1
a ),

• (smooth) K(t, x) is C∞ smooth,
• (bounded) there exists Bm ∈ R+ such that∣∣∣∣∂mK∂xm

∣∣∣∣(t, x) ≤ t−
1+m
a

Bm

1 + t−
2
a |x|2

.
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Figure 1. The family of Fourier multipliers ψa,θ(ξ) =

|ξ|ae(i sgn(ξ)θπ/2) has two parameters a and θ. Some associated
Fourier multiplier operators (FTf)(ξ) = −ψa,θ(−ξ)(Ff)(ξ) are
displayed in the parameter space (a, θ). The Riesz-Feller opera-
tors Da,θ are those operators, that take their parameters in the
blue set, also known as Feller-Takayasu diamond. The family of
operators ∂xDα, 0 < α < 1, interpolates formally between the first
derivative ∂x and second derivative ∂2

x. Thus the limiting cases of
equation (1) are a hyperbolic conservation law (for α = 0) and a
viscous conservation law (for α = 1) [11].

The initial-value problem

∂tu+ ∂xf(u) = Da,θu , u(0, x) = u0(x) , (5)

for Riesz-Feller operators Da,θ with index of stability 1 < a ≤ 2 and asymmetry
parameter a− 2 ≤ θ ≤ 2− a covers the special cases (1) and (4).

Theorem 1.2. Suppose 1 < a ≤ 2 and a− 2 ≤ θ ≤ 2− a. If u0 ∈ L∞, then there
exists a unique solution u ∈ L∞((0,∞)×R) of (5) satisfying the mild formulation

u(t, x) = K(t, .) ∗ u0(x)−
∫ t

0

[
∂K

∂x
(t− τ, .) ∗ f(u(τ, .))

]
(x) dτ (6)

almost everywhere. In particular

‖u(t, .)‖∞ ≤ ‖u0‖∞, for t > 0 ,

and, in fact, u takes its values between the essential lower and upper bounds of u0.
Moreover, the solution has the following properties:

(i) u ∈ C∞((0,∞)× R) and u ∈ C∞b ((t0,∞)× R) for all t0 > 0.
(ii) u satisfies equation (5) in the classical sense.

(iii) u(t)→ u0, as t→ 0, in L∞(R) weak-∗ and in Lploc(R) for all p ∈ [1,∞).
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Sketch of proof. The analysis of the initial-value problem for (4) by Droniou, Gal-
louët and Vovelle [5] depends on the properties in Theorem 1.1 of the semigroup
(and its convolution kernel K(t, x)) generated by the fractional Laplacian Dα+1 for
0 < α < 1. However all Riesz-Feller operators Da,θ with index of stability 1 < a ≤ 2
and asymmetry parameter a− 2 ≤ θ ≤ 2− a share these properties. Thus the anal-
ysis in [5] carries over to the initial-value problem (5).

2. Traveling wave solutions.

Definition 2.1. Suppose (u−, u+, s) ∈ R3. A traveling wave solution of (1) is a
solution of the form u(t, x) = ū(ξ) with ξ := x − st and some function ū : R → R
that connects the distinct endstates limξ→±∞ ū(ξ) = u±.

Inserting a traveling wave ansatz in (1) and integrating with respect to ξ yields
the traveling wave equation

h(u) := f(u)− su−
(
f(u−)− su−

)
= Dαu =

1

Γ(1− α)

∫ x

−∞

u′(y)

(x− y)α
dy , (7)

which is translation invariant.
If a smooth profile ū approaches the endstates sufficiently fast, then the formal

limit ξ → ∞ in (7) leads to the Rankine-Hugoniot condition f(u+) − f(u−) =
s(u+ − u−).

If f is a convex flux function, then the vector field h is non-positive for values
between u− and u+. Thus and due to the right-hand side of (7), a monotone
traveling wave solution has to be monotone decreasing and the standard entropy
condition u− > u+ has to hold.

