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Abstract. The paper extends two alternative approaches in inequity-averse optimization under uncer-
tainty, the ex-ante approach and the ex-post approach, from a static to a dynamic decision making
context. This is done by developing a stochastic multistage optimization framework evaluating payoffs
by an equitable aggregation function. It is shown that global optimization of strategies leads to time-
consistent policies only in the ex-post case. For the ex-ante case, a variant of a policy for which time
consistency holds is proposed. To illustrate the concepts, a two-stage stochastic location-allocation prob-
lem from humanitarian logistics is investigated. For this application, the general algorithmic approaches
can be cast into mathematical programming formulations, which yields a two-stage stochastic program
and a bilevel program in the ex-post and in the ex-ante case, respectively. The resulting models are solved
to optimality for a set of randomly generated instances, and a comparison of the outcomes for ex-post
and ex-ante, also in terms of the “Price of Fairness”, is given.
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1 Introduction

Inequity-averse decision making has recently found much interest in the Operations Research lit-

erature [Karsu and Morton, 2015]. Whenever decisions affecting several people are to be made,

the question is not only how to achieve “the greatest good for the greatest number”, as it has

been suggested by the philosophers of Utilitarianism, Bentham and Mill (cf. [Bentham, 1879,

Mill, 1966]). Also the distribution of goods among the persons matters: numerous studies show

that solutions are rejected if they are not considered as fair. Among the most convincing con-

firmations of this fact are empirical results of Behavioral Economics on the Ultimatum Game

(see, e.g., [Nowak et al., 2000]). However, many practical experiences with quantitative decision

making approaches in different fields such as staff scheduling, transportation logistics, health-

care management, or resource sharing in computing systems, underline the importance of the

fairness aspect as well.

The classical framework for equity considerations has been developed by John Rawls

[Rawls, 1971]. His max-min principle, essentially based on the idea of reducing inequity aversion

to risk aversion, prescribes to maximize the benefit of the worst-off individual. As alternatives
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to the Rawlsian measure of minimal benefit (or maximal cost), also more complex inequity mea-

sures have been elaborated in the economic literature, first and foremost the well-known Gini

coefficient [Yitzhaki and Schechtman, 2013]. The survey [Marsh and Schilling, 1994] reviews no

less than twenty inequity measures. Obviously, as soon as an inequity measure has been chosen,

also optimization models taking the equity aspect into account can be formulated and solved.

While inequity-averse optimization in a deterministic context is conceptually still rather

simple, though often computationally highly nontrivial and demanding, decisions under uncer-

tainty – represented by suitable stochastic models – introduce additional challenges. The major

difficulty in this area is the antagonism between two competing approaches, the ex-ante and

the ex-post approach [Ben-Porath et al., 1997, Fleurbaey et al., 2015]. The former measures the

quality of a solution by the inequity of the expected outcomes, while the latter measures it by

the expected inequity of the outcomes. To put it at its simplest, the ex-ante approach strives for

equal chances, whereas the ex-post approach strives for chances of equity. The two approaches

and their comparison have found considerable interest in the literature on economics and on de-

cision theory, but they have rarely been used in the context of computational optimization. An

exception is [Mostajabdaveh et al., 2018], where a combination of the ex-ante and the ex-post

objective function, both based on the Gini coefficient, has been applied to solve a location-

allocation problem under uncertainty for the establishment of shelters in the preparation phase

for a natural disaster.

A limitation of [Mostajabdaveh et al., 2018] is that the article assumes both the location

and the allocation decision to be made already in the first decision stage, i.e., before uncertainty

on demands is resolved by the occurrence of the disaster. One may wish to gain flexibility by

deferring the allocation decision to the second stage so that it can exploit the knowledge of

the post-disaster situation. If, however, the optimization model is extended in this direction,

the static problem turns into a dynamic one, producing an inequity-averse two-stage stochastic

optimization problem.

Multi-stage stochastic optimization problems with inequity-averse objective functions have,

to the best of the author’s knowledge, not yet been investigated with a view towards numerical

solution. The present work is an attempt to work out mathematical problem representations

and solution algorithms for this class of problems. This will be done mainly in a quite general

framework. Nevertheless, the location-allocation problem outlined above will then be used to

illustrate the concepts and to explore the possibility of a computational solution.

The paper is organized as follows: Section 2 gives a review of related publications. In
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Section 3, basic concepts for multi-stage extensions of inequity-averse stochastic optimization

are introduced. Section 4 is devoted to the issue of time (in)consistency. Section 5 presents a

time-consistent variant of a policy following the ex-ante approach. In Section 6, we describe the

shelter location-allocation problem and suggest a mathematical problem formulation as well as

a solution approach. Section 7 deals with the determination of the “Price of Fairness”. Section 8

presents experimental results and observations, while Section 9 concludes the paper.

