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Abstract In this paper we experimentally investigate Cournot duopolies with
an extended timing game. The timing game has observable delay, that is, firms
announce a production period (one out of two periods) and then they produce
in the announced sequence. Theory predicts simultaneous production in the
first period. With random matching we find that, given the actual experimental
behavior in the subgames, subjects play a timing game more akin to a coordina-
tion game with two symmetric equilibria rather than the predicted game with
a dominant strategy to produce early. As a result, a substantial proportion of
subjects choose the second period.
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1 Introduction

There is substantial interest in the theoretical literature on endogenous timing
in games. This literature started with Saloner (1987), Hamilton and Slutsky
(1990), and Robson (1990) and developed into a rich and active research area
in game theory with recent contributions by Henkel (2002), Matsumura (2002),
Normann (2002) and van Damme and Hurkens (2004). The basic question
these models try to answer is simple but significant. When are firms likely to
play either a simultaneous-move game or a sequential-move game? In mod-
els with endogenous sequencing, the order of output or price decisions is not
exogenously specified. Instead, it is derived from firms’ decisions in a timing
game.

Several recent experiments have attempted to validate the theory empiri-
cally1 but support for the theory was by and large not found. In these exper-
iments, simultaneous-move Cournot outcomes are modal – in contrast to the
theory which predicts Stackelberg equilibria here. Even when sequential moves
occur, Stackelberg leaders produce less than predicted while followers produce
more.

Why does theory perform rather poorly in experiments? The theory under-
lying the experiments predicts the emergence of Stackelberg equilibria and
typically there exist two Stackelberg equilibria. This causes two problems. First,
coordination problems occur in the experimental markets since either firm may
emerge as the Stackelberg leader. Neither Stackelberg equilibrium is prefera-
ble to the other and subjects find it difficult to coordinate on one.2 Second, it is
difficult to see from a behavioral perspective why players should coordinate on
an equilibrium with large payoff differences (as it is the case in a Stackelberg
leader–follower outcome). It is well known that subjects in experiments may
exhibit an aversion against disadvantageous inequality (e.g., Fehr and Schmidt
1999). Such inequality aversion might render the Stackelberg equilibria unap-
pealing candidates for convergence in an experiment.

Recent theoretical research, in turn, attempts to rationalize the experimen-
tal data on endogenous timing by allowing players to be inequality averse. Lau
and Leung (2006) analyze the standard Stackelberg duopoly with exogenous
timing when players are inequality averse. They show that a simplified ver-
sion of Fehr and Schmidt’s (1999) model is consistent with the experimental
data of Huck, Müller and Normann’s (2001). Santos-Pinto (2006) applies the
Fehr and Schmidt (1999) framework to Hamilton and Slutsky’s (1990) action

1 Huck et al. (2002) investigate Hamilton and Slutsky’s (1990) action commitment game. Müller’s
(2005) experiments are on Saloner’s (1987) model, extended by Ellingson (1995). Fonseca et al.
(2005) analyze endogenous timing with asymmetric cost, as modeled by van Damme and Hurkens
(1999). See also Huck et al. (2001) for experiments on exogenously Stackelberg games.
2 Most of the theoretical literature has ignored the coordination problem firms face in a duopoly
with endogenous timing. An exception are van Damme and Hurkens (1999, 2004) who analyze a
timing game with cost differences between firms. In their models, a unique Stackelberg equilibrium
with the efficient firm as the Stackelberg leader is selected. However, Fonseca et al. (2005) still
observe simultaneous play as the modal case in related experiments.
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commitment game and Saloner’s (1987) timing game. He can rationalize many
but not all aspects of the experimental data of the papers cited in footnote 1. In
particular, inequality aversion cannot explain delay observed in the experiments
on Hamilton and Slutsky’s (1990) action commitment game.