The profile ū of a traveling wave solution is governed by (7), whence its value
at ξ ∈ R depends (only) on its values on the interval (−∞, ξ). Therefore, first
the existence of a profile on an interval (−∞, ξε] is established, subsequently its
monotonicity and boundedness are verified and finally its global existence is deduced
from an continuation argument.

The integral operator

Dαu(ξ) =
1

Γ(1− α)

∫ ξ

−∞

u′(y)

(ξ − y)α
dy

is of Abel type and can be inverted by multiplying it with (z − ξ)−(1−α) and inte-
grating with respect to ξ from −∞ to z. Thus the traveling wave problem

h(u) = Dαu , lim
ξ→−∞

ū(ξ) = u− , lim
ξ→+∞

ū(ξ) = u+ , (8)

and

u(ξ)− u− = D−α(h(u))(ξ) :=
1

Γ(α)

∫ ξ

−∞

h(u(y))

(ξ − y)1−α dy (9)

are equivalent if u ∈ C1
b (R) and u′ ∈ L1(R−), and in particular if u ∈ C1

b (R) is
monotone. Equation (9) is a nonlinear Volterra integral equation with a locally
integrable kernel, where a well developed theory exists for problems on bounded
intervals.

The linearizations of (8) and (9) at ξ = −∞ (or, equivalently, at u = u−) are

h′(u−)v = Dαv and v = h′(u−)D−αv , (10)

respectively. Both linearizations have solutions of the form v(ξ) = beλξ with λ =
h′(u−)1/α and arbitrary b ∈ R, see also [4]. We will need that these are the only
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non-trivial solutions of (10) in the space H2(−∞, ξ0] for some ξ0 ≤ 0. In particular,
we assume that

N
(
id− h′(u−)D−α

)
= span{exp(λξ)} with λ = h′(u−)1/α , (11)

which is reasonable due to our analysis in [1, Appendix A].
In the existence result both formulations (8) and (9) will be used.

Theorem 2.2 ([1, Theorem 2]). Suppose f ∈ C∞(R) is a convex flux function, the
shock triple (u−, u+, s) satisfies the Rankine-Hugoniot condition f(u+) − f(u−) =
s(u+ − u−) as well as the entropy condition u− > u+, and condition (11) holds.
Then there exists a decreasing solution u ∈ C1

b (R) of the traveling wave problem (8).
It is unique (up to a shift) among all u ∈ u− +H2((−∞, 0)) ∩ C1

b (R).

Remark 2 (Extensions). In [1] we prove the result assuming only

h ∈ C∞([u+, u−]) , h(u+) = h(u−) = 0 , h < 0 in (u+, u−) ,

∃um ∈ (u+, u−) such that h′ < 0 in (u+, um) and h′ > 0 in (um, u−] . (12)

This is a little less than asking for convexity of f and the Lax entropy condition,
since it covers the case f ′(u+) ≤ s < f ′(u−).

The case of an concave flux function f can be analyzed in a similar way.

Idea of proof. The nonlinear problem has, up to translations, only two nontrivial
solutions udown and uup, which can be approximated for large negative ξ by u−−eλξ
and u− + eλξ, respectively. The choice 1 of the modulus of the coefficient of the
exponential is irrelevant due to the translation invariance of the traveling wave
equations (7) and (9).

The traveling wave equation (7) involves a causal integral operator, i.e. to eval-
uate Dαū(ξ) at a point ξ the profile ū on the interval (−∞, ξ] is needed. Thus, for
ε > 0 and ξε := log ε/λ, we investigate the existence of solution udown : Iε → R
of (7) on the interval Iε = (−∞, ξε]

lim
ξ→−∞

udown(ξ) = u− and udown(ξε) = u− − ε . (13)

Due to the analysis of the linearized equation (10) and assumption (11), the solution
is written as udown(ξ) = u− − exp(λξ) + v. Thus the perturbation v satisfies a
boundary value problem (BVP)(
Dα − h′(u−)

)
v = h(u− − exp(λξ) + v) + h′(u−)

(
exp(λξ)− v

)
, v(ξε) = 0 .

