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Abstract

In this note we take a first step towards the analysis of collusion in markets with spatial
competition, focusing on the case of pure location choices. We find that collusion can only be
profitable if a coalition contains more than half of all players. This result holds for location games
played ink-dimensional Euclidean space as long as consumers are distributed via atomless density
functions. For competition on the unit interval, unit circle, and unit square we also derive sufficient
conditions for collusion to be profitable. The results have immediate implications for mergers in
spatial markets.
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1. Introduction

While the economics literature has paid considerable attention to collusion in Bertrand
and Cournot markets, collusion with different sorts of competition has been largely
neglected. In this note we take a first step towards the analysis of collusion in pure location
games as introduced by Hotelling [5]. Such models capture competition in many important
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industries where price competition is not feasible, for example, because of regulation (as
in the case of pharmacies) or vertical restraints (as in the case of book skllers).

Our results are based on an approach that relies on rather weak rationality requirements.
In particular, we do not solve the non-cooperative game in which some of the players
can reach binding agreements. Instead, we simply require that players will only decide to
collude if they carguarantee themselves a payoff better than the payoff expected “behind
the veil of ignorance.” The reason for this approach is simple: it is as we will see extremely
difficult to find Nash equilibria for location games with collusion. We argue that in the
absence of reliable non-cooperative solutions players should be conservative and only
collude if they know for sure that this will be profitable. Accordingly, our definition of
profitability relies on a maxmin approach. Nevertheless, we include one section on Nash
equilibrium where we show that, in those few cases where we can find one, the non-
cooperative solution coincides with ours.

For linear and circular cities with a uniform distribution of consumers we find that
collusion is profitable if and only if more than half of the players collude. Part of this result
can be generalized to location games in multi-dimensional spaces with arbitrary density
functions: As long as the distribution of consumers is atomless, collusion can only be
profitable if more than half of all firms cooperate. For competition on the unit interval, unit
circle, and unit square we are also able to derive sufficient conditions for collusion to be
profitable. These results are of considerable relevance for the topic of merger in markets
with limited price competition.

The remainder of the paper is organized as follows. Section 2 introduces the general
setup and notation. Section 3 deals with the simplest one-dimensional cases, i.e., with
linear and circular cities with uniform consumer densities. Section 4 deals with the general
multi-dimensional case and establishes the main theorem of the 9&eetion 5 adds
sufficient conditions for collusion to be profitable in games on the unit line, unit circle
and unit square. Section 6 discusses Nash equilibria for location games with collusion and
Section 7 concludes.

2. Setup and definitions

Let I" (O, P) be alocation game on the connected sulBset R with set of playersP.
Let p' € P be playeri with i = 1,2, ...,n. Each playerp’ chooses a location’ € 0.
Consumers are distributed ovér via a Lebesgue measurable density functjonvith
total mass 1. Letl (0, 0’) be the distance between two points’ € O. Each consumer is
assumed to buy one unit of an unspecified good from the player closest to her. That is, a
consumer ab € O buys from playep’ only if d(o, x') = min; d(o, x/). If there are more

1 They can also be applied to parliamentary elections that are not winner-take-all contests.

2 Note that the pioneering work by Eaton and Lipsey [4], Okabe and Suzuki [9], Okabe and Aoyagi [8] and
Aoyagi and Okabe [1] on the stability of configurations of firmé&if, while not used directly in the proof of our
main result regarding the general multi-dimensional case, provide a base for the study of market sets in higher
dimensions. Furthermore, Okabe and Aoyagi [8] was used more directly (by way of Knoblauch [7]) in our work
on the unit square.
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than one closest player then the consumer is assumed to buy from each closest player with
the same probability. The price of the good is fixed at 1 and production costs are normalized
to zero.

Let O'(I") ={o | d(o,x") =min; d(o, x/)}. Playerp’’s market share and profit is then
given byr!(I") = (1/r) [0,- f(0) do wherer’ denotes the number of players located’at
By assumption)_; =’ = 1. By virtue of this fact, we say that a player’s expected payoff
before the game is actually played (“behind the veil of ignorance”Yis3l

Next we define for integen with 1 < m < n a setV (m) of reals withv € V (m) if there
is a collusion strategy for a s@#t C P of m players thaguaranteesthem a total payoff of
at leastv. Letv(m) = supV (m).*

Definition 1. Collusion of a set ofz players is profitable ib(m) > m/n.