The motivation for this experimental paper is to further explore the rea-
sons for the weak predictive power of standard game theory and the role of
inequality aversion and coordination failure by investigating a timing game
with a unique and symmetric equilibrium. The basis of the experiments is
Hamilton and Slutsky’s (1990) extended game with observable delay in a quan-
tity-setting framework. The equilibrium of this extended timing game is in
simultaneous moves and has equal quantities as firms have symmetric costs.
At first sight, it appears that in these new experiments neither coordination
failure nor inequality aversion should hinder the emergence of the predicted
equilibrium. If symmetric outcomes fueled by inequality aversion and coor-
dination failure have been previously observed even though they were not
predicted, then it appears that the theory should be vindicated if symmetric out-
comes are predicted. However, sequential-move Stackelberg leader–follower
outcomes can still occur in the experiment – if only by mistake. We argue
below that lower profits in the asymmetric timing subgame (possibly due to
inequality aversion) can transform the timing game from one with a unique and
symmetric equilibrium into a coordination game with two symmetric equilibria.
Accordingly, coordination failure and inequality aversion can still play a role
and affect the outcomes in the experiments.

A second novelty is that we run experimental sessions both with randomly
matched participants as well as with participants in fixed duopoly pairs. Previous
experiments have simulated one-shot interaction (random matching) between
participants since the endogenous timing models are based on static games.
However, repeated interaction is the norm in the field. With fixed matching,
the likelihood of collusion is increased and then the timing of duopoly deci-
sions may have an entirely different nature (on which we elaborate in the next
section). Further, firms should be better able to resolve coordination failure
problems with fixed matching. The reason is that it is more difficult for subjects
to form accurate beliefs about their counterparts’ actions with random match-
ing than with fixed matching. This provides another motivation for analyzing a
treatment with fixed matching as this should, ceteris paribus, lead to a higher
frequency of observations consistent with theory.

It turns out that our results do not thoroughly support the theory, as in
previous studies. Many timing decisions are out of equilibrium as subjects often
delay their output decisions to the second period. For example, in the treat-
ment with random matching, it turns out that Stackelberg leader profits in
the sequential-move subgames are indeed lower than in simultaneous-move
Cournot subgames. That is, given the behavior in the experiments, the tim-
ing game subjects are actually playing is more akin to a coordination game
with two symmetric equilibria rather than a game with a dominant strategy to
produce early. Furthermore, we will argue below that our results are consistent
with recent findings of Tykocinski and Ruffle (2003) who suggest that subjects
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often have a preference to delay their decisions even when waiting does not
provide any direct material gain or additional information. In general, our
results suggest that additional forces (next to inequality aversion and coordina-
tion problems) that are not captured in the endogenous timing models might
influence participants’ decisions.

2 Model and predictions

In Hamilton and Slutsky’s (1990) extended game with observable delay two
firms can produce in one of two possible periods (period 1 or 2). A pure strat-
egy for firm i = 1, 2 is a choice of a production period ti ∈ {1, 2} and a set of
functions τi : {(1, 1), (1, 2), (2, 1) × R+, (2, 2)} → R+ which is firm i’s quantity
choice as a function of production periods, (t1, t2), and the output of firm j �= i
when firm i is the Stackelberg follower. Given the decisions to produce in period
1 or 2, firms will not randomise over outputs.

In the experiments we used the following linear inverse demand function

p(q1 + q2) = max{30 − (q1 + q2), 0} (1)

where qi denotes firm i’s output. Linear costs of production in both periods
were given by

Ci(qi) = 6qi, i = 1, 2. (2)

Profits are denoted by �i = p(q1 + q2)qi − 6qi.
Consider the predictions in the static game first. We start with the second

stage. In the subgame with t1 = 1 and t2 = 1, firms play the simultaneous-move
Cournot equilibrium in period 1 with qi = 8 and resulting in payoffs of �i = 64
(i = 1, 2). The same holds in the subgame with t1 = 2 and t2 = 2. In the sub-
game with t1 = 1 and t2 = 2, firms play the Stackelberg equilibrium with firm 1
choosing qL