2 Related Literature

For a recent survey on inequity-averse optimization, the reader is referred to

[Karsu and Morton, 2015]. An example for an application in health economics is [Morton, 2014].

Applications in transportation logistics can be found in [Matl et al., 2017]. Several applica-

tions are related to location analysis or network problems, see, e.g., [Kostreva et al., 2004,

Ogryczak et al., 2014].

Theoretical results on inequity under uncertainty, considered from an axiomatic point of view,

are provided in [Chew and Sagi, 2012, Fleurbaey et al., 2015]. The issue of time consistency has

been mainly studied in the literature on risk-averse optimization, see, e.g., [Rudloff et al., 2014,

Pflug and Pichler, 2016]. Time inconsistency of ex-ante policies has been discussed in the eco-

nomics literature early on (see, e.g., [Machina, 1989]), but a treatment in a context of compu-

tational multi-stage stochastic optimization seems to be missing up to now. The concept of the

“Price of Fairness” goes back to [Bertsimas et al., 2011] and has been used in a number of recent

investigations, e.g., [Nicosia et al., 2017].

Evacuation planning and shelter assignment problems have been studied by several authors,

cf. the review in [Bayram, 2016]. [Bayram and Yaman, 2017] consider uncertainty on the road

network and on demands by a scenario-based model and solve a location-allocation problem.

[Li et al., 2011] propose a two-stage stochastic programming model for determining locations

of permanent shelters and their capacities in a first decision stage, resource allocation and

temporary shelter locations in a second decision stage. [Kulshrestha et al., 2011] introduce a

bilevel optimization model for shelter location-allocation under demand uncertainty.

The last-mentioned works do not address the equity issue. However, part of the humanitar-

ian logistics literature takes equity into account, though not in the form of dynamic extensions of

ex-ante or ex-post policies. To give some examples, [Vitoriano et al., 2011] deal with equity in a

multicriteria optimization context. [Huang et al., 2012] quantify inequity by three different mea-
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sures. [Gutjahr and Fischer, 2018] show that the inequity of post-disaster relief good distribution

can be considerably reduced at only negligible efficiency losses. [Eisenhandler and Tzur, 2018]

incorporate equity aspects, quantified by means of a measure based on the Gini coefficient, into

the optimization of the distribution of food by welfare agencies. By their two-stage programming

model for last-mile relief distribution, [Noyan et al., 2015] come close to our present work, but

they apply the equity measure in the constraints rather than in the objective function.

While in inequity-averse optimization, multistage stochastic decision processes seem to be

an unexplored area, there is a huge body of literature on such processes in an inequity-neutral

context, cf., e.g., multistage stochastic programming [Birge and Louveaux, 2011], or Markov

Decision Processes [Puterman, 2014].

3 Problem Formulation

A sequence of decisions in T time stages t = 1, . . . , T have to be made. By xt, we denote the

decision in stage t (1 ≤ t ≤ T ). Decision xt is an element of a discrete finite set Xt. Thus, the

sequence x = (x1, . . . , xT ) is an element of X1 × . . .×XT .

Decisions made in previous stages may restrict the set of feasible decisions in some current

stage t. To represent this, we consider a subset Y ⊆ X of feasible decision sequences. From

this set, the sets Yt(x1,...,xt−1) of feasible decisions in some stage t, given decisions x1, . . . , xt−1

in the previous stages, can be immediately derived: Y1 = {x1 ∈ X1 | ∃x2 ∈ X2 . . . ∃xT ∈ XT :

(x1, . . . , xT ) ∈ Y}, and

Yt(x1,...,xt−1) = {xt ∈ Xt | ∃xt+1 ∈ Xt+1 . . . ∃xT ∈ XT : (x1, . . . , xT ) ∈ Y} (t = 2, . . . , T )

Consider a sequence of random events. It is supposed that the t-th event happens at some

point in time between decision stages t and t + 1 (t = 1, . . . , T − 1). Formally, we describe

the t-th event by a random variable ζt with possible realizations st ∈ St (t = 1, . . . , T − 1),

where S1, . . . , ST−1 are finite sets. Then, (ζ1, . . . , ζT−1) is a time- and state-discrete stochastic

process. The sequence (ζ1, . . . , ζT−1) can have an arbitrary probability distribution on the set

S = S1 × . . . × ST−1. However, we assume that the random variables ζt representing the

random events are independent from the decisions. Decisions, on the other hand, can depend

on previous events. A sequence s = (s1, . . . , sT−1) of realizations of (ζ1, . . . , ζT−1) will also be

called a scenario.