Thus, collusion is profitable if thenaxmin payoff of a coalition of sizem is strictly
greater than the expected non-cooperative equilibrium payoff when equilibrium positions
are assigned randomly. This is a conservative approach that rules out any unpleasant
surprises for the set of colluding players. In a framework where multiplicity of equilibria
is to be expected and where computation of non-cooperative equilibria is very hard, this
appears rather appealing. And it becomes even more appealing once we have shown that
the maxmin strategy of a coalition (that is large enough) has a very simple and intuitive
structure.

One implication of our definition is the following.

Remark 1. Collusion of all players (the “grand coalition”) is never profitable.

This follows immediately from the observation that the location game is a constant-sum
game. In contrast to Cournot or Bertrand games total industry profits cannot be manipulated
by contracting output or raising price.

3. Theone-dimensional case with uniform distributions
3.1. Linear cities

Let us first consider the standard textbook case of a “linear city” in wiich [0, 1]
and in which consumers are uniformly distributed. How can a set pfayers guarantee
itself a “high” payoff? Suppose > n —m, i.e., suppose that more than half of all firms are
in the set of colluding players. In that case the colluding players can minimize the payoff
obtainable to a firm outside the coalition by “evenly spreading outy’ 1§ uniform, the
firms in the set can guarantee themselves a pay@8nf-n)/(2m) by locating themselves
at (k, 3k, 5k, ..., 1— k) with k = 1/(2m). To see this, note that in this case a firm outside

3 For example, a player could expect that every assignment of players to equilibrium locations is equally likely.
4 In other wordsp(m) is the maxmin payoff of the coalition.
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the setM is indifferent between all possible locations as each location yields a payoff of
1/(2m). Furthermore, the worst thing that can happen to the playekd is that the firms
outside locate in different intervals, say, one betwkend X, one betweenBand %

and so on. If they do, the players i earn 1— (n — m)/(2m) = (3m — n)/(2m). And

as this is larger tham /n for m > n/2 collusion turns out to be profitable. Thus> n/2

is sufficient for collusion to be profitable in linear cities with a uniform distribution of
consumers. That it is also necessary in this case is stated in

Proposition 1. In linear cities with a uniform distribution of consumers collusion is
profitableif and only if n > m > n/2.

Proof. The argument above shows that> n/2 = v(m) > m/n. Next observe that, by
definition,

vim)+v(m —m) < L Q)

Henceyn =n/2=>m=n—m = v(m) < 1/2=m/n, i.e., collusion is not profitable if
exactly half of all firms cooperate. The proof is completed by showing that collusion is
also not profitable ifn <n/2: If 1 <m <n/2,thenn/2 <n —m <n — 1 so that by the
first part of the proob(n —m) > (n —m)/n. Therefore, by Eq. (1y(m) <1— (n—m)/n
=m/n. O

3.2. Circular cities

A further popular space to study location games on is a circle. In contrast to the line a set
of m colluding firms can divide a circle into at mostarcs as opposed o + 1 segments
on the line. Nevertheless, one obtains the identical condition for collusion to be profitable.

Proposition 2. In circular cities with a uniform distribution of consumers collusion is
profitableif and only if n > m > n/2.

Proof. Position the colluding firms such that there arearcs with mass Am each. If
m > n/2, the maximum total payoff the non-colluding firms can obtaitmis- m)/(2m),
i.e., by using this strategy the colluding firms can ensure a pay¢8of- n)/(2m) which
is greater tham /n if m > n/2. Using Eq. (1) again completes the proofa

4, The multi-dimensional case

The following result is the main result of the paper. It generalizes one of the two insights
gained above, namely that collusion in location games can only be profitable if more than
half of all firms cooperate. This result holds for arbitrary bounded, connected and convex
open subsets d@* and for arbitrary bounded atomless density functions.

Theorem 1. Suppose consumers are distributed over a bounded and convex open subset
O C RF via a bounded Lebesgue measurable density function f of total mass 1. For the
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n-player location game I' (O, P) it is not profitable for a set of m players to collude if
m<n/2.

Proof. Suppose the: colluding players?, p2, ..., p™ locate atx®, x2, ..., x™ € O, not
necessarily distinct.