1 = 12 in period 1 whereas firm 2, the Stackelberg follower, chooses
qF

2 = 6 in period 2. This implies payoffs of �L
1 = 72 and �F

2 = 36. Outputs
and payoffs for the subgame with t1 = 2 and t2 = 1 are qL

2 = 12, qF
1 = 6 and

�L
2 = 72 and �F

1 = 36. Then we go back to the first stage. From �L
i = 72 >

�i = 64 (if tj = 2) and �i = 64 > �F
i = 36 (if tj = 1), choosing period 1 is a

dominant strategy and thus we have t1 = t2 = 1 in the unique subgame perfect
equilibrium.

With repeated interaction in the fixed matching sessions, it is well known
that collusion can occur even though the game is only finitely repeated (Selten
and Stoecker 1986). It is easy to verify that qi = 6 is the symmetric joint-profit
maximizing strategy which results in payoffs of �i = 72 (i = 1, 2). Given both
firms collude, the timing decisions are immaterial. However, in particular in
the early rounds of the experiment, there may be uncertainty about the other
players’ willingness to collude, and in that case timing decisions may play an
important role. For example, producing at ti = 2 may resolve the uncertainty
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whether the other player colludes, and at ti = 2 non-colluding rivals may also
be punished. Producing at ti = 1 provides an opportunity to signal collusive
intents. Note that if these incentives for moving first or second materialize, they
would be rather different from those in the static endogenous timing models.

When players are inequality averse (e.g., Fehr and Schmidt 1999), several new
issues come into play. We refer here to the comprehensive studies of Lau and
Leung (2006) and Santos-Pinto (2006) and highlight only a few insights impor-
tant for our setting. Firstly, in the Stackelberg subgames, inequality aversion
will generally cause the follower to produce more than the best reply whenever
qL

i > 8, regardless of the matching scheme. If Stackelberg leaders are playing
against an inequality averse follower but still choose qL

i > 8, this can reduce
the Stackelberg leader profits to be below the profits in the simultaneous-move
Cournot games. (Whether this actually occurs depends on the follower’s output
which, in turn, depends on the degree of inequality aversion). If this is the
case, we have a different prediction for the static game. Choosing period 1 is
no longer a dominant strategy, and the game is transformed into one with two
symmetric timing equilibria (t1 = t2 = 1 and t1 = t2 = 2). Second, inequality
aversion can facilitate collusion. Inequality averse subjects are less inclined to
exploit attempts to cooperate even with random matching,3 so, this generally
gives rise to collusion. Ultimately, this implies that collusion can occur not only
with fixed but also with random matching. However, with random matching,
successful cooperation might still be difficult as subjects cannot be sure about
the type of the player they play against. The timing opportunities may also be
used to facilitate collusion even in the one-shot game (in the same spirit as
outlined above for the repeated game).

3 Experimental design and procedures

We implemented two treatments: one with random and one with fixed matching
among participants. The experimental markets were repeated over 30 rounds in
order to allow for learning. A minor difference to the game as formally stated
above is that subjects had to choose their quantities from a truncated and
discretized strategy space, yielding a standard payoff bi-matrix. Subjects had to
choose integer quantities between 3 and 15 (see Appendix B).4

In both treatments, subjects got individual feedback about what happened in
their market at the end of each round. That is, the computer screen5 showed the
production period, the quantity, and the profit of both duopolists. In sessions
with random matching (henceforth Random), subjects were rematched by the
computer at the beginning of each round. We conducted five random-matching

3 As pointed out by an associate editor, collusion can even occur when a perfectly selfish Stackel-
berg leader meets a strongly inequality averse follower. If the first mover knows the type of the
follower, we will observe qL

i = 6 and qF
j = 6.

4 We used the same payoff matrix as in Huck et al. (2001).
5 We used the software toolbox “z-Tree” (Fischbacher 1999).
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Table 1 Relative frequency
of period 1 choices

Third 1 Third 2 Third 3

Random 57 69 72
Fixed 50 51 53

sessions with ten participants each. The two sessions with fixed matching (hence-
forth Fixed) had ten participants as well, so there were five fixed duopoly pairs
in each session. Treatments were conducted in an identical way, except for the
matching scheme.