For shortness of terminology, the realization st of random variable ζt will sometimes be
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identified with the “event in stage t”. In this sense, scenario s = (s1, . . . , sT−1) will be conceived

as an event sequence.

We obtain the following T -stage decision process: first, the decision maker (DM) chooses

decision x1 ∈ Y1. After that, the random event described by ζ1 ∈ S1 happens. The DM can

observe the realization s1 of ζ1 and, depending on s1, make her next decision x2 ∈ Y2
(x1). Now,

the random event described by ζ2 ∈ S2 occurs, etc. After the final decision xT , the process

terminates.

The probability distribution p on S is specified by probabilities ps (s ∈ S), where ps denotes

the probability of scenario s. We assume ps > 0 for all s ∈ S and
∑

s∈S ps = 1.

Next, we define strategies of the DM. Consider a function Z : S → Y mapping each

scenario s ∈ S to a sequence x ∈ Y of feasible decisions. Note that Z is vector-valued:

Z(s) = (Z1(s), . . . , ZT (s)) with Zt(s) ∈ Xt (t = 1, . . . , T ).

Definition 1. The function Z : S → Y assigning decision sequences to event sequences is called

nonanticipative (cf. [Shapiro et al., 2009]) if for each t = 1, . . . , T −1, the decision Zt(s) does not

depend on the future events st, st+1, . . . , sT−1, i.e., if Z1(s) = Z1, and Zt(s) = Zt(s1, . . . , st−1)

for t = 2, . . . , T . We shall consider only nonanticipative functions Z throughout the paper. In

the following, a nonanticipative function Z : S → Y will be called a strategy. By Z = Z(Y, S),

we denote the set of all strategies Z for some given Y and S.

Let N , indexed by i = 1, . . . , n, denote the set of individuals affected by the consequences

of the decisions x1, . . . , xT . We assume that the DM is not contained in N , but represents

“society”, a public institution, or a non-governmental organization. For each i ∈ N , assume a

cost function fi : Y ×S → R to be given. Thus, fi(x, s) denotes the cost individual i has to face

in case that the sequence x ∈ Y of decisions is made and the random events contained in s ∈ S

occur. To assess the “social cost” of the decision (the cost from the viewpoint of the DM), we use

a (weakly) equitable aggregation function I : Rn → R assigning to each cost vector (f1, . . . , fn)

(with fi denoting the cost of individual i) an overall real-valued score I(f1, . . . , fn). By a weakly

equitable aggregation function (short: equitable aggregation function), we understand a function

I : Rn → R that is nondecreasing and symmetric, and that satisfies the weak Pigou-Dalton

principle of transfers: fj > fi ⇒ I(f) ≤ I(f + εej − εei) for all f ∈ Rn, where ε > 0, and ei, ej

denote the ith and jth unit vector in Rn, respectively. (For details, see [Kostreva et al., 2004,

Karsu and Morton, 2015].) Note that we do not require strict monotonicity nor the strict version

of Pigou-Dalton.
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Some candidates for equitable aggregation functions are the Rawlsian measure

I(f1, . . . , fn) = max(f1, . . . , fn), the conditional β-mean [Filippi et al., 2019], or a weighted

sum of the average cost and Gini’s absolute difference of costs [Ogryczak, 2000, Ogryczak, 2009,

Gutjahr and Fischer, 2018].

For the application of a measure I to a cost vector f = (fi)i∈N = (f1, . . . , fn), we shall also

write I(fi : i ∈ N) instead of I(f1, . . . , fn).

Definition 2. The Global Ex-Ante (GEA) Problem is the minimization problem

min I

(∑
s∈S

ps fi(Z(s), s) : i ∈ N

)
s.t. Z ∈ Z. (1)

Note that the sum in Eq. (1) is just the expected value of the cost resulting for individual i ∈ N if

strategy Z is chosen, where the expectation is taken with respect to the probability distribution

on the scenarios s ∈ S. Thus, the objective function Eq. (1) represents the inequity of expected

costs. By the word “global” in “global ex-ante” we refer to the property that Eq. (1) optimizes

the ex-ante objective function without any restriction on the strategy.

Definition 3. The Global Ex-Post (GEP) Problem is the minimization problem

min
∑
s∈S

ps I (fi(Z(s), s) : i ∈ N) s.t. Z ∈ Z. (2)

Contrary to the GEA problem, the GEP problem minimizes the expected inequity of costs.

Observe that the terminological distinction between “ex-ante” and “ex-post” refers to the

viewpoint from which decisions are to be judged as fair or not: from the viewpoint before the

random event has occurred (ex-ante approach), or from the viewpoint after this has happened

(ex-post approach).