Case 1: n —m > 2m. Then for each, 1<i <m, let p"t%-1 and p”*+2 |ocate at
x+2=1andx™+2  two pointse units apart on a line through, with x’ betweenc”+2 -1
andx™t2 ande chosen as follows. LeB be ak-dimensional ball containin@ and letA
be the(k — 1)-dimensional volume of thé — 1)-dimensional disk formed by intersecting
B with a hyperplane through its center. Choesich that < 1/(nA supf) and such that
¢ is small enough to guaranted”ti—1, x2mti ¢ O for 1 <i < m. Let the rest of the non-
colluding playersp®"+1, p3m+2  p"locate anywhere i®. Since the consumers won
by p', 1<i < m, lie between two hyperplanesunits apartz’ is at mostA supf < 1/n.
Henceyp(m) <m/n.

Case2: m <n —m < 2m. For 1< i < m, define the provisional market s@t‘gm\,z
o0'(I"") with I'" = I'(0, M), i.e., O}, contains the points ir0 that are nearer ta’
than to any othek/ # x’ with bothi, j < m. Accordingly, define the provisional payoff
ooy =" (I'"). Without loss of generality assume that the sequemgg. 750 - - - Thiov
is non-decreasing. Now locate:3- n of the non-colluding players atl, x2, ..., x3—"
and use the remainingi2- 4m players to bracket3—"+1 x3m=n+2 ™ asin Case 1,
but do net yet choose Notice that

(i) 3m —n>0;

(i) 2n —4m > 0;

(i) Bm —n)+ (2n—4m)=n—m;and
(iv) GBmn—n)+2n—4m)/2=m.

Since the sequenoe‘}mv, ngmv, -+-» Tproy IS NON-decreasing, the sum of the provisional
payoffs o, + Taoy + -+ + Ty iS at most(3m — n)/m. Therefore, the final total
payoffs to the colluding players.” , 7' is at most(3m — n)/2m + e(n — 2m) A supf.
Now notice that(3m — n)/(2m) < m/n. Hence, it is possible to choogesuch that
m/n— 3" 7' > 0. Collusion is not profitable.

Case 3: m = n — m. Nonprofitability follows from Eq. (1) as in the proof of
Proposition 1. O

Thus, we know that collusion in location games (on bounded open subsRfs inf
which consumers are distributed via atomless density functions) can only be profitable if
more than half of all firms join the se1.

Remark 2. Note that neither the closed inter@l 1] nor a circle is an open subset of an
Euclidean space. However, the conclusion of the theorem holds for location games on these
sets, since the techniques of the proof apply. More particularly, it is possible to bracket
colluding players as in the proofs. In fact, a colluding player at 0 or [0ji] can be
bracketed by a single non-colluding player. Note, furthermore, that the proof of Theorem 1
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would not work without requiring boundedness of the open subsetR¥. Without this
assumption the volumé defined in the proof (and occurring in the definitionspfwould
be infinite.

Remark 3. The theorem concerns location games defined using Euclidean distances, i.e.,
straight line distances. Implicitly, this means that consumers may travel along routes that
do not belong ta0. However, the theorem applies, for example, to a circle (or rather the
conclusion of the theorem holds—see Remark 2) even when the distance between two
points is the length of the arc joining them, since for a circl®fa consumer’s nearest
player is the same whether distance is defined as Euclidean distance or as arc length.

The theorem disallows atoms of consumers. The following example demonstrates the
necessity of this assumption.

Example. Consider the 5-player location game @) 1] with two consumers, one a4

and one at 23. Suppose!® and p? collude by locating at 24 and 23, respectively. Their
worst total payoff occurs whep® and p* locate at ¥4 and p® locates at 23. The total
payoff of p! and p? is then ¥3 + 1/2 =5/6 which is greater than the veil of ignorance
expected payoff of 2/5) = 4/5. Collusion is profitable witlm = 2 even thouglm < n/2.

As in the proof of Proposition 1, where it is shown that the complement of a profitable set
of colluding players is unprofitable, collusion is unprofitablesfioe 3, even though in that
casen >n/2.

5. Sufficient conditionsfor unit interval, unit circle, and unit square

The main theorem above showed that> n/2 is necessary for collusion to be
successful. In the following we will establish sufficient conditions for collusion to be
profitable in a location game played on the unit interval, the unit circle, and the unit square.
Notice that in each case the solution prescribes that the colluding players behave according
to the above identified strategies, i.e., they will evenly spread out making other players
indifferent between locations.

Proposition 3. In linear cities, collusion is profitable if supf/inf f <2m/n andm < n.

Remark 4. Note that supf/inf f > 1. Thus, the condition in Proposition 3 ensures that
m>n/2.