The experiments were conducted at Royal Holloway College, University of
London, in spring and summer 2002. Altogether 70 subjects participated in the
experiment. They were students from various departments, many from fields
other than economics or business administration.

In the instructions (see Appendix A) subjects were told that they would
act as a firm which, together with another firm serves a market for 30 rounds,
and that in each round both were to choose when and how much to produce.
After having read the instructions, participants could privately ask questions.
Before the first round was started subjects were asked to answer two control
questions (which were checked) in order to make sure that everybody had full
understanding of the payoff table.

The monetary payment was computed by using an exchange rate of 300
“points” for £1 and adding a flat payment of £4.6 Subjects’ average earnings
were £13.02 ($19.53 at the time) including the flat payment. The sessions lasted
about 60 to 90 min.

4 Experimental results

We report the results of treatments Random and Fixed separately. When
discussing the results, we often refer to third 1 (rounds 1–10), third 2 (rounds
11–20), and third 3 (last ten rounds).

4.1 Random matching

Table 1 shows the evolution of the relative frequency of t=1 choices over time. In
Random the relative frequency of t=1 decisions increases from 57 to 72% (from
third 1 to third 3). This is a clear trend towards equilibrium timing behavior.
However, the relative frequency of t = 1 choices is still below the equilibrium
prediction of 100% towards the end of the experiment. Moreover the increase
slows down considerably from third 2 to third 3.

6 This payment was made since subjects could have made losses in the game.
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Table 2 Average individual quantities in the subgames over time

Third 1 Third 2 Third 3
t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

Random t = 1 9.0, 9.0 10.6, 7.8 9.0, 9.0 10.3, 8.9 8.7, 8.7 9.3, 9.0
t = 2 8.3, 8.3 9.1, 9.1 8.5, 8.5

Fixed t = 1 9.0, 9.0 9.2, 8.4 9.4, 9.4 9.0, 8.0 9.7, 9.7 8.5, 7.7
t = 2 9.0, 9.0 9.2, 9.2 7.6, 7.6

Since we have random matching, the relative frequency of timing decisions
immediately implies the relative frequencies of the timing outcomes. The equi-
librium prediction with both firms choosing t = 1, occurs with only 55% (third
3). Simultaneous play in t = 2 occurs with 10% and sequential play with the
remaining 35% (third 3). Since t = 1 choices increase over time, the relative
frequency of the subgame where both firms choose t = 1 increases whereas the
frequency of the other two subgames decreases.

Once firms have made their timing choices, they know in which sequence
they choose their outputs. How do firms behave in the subgames? Table 2 shows
average individual quantities across time contingent on the timing decisions.7

In Random , we observe that after a short learning phase (third 1), quantity
choices in the t1 = t2 = 1 and t1 = t2 = 2 subgames are almost identical and move
towards the Cournot prediction.

However, in the asymmetric subgame, attempts to exploit a first mover advan-
tage by choosing a higher than Cournot quantity of 8 is punished by followers.
Note, for instance, that the best response to a first mover’s quantity of 10 and 9
is 7 and 8 respectively.8 Moreover, first movers’ output is smaller than predicted
(12 units). As a consequence, both Stackelberg leaders’ and followers’ payoffs
are smaller than the payoffs in the two simultaneous subgames, as shown in
Table 3.9

In fact, in the last two thirds the payoffs in the two simultaneous-move
subgames are almost the same and higher than in the sequential-move
subgame. This has two effects. First, it provides an incentive for the subjects
to avoid the sequential-move subgame by choosing the first production period
t = 1 more often (which also avoids to get into the disadvantageous position
of a Stackelberg follower). This might explain why we see a clear increase in
t = 1 choices during the first two thirds. Second, the fact that over time payoffs in