In the special case T = 1, no random event occurs, and a strategy is of the form Z1(s) = Z1 =

x1 ∈ Y1, i.e., it reduces to a simple action x1. In this case, fi(Z(s), s) reduces to fi(x1), with

the consequence that the problems GEA and GEP collapse to an identical static, deterministic

problem, namely the problem min {I(fi(x1) : i ∈ N) | x1 ∈ Y1}.

In the case T > 1, we may also consider the “smaller” decision problem that results after

the first decision x1 has been made and the subsequent random event s1 has occurred. This

new decision problem has only T − 1 decision stages, and compared to the original problem, the

DM has now more information insofar as she already knows the value of s1. For defining this

“reduced problem” in formal terms, let us introduce a bit more of notation. We split the vector
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s = (s1, s2, . . . , sT−1) into the parts s1 and s′ = (s2, . . . , sT−1), writing s = (s1, s
′). Let

ps′|s1 = p(s1,s′)/p(s1) with p(s1) =
∑

s̄j∈Sj(j=2,...,T−1)

p(s1,s̄2,...,s̄T−1) (3)

denote the conditional probability for s′, given s1. Obviously,
∑

s′ ps′|s1 = 1 for each s1 ∈ S1.

In the special case T = 2, we set s′ = ∅ and p∅|s1 = 1.

Definition 4. Let a problem instance (X ,Y, S, p, f) with T ≥ 2 be given. Consider some fixed

x1 ∈ Y1 and s1 ∈ S1. The (x1, s1)-reduced instance derived from (X ,Y, S, p, f) is the problem

instance (X ′,Y ′, S′, p′, f ′) defined by

X ′ = X2 × . . .×XT , Y ′ = {(x2, . . . , xT ) | (x1, x2, . . . , xT ) ∈ Y},

S′ = S2 × . . .× ST−1 for T > 2, and S′ = {0} for T = 2,

p′s′ = ps′|s1 ∀s
′ ∈ S′ for T > 2, and p′0 = 1 for T = 2,

f ′(x′, s′) = f((x1, x
′), (s1, s

′)) for T > 2, and f ′(x′) = f((x1, x
′), s1) for T = 2.

Next, we shall define the notion of a policy; this term will be used to refer to a class of

strategies, applicable to different problem instances.

Definition 5. Let Inst and Ztot denote the set of all problem instances and the set of all

strategies, respectively, and let P(Ztot) denote the set of subsets of Ztot. A policy π is a

function π : Inst → P(Z) with π(X ,Y, S, p, f) ⊆ Z(Y, S) and π(X ,Y, S, p, f) 6= ∅ for all

(X ,Y, S, p, f) ∈ Z. In less formal terms, a policy π assigns to each instance (X ,Y, S, p, f) a

nonempty set of strategies Z : S → Y, the set of strategies “proposed” by π.

Obvious examples of policies are: (i) the Global Ex-Ante Policy (GEA policy) which assigns

to each instance the set of optimal solutions Z of Eq. (1), and (ii) the Global Ex-Post Policy

(GEP policy) which assigns to each instance the set of optimal solutions Z of Eq. (2).

We would like to ensure time consistency of a policy: decisions planned for the future should

actually going to be implemented – also in view of new information – if the DM keeps following

the chosen policy (cf. Rudloff et al. 2012). Let us define this notion in precise terms:

Definition 6. A policy π is called time-consistent, if for every instance (X ,Y, S, p, f) and for

each x1 ∈ Y1 and s1 ∈ S1, the derived (x1, s1)-reduced instance (X ′,Y ′, S′, p′, f ′) satisfies the

implication

Z ∈ π(X ,Y, S, p, f), Z1 = x1 ⇒ ∃Z ′ ∈ π(X ′,Y ′, S′, p′, f ′) : Z2(s1) = Z ′2.
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Therein, Z = (Z1, . . . , ZT ) and Z ′ = (Z ′2, . . . , Z
′
T ).

In other words: π is time-consistent if in every case where it proposes some strategy Z with

first-stage action x1 and whatever the random event s1 following action x1 may be, the same

policy π applied to the remaining stages of the decision process does not force us to deviate

from the second-stage action Z2(s1) as it has been pre-planned by Z.

Before starting the investigation of which policies are time-consistent and which are not, it

is helpful to discuss different ways to represent a strategy Z.

(a) Tree Visualization. A better intuitive understanding can be obtained by using the well-

known representation of a decision process as a tree. Fig. 1(a) shows an example for T = 2

decision stages. Here, X1 = X2 = {1, 2}, Y = X = X1 × X2, and S1 = {1, 2}. A set N = {1, 2}

of two individuals is assumed. To each s1 ∈ S1, a probability pi is assigned, e.g., p1 = p2 = 1/2.