This can be formulated as a fixed point problem for a given right-hand side in
H2(Iε) and an application of Banach’s fixed point theorem yields the existence of
udown which is unique among all functions u satisfying (13) and ‖u−u−‖H2(Iε) ≤ δ
for some sufficiently small δ, which is independent of ε. Moreover

‖udown − u− + eλξ‖H2(Iε) ≤ Cε
2 (14)

for some ε-independent constant C. The boundedness and monotonicity of udown,

udown(ξ) < u− and u′down(ξ) < 0 ∀ξ ∈ Iε ,

follows from (14), a Sobolev embedding H2(R) ↪→ C1(R) and the properties of
u− − exp(λξ).

Next, the continuation of the solution udown : (−∞, ξε] → R is proven. The
boundedness and monotonicity of udown imply that udown is also a solution of (9).
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Due to the causality of the integral operator, (9) can be written as a Volterra integral
equation on a bounded interval [ξε, ξε + δ) for some δ > 0

u(ξ) = f(ξ) +
1

Γ(α)

∫ ξ

ξε

h(u(y))

(ξ − y)1−α dy .

with a well-defined inhomogeneity f(ξ) = u− + 1
Γ(α)

∫ ξε
−∞

h(u(y))
(ξ−y)1−α dy. The (local)

existence of a smooth solution for sufficiently small δ is a standard result in the
theory of Volterra integral equations on bounded intervals, see e.g. Linz [10].

Then, the boundedness and monotonicity of these continued solutions is proven,
such that the argument for local existence can be iterated to imply the existence of
a solution

udown ∈ C1
b (R) with lim

ξ→∞
udown(ξ) = u− .

Finally, the proof of Theorem 2.2 is completed by proving limξ→∞ u(ξ) = u+.
Assuming to the contrary limξ→∞ u(ξ) > u+, would imply limξ→∞ h(u(ξ)) < 0.
Then, however, −D−αh(u) = u− − u would increase above all bounds, which is
impossible by the boundedness of the solution.

Remark 3 (Discussion of previous results). Sugimoto and Kakutani [11, 12] studied
the existence of traveling wave solutions of (1). They prove that bounded continuous
traveling wave solution may exist, but give no analytical proof of existence, instead
they construct numerical solutions and study the asymptotic behavior analytically.

In case of Burgers’ equation with fractional Laplacian (4), Biler et al. [3] showed
that no continuous traveling wave solutions can exist for α ∈ (−1, 0], however they
provide no existence result for the case α ∈ (0, 1).

Alvarez-Samaniego and Azerad [2] proved the existence of traveling wave solu-
tions of (3) with perturbation methods.

Remark 4 (Comparison with previous results). The dynamical systems approach
to prove the existence of traveling wave solutions in [1, Theorem 2], parallels the one
in case of viscous conservation laws. This approach is possible due to the causality
of the operator Dα in (7) and the monotonicity of the profiles.

In contrast in case of a conservation law with fractional Laplacian (4) the trav-
eling wave equation for traveling wave solutions u(t, x) = ū(ξ) with ū ∈ C2

b (R) can
be written as

h(u) := f(u)− su−
(
f(u−)− su−

)
=

1

Γ(1− α)

∫ ∞
−∞

u′(y)

(x− y)α
dy .

Thus the value of a profile ū at ξ ∈ R depends on the entire profile ū, such that a
different approach is needed.

Whereas in case of Fowler’s equation (3) the profile of a traveling wave solution
is not necessarily monotone, such that the boundedness of a profile is difficult to
establish.