Proof of Proposition 3. Without loss of generality, let! < x2 < --- < x™ be the set of
locations occupied by the colluding players chosen so that

x1 x2 x3 1

1 1 1
/f(o)do:E/f(o)do:E/f(o)do:---:/f(a)do=%.
0 o1 2

X m
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If a non-colluding player locates to the left of or to the right ofx™, his payoff is at
most 1/ (2m) < 1/n. If a non-colluding player locates betweehandxi*1, his payoff is
fcd f(0)do wherex! < ¢ <d <x'*tandd — ¢ = (x'*1 — x)/2. Then

xitl

d
i+l i pf
/f(o)doé(d—C)SUpf= 5 mff(mff) /f()d (Iff)

1 2m 1
= om o

If a non-colluding player locates at, 1 <i < m, then he shares the market gEtwith p'.

By the argument above, the portion@f to the left ofx’ has consumer mass less than 1

as does the portion ad’ to the right ofx’. Therefore, the payoff to each non-colluding

player is less theril/n 4+ 1/n)/2 = 1/n. Since in all these cases the payoff to a non-

colluding player is less than/4, the total payoff to the colluding players is more than
— (n —m)/n=m/n. Collusion is profitable. O

The sufficient condition in Proposition 3 is stronger than necessary. For instance, we
used as an assumption gronly that
suplf(x): x' <x <x*1}y  2m
- - < —.
inf{ £ (x): x! <x <xitl} n

This allows any amount of variation to the left of and to the right ofc™ and, if m is
large, betweew?® andx™.®

Proposition 4. In circular cities, collusionis profitableif n > m > n/2 and supf/inf f <
2m/n.

Proof. Analogous to the proofs of Propositions 2 and &

Finally, we look at location games played on the unit square with uniform consumer
density.

Proposition 5. For the n-player location game on the square [0, 1] x [0, 1] with consumers
distributed uniformly, collusion is profitableif thereis a positive integer A with (24 4 1)2 —
h2<m<n<(2h+1)>2

5 Moreover, the firms located aft andx™ could move further into the interior as the mass on the fringes has
only to be smaller than/k. Using this, one can increase the allowed variation betwéeamdx™ from 2m/n to
[20m — 1)/(n — 21"~ 1 > 2m/n. To see this, simply observe that the colluding players can position themselves
so that the remaining mass betweehandx™, 1 — 2/n, is equally distributed over — 1 intervals. The proof
then goes through with s@p(x): x’ < x <x/t1y/inf{ £ (x): x’ < x <xt1} < 2(m — 1)/(n — 2). Therefore,
sug £ (x): x1 <x <x™}/inf{f(x): x1 <x <x™} can be as large 48(m — 1)/(n — 2)7" 1
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Proof. Supposen, n andh satisfy the hypotheses of the theorem. Consider th€ saft
points in [0, 1] x [0, 1] of the form (G — 1/2)/(2h + 1), (j — 1/2)/(2h + 1)) wherei

and j are integers, X i, j < 2h + 1, andi andj are not both even. There are exactly
(2h + 1)°> — h? points inC. Locate them colluding players so that there is at least one
of them at each point of (recall thatm > (21 + 1)2 — h?). In the course of proving
that an infinite square lattice is a Nash equilibrium for the location game in the plane
with consumers distributed uniformly, Knoblauch [7] proved that in the location game on
[0, 1] x [0, 1], any player with at least one opponent at each poidt efirns a payoff of at
most 1/(2h + 1)? so that the non-colluding players’ total payoff is at most

(n —m) (n —m)
Ch+12 " n
Hencey(m) >m/n. O

Proposition 5 tells us that there are profitable coalitions fomtpéayer location game
on[0,1] x [0, 1] if n € ((2h + 1)2 — h2, (2h + 1)?) for some positive integek, that is,
if n € (21,25 U (40,49) U (65,81) U (96,121) U (133 169 U (176,225 U (225 +0c0).
There are only seven intervals since fiop 8 the intervals 2k + 1)2 — h2, (2h + 1)) and
(2h+1) +1)? = (h+ 12, (2(h + 1) + 1)?) overlap.

Proposition 5 implies a simpler but more restrictive sufficiency condition for profitabil-
ity: m > (225/226)n. This condition is trivially sufficient fom < 226 and can be estab-
lished as sufficient for > 226 using the overlapping of the intervals. Furthermore, for
largen, Proposition 5 says, roughly, that collusion is profitable it 3n/4. This interpre-
tation follows from the fact that for large there is an integek such that: < (2h + 1)2,

(2h 4+ 1)2/n ~ 1, and((2h + 1)2 — h?)/n ~ 3/4. For example, ifz = 1,000,000 choose
h =500. Then(2h + 1)% = 1,002,001 and(2k + 1)? — h? = 752,001. The proposition
says collusion is profitable ifi /1,000,000> 0.752001.