Nodes D1 and D2 – D5 are decision nodes, whereas in nodes R1 – R2 random events determine

the choice of the outgoing arc. The terminal nodes (leaves) T1 – T8 are labeled by the vectors

f(x, s) = (f1(x, s), f2(x, s)) of costs assigned to the two individuals i = 1, 2.

D1

R1

R2

D2

D3

D4

D5

T1

T2

T3

T4

T5

T6

T7

T8

x1=1

x1=2

s1=1

s1=2

s1=1

s1=2

x2=1

x2=2

x2=1

x2=2

x2=1

x2=2

x2=1

x2=2

(5,0)

(7,8)

(0,3)

(2,3)

(3,4)

(8,6)

(7,7)

(3,3)

D1 R1

D2

D3

T1

T2

T3

T4

x1=1

s1=1

s1=2

x2=1

x2=2

x2=1

x2=2

(3,0)

(4,4)

(0,2)

(1,1)

Figure 1: Two inequity-averse decision trees. (a) Left: Basic example. (b) Right: Counter-

example in the proof of Prop. 2.

(b) Standard representation. To distinguish it from an another representation introduced

below, we shall call the representation Z = (Z1, . . . , ZT ) with Zt(s) = Zt(s1, . . . , st−1) used in

Def. 1 the standard representation. Expressed in terms of the decision tree, it lets a strategy Z

determine, for each decision node of the tree that can be reached by Z, an action to be chosen
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in this decision node. An example for a strategy Z in Fig. 1(a) is Z1 ≡ 1, Z2 ≡ (1, 2), specifying

that the first-stage decision is 1 and that the second-stage decision is 1 if s1 = 1 and 2 if

s1 = 2 (observe that if the first-stage decision is 1, then only the two upper nodes D2 and

D3 of the second decision level matter for the second-stage action). We shortly write this

special strategy as (1; 1, 2). For the Rawlsian measure I = max and for p1 = p2 = 1/2, it

is evaluated under the two objective functions (1) and (2) as follows: the GEA objective gives

max
(

1
2 · 5 + 1

2 · 2,
1
2 · 0 + 1

2 · 3
)

= 7
2 , while the GEP objective gives 1

2 max(5, 0)+ 1
2 max(2, 3) = 4.

In the general case, suppose St = {s1
t , . . . , s

kt
t }, where the elements of St are pre-arranged in

a fixed order (t = 1, . . . , T − 1). Then strategy Z is specified by the numbers

x = Z1, x(κ1...κt) = Zt+1(sκ11 , . . . , sκtt ) (κτ = 1, . . . , kτ (1 ≤ τ ≤ t); t = 1, . . . , T − 1)

which can be combined to a vector

(x; x(1), . . . , x(k1); x(11), . . . , x(1k2), . . . , x(k11), . . . , x(k1k2); . . . . . . ; x(1...1), . . . , x(k1...kT−1)). (4)

(c) Nested representation. An alternative representation of a strategy Z is obtained as

follows: Let Z : S → Y with Z = (Z1, . . . , ZT−1) be given, where Zt(s) = Zt(s1, . . . , st−1)

(t = 1, . . . , T ) , and let again s1
1, . . . , s

k1
1 be the elements of S1, pre-arranged in a fixed order.

We represent Z recursively by nrep(Z) = Z1 for T = 1 and

nrep(Z) = [Z1; nrep(Z [s11]), . . . ,nrep(Z [s
k1
1 ])] for T > 1.

Therein, Z [s1] is the strategy on stages t = 2, . . . , T given by

Z
[s1]
t (s2, . . . , sT−1) = Zt(s1, s2, . . . , sT−1) (t = 2, . . . , T − 1).

For example, let us extend the instance of Fig. 1(a) by a further stage t = 3 and binary

alternatives both for the random events s3 and the actions x3, i.e., S3 = {1, 2} and X3 = {1, 2}.

This gives a binary decision tree with 21 decision nodes, 10 random event nodes, and 32 terminal

nodes. Consider the strategy that reads in standard form

Z ≡ (x; x(1), x(2); x(11), x(12), x(21), x(22)) = (2; 1, 2; 2, 1, 2, 2).

It says that always action 2 is chosen, except in the cases where s1 = 1 has just been observed,

or where first s1 = 1 and then s2 = 2 have been observed. The same strategy can then written

in nested form as nrep(Z) = [2; [1; 2, 1], [2; 2, 2]]. Therein, the first inner expression in brackets

specifies the sub-strategy for the case s1 = 1, whereas the second inner expression specifies the

sub-strategy for the case s1 = 2.
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It is easy to see that each representation in nested form can be translated back to an ex-

pression in standard form, and that the two operations are inverse to each other. Therefore,

both representations are equivalent. In the following, we shall simply write Z instead of nrep(Z)

whenever the context makes it clear that Z is represented in nested form.