7 Since the two players in the game are symmetric there are two, albeit identical subgames where
one player moves first and the other delays. However, that same symmetry allows for the aggrega-
tion of the data as if it was only one subgame. We then omit the lower left-hand corner cell in all
matrices in Tables 2 and 3.
8 Note that followers can cheaply punish leaders for over-producing. Consider the case where a
leader sets an output of 10, as is the case on average for the early part of the experiment. A follower
by selecting an output level 1 unit higher than the best reply foregoes 1 unit of profit but this costs
the Stackelberg leader 10 units of profit.
9 Significant at the 5% level using a Wilcoxon signed-ranks test, where each observation corre-
sponds to the average profits across players from a session.
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Table 3 Average individual profits in the subgames over time

Third 1 Third 2 Third 3
t = 1 t = 2 t = 2 t = 2 t = 1 t = 2

Random t = 1 49.8, 49.8 53.9, 40.2 49.8, 49.8 43.7, 37.2 56.2, 56.2 48.7, 46.3
t = 2 58.0, 58.0 50.1, 50.1 55.9, 55.9

Fixed t = 1 47.3, 47.3 52.6, 49.3 43.6, 43.6 55.9, 54.2 41.0, 41.0 64.5, 58.4
t = 2 49.7, 49.7 43.2, 43.2 61.9, 61.9

the two simultaneous-move subgames become similar (and higher than in the
sequential-move subgame) turns the timing game into a coordination game with
two strict symmetric equilibria. This provides one reason why the convergence
to t = 1 choices is not complete.

Nevertheless, overall we note that subjects choosing period 1 earn on average
higher payoffs over time than subjects choosing period 2.10 The profit figures
are 51.6 and 47.3 (third 1), 48.9 and 41.6 (third 2), and 54.4 and 49.9 (third 3)
for t = 1 and t = 2 choices, respectively.

Note also that, over time, Stackelberg leaders become less competitive
and Stackelberg followers appear to move towards matching the Stackelberg
leader’s quantity such that payoff differences become less extreme. This means
that the incentive to avoid the sequential-move game gets weaker which is
another reason why we see a slowdown in the convergence to t = 1 choices
during the last two thirds.

It is instructive to compare these results to those reported in Huck
et al. (2002) (henceforth HMN). Their experimental design is identical to ours
but the one major difference is the timing game. HMN used Hamilton and
Slutsky’s (1990) extended game with action commitment. In this game, a firm
can move first only by committing to an output. When doing so, the firm does
not know what its competitor is doing. By waiting until the second period, a firm
can observe the other firm’s first period action. Theory predicts the emergence
of Stackelberg equilibria. More precisely, there exist two Stackelberg equilib-
ria and one first period Cournot equilibrium, but only the two Stackelberg
equilibria are in undominated strategies.

The surprising insight from the comparison of our data to those of HMN is
that results differ only marginally – even though predictions based on subgame
perfectness oppose each other. In HMN, the relative frequency of t = 1 decisions
is 56, 65 and 62% across thirds. These numbers are very close to ours in the first
two thirds and only somewhat smaller towards the end of the experiment. Note
that in our experiment firms have a strict incentive to choose t = 1 (they can only
lose by choosing t = 2) while, in the extended game with action commitment,
firms have a weak incentive to delay (as they can play a best reply to whatever
the rival firm did in t = 1). Nevertheless, aggregate t = 1 choices are rather similar
in both studies.

10 This is, however, not significantly different at any conventional level of significance (two-tailed
Wilcoxon signed ranks test).



Endogenous timing in duopoly: experimental evidence 451

The similarity of market outcomes in both experiments is also illustrated
by a look at the frequency of Cournot outcomes (that is, both firms choosing
quantity 8, regardless of the timing decisions). In Random we find 16.0% and
in HMN 14.4% Cournot outcomes. This is in contrast to the prediction that we
should observe Cournot outcomes only in Random but not in HMN.