To find profitable coalitions in two dimensions for some values obt included in the
hypotheses of Proposition 5, one can replg&e] x [0, 1] with any figure constructed
from finitely many copies of0, 3/(2h + 1)] x [0, 3/(2h 4+ 1)] with a coalition using
the eight locationg(i — 1/2)/(2h + 1), (j — 1/2)/(2h + 1)), 1 <i,j < 3,i andj not
both even. The only requirement is that these squares are assembled with an overlap of
1/(2h 4 1) as in the proof of Proposition 5. For example for1] x [0, 3/(2kh + 1)] made
up of h squares in a line, mimicking the proof of Proposition 5 the sufficiency condition for
profitability would be 32k + 1) — h <m < n < 3(2h + 1). Then am-player location game
allows profitable coalitions for some 1-tiyrectangle ifn € (13,15 U (18,21)U(23,27)U
(28, 33) U (33, +00). The relation betweem andrn will always involve inequalities like
those in Proposition 5, since the little that is known about location games in dimension 2
restricts us to working with figures constructed of finitely many squares of equal size on
each of which eight locations are used.

6. Nash equilibria

It is natural to ask why we chose to use the definition of profitability introduced in
Section 2 in our study of collusion in location games. Why did we not take a standard
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approach and try to use the Nash equilibrium concept? We will see in this section that
for a location game in which one player controls a coalition, establishing the existence of
a Nash equilibrium is a difficult task. Fortunately, Proposition 6 below demonstrates that
the profitability approach is a reasonable substitute for the Nash equilibrium concept: for
the very limited conditions under which we were able to establish the existence of a Nash
equilibrium, the configuration of coalition firms and the payoff to the coalition are the same

as in the Section 3.1 demonstration that collusion is profitabl®adhl for n > m > n/2.

Consider a location game on the unit internj@l 1] with consumers distributed
uniformly, played by several independent firms and one player who controls a set of firms.
Can we find location strategies for the independent firms so that these strategies together
with the profitable collusion strategy identified above comprise a Nash equilibrium?

It is possible to answer this question in some special cases and we shall do this below.
However, in general the problem is very difficult, perhaps intractable.

The difficulty arises from two sources. The first thing one discovers when working on
the problem is that a Nash equilibrium requires mixed strategies for the independent firms.
Unfortunately, due to the computational complexities, little is known about mixed strategy
equilibria for location games on the unit interval. Shaked [12] constructed a mixed strategy
Nash equilibrium for three firms locating @8, 1], and there are nonconstructive existence
theorems by Dasgupta and Maskin [2,3] and Simon [13]. Second, the difficulty in finding
mixed strategy equilibria is compounded when one player conirdteations, due to the
added computational complexity.

Prospects are even bleaker for location games with collusion in dimension 2 and higher.
Up to now, nothing has been published on location games in dimension 3 or above, and
little on solutions for location games in dimension 2. Shaked [11] showed that there are no
pure-strategy Nash equilibria for a wide variety of 3-player location games in the plane;
Okabe and Suzuki [9] established the existence of a configuration of firms in a square that
satisfy a weak stability condition; Okabe and Aoyagi [8] proved that an infinite square array
of firms in the plane is a Nash equilibrium for a uniform distribution of consumers; Aoyagi
and Okabe [1] studied the relationship between the shape of a 2-dimensional market and the
configuration of an equilibrium in that market, and Knoblauch [6] catalogued all 3-player
equilibria on the 2-sphere when consumers are distributed uniformly.

In summary, the difficulty of finding mixed strategy equilibria for location games
translates into difficulty for our problem-finding equilibria for location games with
collusion. It seems reasonable that firms that engage in games that game theorists are
unable to solve should choose rather conservatively when it comes to making big decisions
such as decisions about colluding or merging with others. We have therefore proposed
profitability as a conservative criterion to be used by firms faced with collusion decisions
or merger proposals.

Nevertheless, the following proposition answers the question posed at the beginning of
this section in the affirmative in the special case that the number of locations controlled by
the “big” player is an integral multiple of the number of independent firms.