4 Time Consistency

We start with a positive result, which follows from time-consistency of Markov Decision Processes

(MDPs).

Proposition 1. For any equitable aggregation function I : Rn → R, the Global Ex-Post Policy

is time-consistent.

Proof. Denote by GEP(X ,Y, S, p, f) the problem Eq. (2) applied to the instance (X ,Y, S, p, f).

Suppose Z is a solution of GEP(X ,Y, S, p, f), x1 = Z1, and s1 ∈ S1. Let (X ′,Y ′, S′, p′, f ′) be

the (x1, s1)-reduced instance derived from (X ,Y, S, p, f). We have to show that there exists at

least one solution Z ′ of GEP(X ′,Y ′, S′, p′, f ′) such that Z2(s1) = Z ′2.

For the proof, it is convenient to use the tree representation of the problem. A leaf of the

decision tree is specified by a pair (x, s), where x = (x1, . . . , xT ) ∈ Y is a sequence of actions, and

s = (s1, . . . , sT−1) ∈ S is a sequence of random events. Similarly, a decision node at level t > 1

of the tree is specified by a pair (x̄, s̄) where x̄ = (x1, . . . , xt−1) and s̄ = (s1, . . . , st−1) denote the

sequence of previous decisions and the sequence of previous random events, respectively, that

led to the considered decision node (cf. Fig. 1(a)).

To each leaf (x, s), a cost vector f(x, s) = (fi(x, s) : i ∈ N) is assigned. Let α(x, s) =

I(fi(x, s) : i ∈ N). Then the numbers α(x, s) are scalars assigned to the leaves, and

GEP(X ,Y, S, p, f) can be written as minz∈Z
∑

s∈S ps α(Z(s), s). We reformulate this prob-

lem as an MDP with finite time horizon: The set of states σ is the set of all decision nodes.

The set of feasible actions a in a given state (i.e., decision node) specified by the two sequences

(x1, . . . , xt−1) and (s1, . . . , st−1) is the set of decisions xt ∈ Yt(x1,...,xt−1). The transition probabil-

ity T (σ, a, σ′) from state σ to state σ′ under action a is determined by the property that action a

in decision node σ leads to a random-event node with a well-specified probability distribution

on the set of subsequent decision nodes. The reward function R(σ, a) has the value zero, if σ

does not lie at the deepest level T of decision nodes (immediately leading to leaves). Other-

wise, for a decision node σ at level T , specified by the two sequences x̄ = (x1, . . . , xT−1) and
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s̄ = (s1, . . . , sT−1), the reward function R(σ, a) has the value α(x, s̄) with x = (x1, . . . , xT−1, a).

(Note that (x, s̄) is a leaf.) The total reward is the finite sum of (undiscounted) rewards over

the time period 1, . . . , T . Obviously, this MDP is equivalent to the problem above.

By Bellman’s Principle of Optimality, an optimal strategy in the MDP has the property

that for each initial decision, the remaining decisions must constitute an optimal strategy with

respect to the state following from the first decision. Therefore, after an initial decision for

action x1 has been made and the random event s1 has occurred, the optimal decision Z2(s1) of

GEP(X ,Y, S, p, f) must remain an optimal decision for the (x1, s1)-reduced instance and can

thus constitute the first decision Z ′2 of GEP(X ′,Y ′, S′, p′, f ′). 2

Let us now proceed to the Global Ex-Ante Policy. It will turn out that for most equitable

aggregation functions, this policy lacks time-consistency.

Proposition 2. In the general case, the Global Ex-Ante Policy for the Rawlsian measure

I = max is not time-consistent.

Proof. We show the statement by the counter-example in Fig. 1(b). There are four strategies Z

for this instance: in standard representation, they are given by Z(1) ≡ (1; 1, 1), Z(2) ≡ (1; 1, 2),

Z(3) ≡ (1; 2, 1) and Z(4) ≡ (1; 2, 2), respectively. It is immediately seen that Z(3) is dominated

by Z(1), and Z(4) is dominated by Z(2). The objective function values for Z(1) and Z(2) according

to Eq. (1) result as follows: For Z(1), we get max
(

1
2 · 3 + 1

2 · 0,
1
2 · 0 + 1

2 · 2
)

= 3
2 , whereas for

Z(2), we get max
(

1
2 · 3 + 1

2 · 1,
1
2 · 0 + 1

2 · 1
)

= 2. Thus, Z = Z(1) is the optimal GEA strategy.