Another telling statistic is the ratio of market shares. We calculate the num-
ber s := max{q1, q2}/ min{q1, q2} for each individual market and for each round.
The average s for the markets in HMN is 1.27 (standard deviation 0.36) and 1.33
(standard deviation 0.48) in Random. Thus, the ratio of market shares in the
current study (in which symmetric Cournot outcomes are predicted) is higher
than in the previous experiment where asymmetric Stackelberg outcomes are
predicted.

4.2 Fixed matching

Let us now consider treatment Fixed. Table 1 above also shows the evolution
of the relative frequency of t=1 choices in Fixed. In contrast to Random, period
one choices stay roughly constant at a level of 50%. The frequency of timing
outcomes is not immediate from Table 1 as they depend on individual duopoly
pairs. We find that the frequency of the predicted t1 = t2 = 1 subgame increases
from 17 to 32% (from third 1 to third 3). Surprisingly, the frequency of the
t1=t2=2 subgame increases, too, from 17 to 26%. As in treatment Random, the
frequency of the sequential subgame decreases from 66 to 42% but it is modal
in all thirds.

Table 2 reports average quantities. With the exception of the t = 1 Cour-
not subgame, outputs are generally smaller compared to Random, indicating a
tendency to collude. We note that output produced in the first period simulta-
neous subgame is always slightly higher than the Cournot quantity of 8. Whilst
the Cournot output in t = 1 appears to be larger in Fixed,11 we observe that
average outputs in the sequential subgame is smaller in the Fixed treatment.
In fact, both Stackelberg leaders and followers in treatment Fixed are less
competitive than those in treatment Random12 (although, on average, Stackel-
berg leaders and followers in Fixed do not collude perfectly at the joint-profit
maximum). This implies that in treatment Fixed there is less of an incentive to
avoid the sequential subgame by choosing t = 1.13

11 This difference is not significant (one-tailed Mann–Whitney U test).
12 This is significant at the 1% level regarding the Stackelberg followers, but not regarding the
Stackelberg leaders (one-tailed Mann–Whitney U test).
13 A look at Table 3 suggests that actual behavior in the subgames turns the timing game into one
with two asymmetric equilibria. However, we have fixed matching here and indeed we find strong
cohort effects. It appears that timing choices are often used to coordinate on a collusive outcome.
Therefore, the payoff differences between subgames should not be interpreted as an indication that
some subgame should be played more often. Depending on the group, different timing choices may
lead to profits rather different from those in Table 3.
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As expected from the lower quantities, profits are usually higher in Fixed.
More precisely, average profits after choosing period 1 and period 2, respec-
tively, are 50.8 and 49.4 (third 1), 50.1 and 49.3 (third 2), and 50.3 and 60.3 (third
3), respectively. Hence, timing decisions do not seem to affect profits very much
in the first two thirds but towards the end of the experiment subjects seem to
coordinate more effectively in the t1 = t2 = 2 subgame. As mentioned above,
one reason why output choices become more collusive when both subjects in
treatment Fixed choose to produce in period t = 2, is that this choice might
signal the intention not to try to exploit the other subject as a Stackelberg leader.
This might then gain the trust of the other subject and allows the two subjects
to collude. The fact that the frequency of both simultaneous-move subgames
rises over time can by and large be explained by observing that some pairs tend
to coordinate on t = 1 whereas others tend to coordinate on t = 2. Recall that
production costs are the same in both periods.

5 Discussion

Hamilton and Slutsky’s (1990) extended game with observable delay has a
unique subgame perfect equilibrium in which both players choose to produce
in the first period, implying symmetric Cournot quantities. In this paper we
report on an experimental test of this prediction. We run the game both with
a random and a fixed matching scheme. With random-matching, we find that
subjects choose the predicted production period more frequently over time but
choices do not converge to the predicted level as nearly one third of all subjects
still chooses to delay toward the end of the experiment. With a fixed-match-
ing scheme we find that the subgame perfect equilibrium has no predictive
power with regard to timing choices as throughout the experiment only half
of the timing observations are period one choices. The differences in timing
choices in the two treatments can to some extent be explained by the deviations
from the prediction observed in the sequential-move subgame. In the treatment
with random matching, more competitive behavior in the Stackelberg subgame
provides an incentive to avoid it by choosing to produce early. This is not the
case in the treatment with fixed matching as here the behavior in the sequen-
tial-move subgame is less competitive.