2.1. Asymptotic stability of traveling wave solutions. To study the asymp-
totic stability of traveling wave solutions φ of (1), equation (1) is cast in a moving
coordinate frame (t, x)→ (t, ξ = x− st),

∂tu+ ∂ξ(f(u)− su) = ∂ξDαu , (15)

such that a traveling wave solution becomes a stationary solution of (15). Analogous
to viscous conservation laws asymptotic stability of φ is only to be expected for
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integrable zero-mass perturbations U0 := u0 − φ, i.e.∫
R
U0(ξ) dξ = 0 . (16)

The evolution of a perturbation U := u− φ is governed by

∂tU + ∂ξ(f(φ+ U)− f(φ)− sU) = ∂ξDαU . (17)

However the L2-norms of the perturbation U and its derivative are not enough to
construct a Lyapunov functional. Therefore the primitive

W (t, ξ) =

∫ ξ

−∞
U(t, η) dη

of the perturbation U has to be considered.
The flux function will be assumed to be convex between the far-field values u±

of the traveling wave solution φ, i.e.

f ′′(φ(ξ)) ≥ 0 for all ξ ∈ R . (18)

Theorem 2.3 ([1, Theorem 4]). Suppose f ∈ C∞(R), the conditions (12) and (18)
hold and φ is a traveling wave solution of (1) as in Theorem 2.2. Let u0 be such

that W0(ξ) =
∫ ξ
−∞(u0(η) − φ(η)) dη satisfies W0 ∈ H2(R). If ‖W0‖H2 is small

enough, then the initial-value problem for equation (15) with initial datum u0 has a
unique global solution converging to the traveling wave solution φ in the sense that

lim
t→∞

∫ ∞
t

‖u(τ, .)− φ‖H1 dτ = 0 . (19)

Proof. First, the local-in-time wellposedness of the initial-value problem

∂tW + (f(U + φ)− f(φ)− sU) = ∂ξDαW , W (0, x) = W0(x) , (20)

is established by an fixed point argument [1, Proposition 2].
Then a (Lyapunov) functional

J(t) =
1

2
(‖W‖2L2 + γ1‖U‖2L2 + γ2‖∂ξU‖2L2)

is defined with positive constants γ1, γ2 > 0. The functional J : H2(R) → R,
W (t) 7→ J(t), is equivalent to ‖W (t)‖2H2 , since γ∗‖W (t)‖2H2 ≤ 2J(t) ≤ γ∗‖W (t)‖2H2

with γ∗ = min{1, γ1, γ2} and γ∗ = max{1, γ1, γ2}. Combining the energy estimates
of the perturbation U , its primitiveW and its derivative ∂ξU , and using a Gagliardo-
Nirenberg inequality yields

d

dt
J + aα

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)
− γ1C0‖U‖2L2 − γ2C1‖U‖2H1 − L(‖W‖H2)‖W‖H2‖U‖2H(5+α)/4 ≤ 0 ,

where aα = sin(απ/2) > 0 and Ḣs denotes the homogeneous Sobolev space of
order s. Finally, the constants γ1, γ2 > 0 are chosen such that

γ1C0‖U‖2L2 + γ2C1‖U‖2H1

≤ aα
2

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)
,
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which implies the final estimate

d

dt
J +

(
aα
2
− 1

γ∗
L(‖W‖H2)‖W‖H2

)(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2

)
+ γ2

(
aα
2
− 1

γ∗
L(‖W‖H2)‖W‖H2

)
‖W‖2

Ḣ(5+α)/2 ≤ 0 .

For initial data such that J(0) is sufficiently small, the functional J(t) - being
equivalent to ‖W (t)‖2H2 - is non-increasing for all times. This implies the global-in-
time existence of W (t) as a solution of (20) and moreover (19).

Remark 5. In case of Burgers’ flux f(u) = u2 and α > 1/2, asymptotic stability
of a traveling wave solution φ is established in case of W0 ∈ H1(R), see also [1,
Theorem 3].

Due to a Sobolev embedding H1(R) ↪→ Cb(R), the asymptotic stability result
limt→∞ ‖U(t)‖H1 = 0 implies also limt→∞ ‖U(t)‖L∞ = 0.
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