For s2 = 2, it prescribes the action Z2(s2) = 1.

On the other hand, consider the (1, 2)-reduced instance, which consists only of the subtree

rooted in decision node D3. The optimal GEA strategy for this reduced instance is to choose

x2 = 2, since max(1, 1) < max(0, 2). That is, Z ′2 = 2. We have Z2(s2) 6= Z ′2 for s2 = 2 and

hence a violation of time-consistency. 2

The counter-example in the proof of Prop. 2 was kept as small as possible; in particular,

there is no proper decision to be made in stage 1. One might object that in this case, the

decision maker might delay her choice on x2 until the event s1 has realized instead of making

a decision on the strategy Z in advance. However, an extension of the decision tree by the

addition of a subtree for a decision x1 = 2 with the same structure as the subtree for x1 = 1,

but cost vectors (7
4 ,

7
4) in all four leaves, would result in the same optimal solution for Z, since

all strategies Z ≡ (2; i, j) are dominated by Z(1). They are not dominated, however, by Z(2), so

for the extended tree, it is important that the strategy Z is chosen already before the decision

11



on x1.

In several works, especially in the context of location problems, it has been proposed to use

the weighted mean I = µ+λ ·∆ as the equitable aggregation function, where µ is the utilitarian

measure

µ = µ(f1, . . . , fn) =
1

n

n∑
i=1

fi, (5)

and ∆ is Gini’s mean absolute difference

∆ = ∆(f1, . . . , fn) =
1

n2

n∑
i=1

n∑
j=1

|fi − fj |. (6)

(See e.g. [Ogryczak, 2000, Ogryczak, 2009, Gutjahr and Fischer, 2018].) Gini’s mean absolute

difference ∆ can also be represented as the double product 2µG of µ with the well-known Gini

coefficient G. The weight factor λ controls the degree of inequity aversion: the more inequity-

averse the decision maker is, the more emphasis she will give to the Gini term, i.e., the higher will

be the value of λ. The boundary case λ = 0 produces the inequity-neutral utilitarian measure.

It can be verified that for 0 ≤ λ ≤ 1/2, the measure I = µ + λ ·∆ is monotonous (as required

for an equitable aggregation function), contrary to the Gini coefficient itself.

Proposition 3. In the general case, for arbitrary 0 < λ ≤ 1/2, the Global Ex-Ante Policy for

the equitable aggregation function I = µ+ λ ·∆ is not time-consistent.

Proof. We use again the counter-example in Fig. 1(b). Let Z(1) to Z(4) be defined as in the

proof of Prop. 2. Z(3) and Z(4) are dominated again by monotonicity. For Z(1) and Z(2), the

following evaluations of the objective function are obtained:

Z(1) : I
(

1

2
(3, 0) +

1

2
(0, 2)

)
= I

(
3

2
, 1

)
= µ

(
3

2
, 1

)
+ λ ·∆

(
3

2
, 1

)
=

5

4
+ λ · 1

4
.

Z(2) : I
(

1

2
(3, 0) +

1

2
(1, 1)

)
= I

(
2,

1

2

)
= µ

(
2,

1

2

)
+ λ ·∆

(
2,

1

2

)
=

5

4
+ λ · 3

4
.

By the assumption λ > 0, the first objective value is strictly smaller than the second one, so

Z = Z(1) is the unique optimal solution. For s2 = 2, it prescribes the action Z2(s2) = 1.

On the other hand, consider the (1, 2)-reduced instance (the subtree rooted in D3). For the

two possible decision alternatives for Z ′2, we find I(0, 2) = 1 + λ and I(1, 1) = 1, respectively.

Again by λ > 0, the unique optimal decision is Z ′2 = 2 6= Z2(2), which contradicts time-

consistency. 2

Prop. 3 does not cover the boundary case λ = 0. Actually, in this case, the GEA policy is

time-consistent:
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Proposition 4. The Global Ex-Ante Policy for the utilitarian measure I = µ is time-consistent.

Proof. The proof follows immediately from Prop. 1, since µ(f1, . . . , fn) is a linear function.

Therefore, in Eq. (1), the function I can be interchanged with the summation over s and with

the multiplication by pi, which produces Eq. (2). As a consequence, the GEA problem and the

GEP problem coincide in this case. As the policy solving the GEP problem is time-consistent,

so is the policy solving the GEA problem. 2

5 A Time-Consistent Ex-Ante Policy

The results of the previous section show that while global ex-post policies are time-consistent,

global ex-ante policies typically lack this property. It does not make too much sense to propose

an optimized policy if it is not time-consistent, since if the decision maker will probably deviate

from the pre-specified strategy in later stages, the optimality property gets lost during practical

execution.