The finding that timing choices in the main treatment with random matching
do not converge to the predicted level might be explained by several obser-
vations. First, we noted that given subjects’ behavior in the subgames, after
some experience the timing game more resembles a coordination game with
two symmetric equilibria. Thus, as both players choosing either period one or
period two become equilibrium choices, it is apprehensible that convergence
to equilibrium slows down and remains incomplete. Furthermore, over time
subjects’ behavior in the asymmetric subgame becomes less competitive which
reduces the incentive to avoid it and, thus, slows down the convergence towards
the prediction choices further.
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A second observation is that there might be preferences that cause subjects
to delay their decisions. This is supported by answers given in the post-exper-
imental questionnaire. Some subjects state there that waiting until period two
would allow them to react to the other player’s first period output (if applica-
ble).14 This propensity to postpone decisions seems to also exist in the realm
of individual decision making. Tykocinski and Ruffle (2003) documented such
preferences in their study about “reasonable reasons for waiting”. They show
that subjects often prefer to delay their decisions even when waiting does not
provide any additional information. Our results indicate that subjects some-
times prefer to wait even when doing so puts them at a strategic disadvantage.
When choosing period two, our subjects can find out which action the rival
firm has chosen, provided this rival chose the first period. Even though they
become the Stackelberg follower in this case, they prefer to wait, perhaps to
resolve the strategic uncertainty about the other player’s action. Once subjects
are more familiar with the experimental environment, this preference to wait is
getting weaker in the random-matching treatment. Nevertheless many subjects
still delay towards the end of the experiment.

With fixed matching, these considerations may be less relevant since sub-
jects face less ambiguity regarding choices of their opponent. As argued above,
timing choices may not reflect the incentives suggested by non-cooperative
game theory. Instead, timing choices may turn out to be an instrument to
support collusion. While we observe only little collusion in our experiments,
our results suggest that timing decisions do not affect profits by very much with
fixed matching (except towards the end of the experiment).

We found that our results with random matching are similar in many respects
to those in Huck et al. (2002) although Stackelberg equilibria are predicted for
those experiments. Generally, previous work 15 found that endogenous timing
models predicting asymmetric outcomes are of limited behavioral relevance
due to coordination failure and inequality aversion. The results in this study
show that there are forces sufficiently strong to prevent play from converging
to a unique equilibrium of an endogenous timing model even if the equilibrium
is symmetric.

Acknowledgements We thank an anonymous associate editor and a referee for very helpful com-
ments. The second author acknowledges financial support from the German Science Foundation
(DFG) and the Netherlands Organisation for Scientific Research (NWO) through a VIDI grant.

14 Examples include a subject in the third session with random matching who states: “I started
playing in period 2, thinking it would be better because I could chose the best payoff according
to the other decision.” Another example is a subject in the first fixed-matching session who states
“I chose period 2 because I could potentially choose my quantities based on the other firm’s decision
if they chose period 1.”
15 See Huck et al. (2002), Müller (2005), Fonseca et al. (2005).
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Appendix A: Instructions

Welcome to our experiment! Please read these instructions carefully! Do not
talk to your neighbors and keep quiet during the entire experiment. If you have
any questions, please give us a sign. We will answer your question privately.

In our experiment you can earn different amounts of money, depending on
your behavior and that of other participants matched with you. All participants
read identical instructions.

You have the role of a firm which produces the same product as a second
firm in the market. First you have to decide, at which time you want to produce.
Afterwards, you decide on the quantity you want to produce.