Proposition 6. Let G be a location game in which consumers are distributed uniformly
on [0, 1] with density 1, players 1, 2, ...,n — m, are independent firms, player n —m + 1
controls m locations and m = a(n — m) where a is a positive integer greater than 1. Let
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sn—m+1 be player n —m + 1's strategy from Section 3.1, which picks locations at each
element of the set {k, 3k, 5k, ..., 1 —k},wherek=1/2m.Fori =1,2,...,n —m, let s;
be player i's strategy that assigns probability 1/a to each of the a points (2ai — 2a +
1)/2m, (2ai —2a+3)/2m, ..., (2ai —1)/2m .8 Then (s1, 52, ..., Sp—m, Sn—m+1) iSaNash
equilibriumof G.

Proof. Fixi € {1,2,...,n —m}. Let H be a game likeG but with only two players, so
that 1 is an independent firm and 2 contral$ocations. Fore € [0, 1],

G H
T (51, -0 Si—1, X, Si4d, -+ Sp—mt1) < T (x, Sn—m+1) <1/2m
G
= 77:1 (S]_, s21 ceey Sn7m+l)'

It remains to show that playar— m + 1 cannot improve his payoff by a unilateral strategy
change.

Lett,_,,+1 be any pure strategy of player— m + 1. Let K be a game liké5 but with
two players each of whom controislocations. Then by the definitions gf,

n—m
Z niG (51,52, ..+, Sn—m>» In—m+1)
i=1
n—m a
=(/a) Y > 7l (s1. ... i1, (ai —2a+2j = 1)/2m, Si11 - Su—mo tn—m 1)
i=1 j=1

K
> Ty (Sn—m—+1, th—m+1)/a.

The inequality follows from the fact that any consumer (or fraction of a consumer) awarded
to the first player in gam& will contribute to one of the summands on the left side of the
inequality. For example, suppose_,,+1 assigns three locations g two locations to
5k 4+ 1/2 and no location to any point between. How does the consumer in{@&ak)
contribute to the two sides of the inequality? Player 1 in gamwins all of (2%, 3k).
Player 1 in game5 wins all of (2k, 3k) in the summandr[G(Sk,sz, vy Su—ms ti—m+1)
and one quarter of2k, 3k) in the summandrl.G (k, 52, .oy Sn—ms ti—m+1)-

Next, nf (Sn—m+1,thi—m+1) = (Bm — n)/(2m) = 1/2 by the profitability argument in
Section 3.1. Combining the above inequalities,

n—m
> w5152, Suems aem1) = 1/2a = (n —m)/2m.
i=1

Therefore

6 To illustrate, consider the case in which there is only one independent player(ieg =n — 1). In
this case the independent player chooses each of: tequidistant locations chosen by the firm controlling the
coalition with probability ¥m. Alternatively, consider the special casenct 6 andm =4 (a = 2), i.e. there are
two independent players and one player controlling a 4-firm coalition. In this case the coalition firms will occupy
locations ¥8, 3/8, 5/8, and 78 whereas the first (second) independent player chooses locafi6rend 38
(5/8 and 7/8) with probability /2 each.
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G n—m 3m—n
J'L'n_m_i_l(S]_, 52, e os Snems ti—m+1) < 1- m = om

G
< 7T,1_m+1(sla 82,y Sp—ms Sn—m+1)

with the last inequality following again from the profitability argument of Section 3.t

7. Discussion

We find that collusion in location games only pays if the set of colluders is larger than the
set of non-colluding competitors. Bilateral collusion, for example, can only pay if there are
no more than three competitors. This result is based on an approach which relies on rather
weak rationality requirements. It assumes that players discussing some binding agreements
to collude will only go ahead if they can guarantee themselves a payoff better than the
payoff expected “behind the veil of ignorance.”

This maxmin approach prescribes that colluding players should spread themselves out,
making players outside the colluding set indifferent between locations. This seems to
be rather intuitive: One would expect that two colluding supermarkets (or supermarkets
belonging to the same chain) locate in different parts of one city to avoid cannibalization.
For a special case of competition on the unit interval, we show that the maxmin strategy is
also used in a non-cooperative equilibrium.

Our results may have implications for the topic of mergers in markets with (pure) spatial
competition as an example of which competition among big book retailers (where price
competition is extremely limited) may serve. As merger in the traditional sense (see Salant
et al. [10]) where firms simply “disappear” never pays in such location games, merger
can only be profitable if the merging units are kept as separate units which are governed by
central headquarters. This is identical to the case of collusion analysed above. However, the
analysis reveals that with this kind of competition only “mega mergers” are likely to dccur.
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