Regarding the time when to produce, you can choose either the first or the
second production period. As the other firm has the same choice, there are four
possibilities. Both first, both second, you first and the other firm second, and
you second and the other firm first. In all cases, you will be informed about the
timing decision of the other firm before choosing your quantity.

The quantity decisions are made in the sequence resulting from the timing
decisions. If both firms choose first or both choose second, quantity decisions
are made simultaneously. In those cases, you and the other firm have to make
the quantity decisions not knowing what the other one chooses. If you choose
first and the other firm second, then the other firm will learn your quantity
decision before making its own decision. Likewise, if you choose second and
the other firm first, then you will learn the other firm’s output decision before
making your own decision.

Note that the profit in each round depends only on the chosen quantities, not
on the choice of production periods. In the attached payoff table, you can see
the resulting profits of both firms for all possible choices of quantity. The table
reads as follows: At the head of a row the quantity of your firm is indicated, at
the head of a column the quantity of the other firm is stated. In the cell at which
row and column intersect, your profit is noted in the lower left and the other
firm’s profit is stated in the upper right. All profits are expressed in a fictional
currency, which we call “Points”.

The experiment lasts 30 rounds. After each round, you will be informed about
the quantity choice of the other firm, your profit and the other firm’s profit.

You do not know with which participant you serve the market. You will be
randomly matched with a participant each round. This random move is done
by the computer.

Anonymity is kept among participants and instructors, as your decisions will
only be identified with a code number. You will discreetly receive your payment
at the end of the experiment.

Concerning the payment note the following. At the end of the experiment,
your earnings in Points determine your payment in pounds sterling. For every
300 Points you will receive 1£. In addition to this payment, you will receive the
show-up fee of 4£ independently of your earnings during the 30 rounds.
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Appendix B: Payoff table

Quant. 3 4 5 6 7 8 9 10 11 12 13 14 15

3 54
54

51
68

48
80

45
90

42
98

39
104

36
108

33
109

30
110

27
108

24
104

21
98

18
90

4 68
51

64
64

60
75

56
84

52
91

48
96

44
99

40
100

36
99

32
96

28
91

24
84

19
75

5 80
48

75
60

70
70

65
78

60
84

55
88

50
89

45
90

40
88

35
84

29
78

25
70

20
60

6 90
45

84
56

78
65

72
72

66
77

60
80

54
81

48
80

41
77

36
72

30
65

24
56

18
45

7 98
42

91
52

84
60

77
66

70
70

63
72

55
71

49
70

42
66

35
60

28
52

21
42

14
30

8 104
39

96
48

88
55

80
60

72
63

64
64

56
63

48
60

40
55

32
48

24
39

16
28

8
15

9 108
36

99
44

89
50

81
54

71
55

63
56

54
54

45
50

36
44

27
36

18
26

9
14

0
0

10 109
33

100
40

90
45

80
48

70
49

60
48

50
45

40
40

30
33

20
24

10
13

0
0

−10
−15

11 110
30

99
36

88
40

77
41

66
42

55
40

44
36

33
30

22
22

11
12

0
0

−11
−14

−22
−30

12 108
27

96
32

84
35

72
36

60
35

48
32

36
27

24
20

12
11

0
0

−12
−13

−24
−28

−36
−45

13 104
24

91
28

78
29

65
30

52
28

39
24

26
18

13
10

0
0

−13
−12

−26
−26

−39
−42

−52
−60

14 98
21

84
24

70
25

56
24

42
21

28
16

14
9

0
0

−14
−11

−28
−24

−42
−39

−56
−56

−70
−75

15 90
18

75
19

60
20

45
18

30
14

15
8

0
0

−15
−10

−30
−22

−45
−36

−60
−52

−75
−70

−90
−90

The head of the row represents one firm’s quantity and the head of the column represents the
quantity of the other firm. Inside the box at which row and column intersect, one firm’s profit
matching this combination of quantities stands up to the left and the other firm’s profit stands down
to the right. Fourteen entries were manipulated in order to get unique best replies (see Huck et al.
2001)
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