On the other hand, one would be interested in having also ex-ante policies for inequity-

averse decision processes. The reason is that the ex-ante consideration has advantages of its

own. Fleurbaey et al. [Fleurbaey et al., 2015] outline two essential drawbacks of the ex-post

consideration that can be overcome by the ex-ante view, namely (i) the inability to produce

fairness by randomization, and (ii) social paternalism. The following example by Myerson

[Myerson, 1981] illustrates both of these issues:

Suppose the parents of two twin daughters want to favor both of them in their careers.

The financial resources of the family, however, allow only the choice between two alternatives:

either to send both daughters to school (for four years each) to become teachers, or to send one

daughter to university (for eight years) to become a doctor while the other daughter will become

a clerk. Now suppose that both daughters prefer a fifty-fifty chance of becoming a doctor (and

otherwise to become a clerk, which is the least preferred outcome) to a hundred percent chance

of becoming a teacher. The parents want to be as fair as possible, so in the case they send one

of the daughters to university, they would decide by tossing a fair coin which of the daughters

gets this possibility. Assigning utilities 0, 1 and 4 to clerk, teacher and doctor, respectively,

and applying the Rawls measure (here: minimum of the utilities), it is easy to see that the

ex-post approach prescribes to let both daughters become teachers, while the ex-ante approach

recommends to select one of the daughters by the coin toss for the university studies. Thus, the

ex-post approach would deprive the two daughters of the more risky procedural alternative that
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is preferred by both of them. Acting in this way could be rightly considered as “paternalistic”.

It should be noted, however, that also the ex-ante approach is based on the equity preferences

of the social decision maker (in the example: the parents) rather than on those of the affected

individuals (in the example: the daughters). Actually, the two daughters in the example may

be inequity-neutral (i.e., they may not care about each other, but strive only for their own

careers), they may be inequity-averse (i.e., interested also in a fair treatment of the sister), or

they may even be inequity-seeking. In all the three cases, even in the last one, the parents may

be concerned about an equitable treatment of both daughters, and this is what counts for the

analysis.1

To design a time-consistent ex-ante policy, we draw from the concept of consistent planning

which has been introduced in studies on consumption of a commodity over time under pref-

erences favoring the presence over the future. Works on this subject go back to the seminal

paper [Strotz, 1955]. The basic idea of this concept is “to choose the best plan among those

that will actually be followed”. In [Machina, 1989], consistent planning is called “folding back”

and discussed also in relation to the fairness issue, but rejected in favor of what we call GEA.

In our problem context, “consistent planning” takes the following form: Consider a problem

instance with T = 1. In this case, there is no influence of randomness. In particular, the

GEA problem and the GEP problem coincide, and it is clear what to do: the leaf for which

the application of I to the cost vector produces the best value has to be chosen. In this way,

not only an action is determined, but also a corresponding evaluation vector, representing the

(expected) costs of all individuals under the best-possible decision, is obtained.

On the other hand, suppose T > 1. Then a decision x1 has to be made, which is followed

by a random event s1. By the above-mentioned key idea, we assume that the actual decision

in decision stage 2 will be based on “consistent planning” again: if another choice would have

been pre-planned, there would be an incentive to deviate from this choice as soon as decision

stage 2 is reached. Now, if an ex-ante policy is to be chosen (i.e., the expectation operator is to

be applied before the application of I), what we have to do is to consider the evaluation vectors

in each decision node of stage 2, to take their expected values with respect to the distribution

1Equity preferences of the individuals can possibly be incorporated into the quantitative formalism by mod-

ifications of the utilities. For example, one could imagine that the daughters originally assign utilities 1 and

5 to clerk and doctor, respectively, but both values are reduced then by one unit to express the discomfort of

seeing either the sister or oneself disadvantaged, which finally results in the same numbers as above. We shall

not further pursue here the topic of individual equity preferences, which requires a more detailed investigation in

future research.
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of the random event (which gives a vector in each random event node of stage 1), and finally to

apply I to the resulting vectors to find the optimal decision in stage 1.

A technical difficulty arises when this concept is followed: the optimal decision in a considered

decision node needs not to be unique. To cope with this difficulty, a tie-break order is required:

Definition 7. A tie-break order is a linear order � on the set Rn of possible cost vectors

f = (fi)i∈N .

An example for a tie-break order is

f � g ⇔

(∑
i∈N

fi <
∑
i∈N

gi or

[∑
i∈N

fi =
∑
i∈N

gi and f ≤ g in lexicographical order

])
. (7)

It states that in cases where two solutions yield cost vectors f and g, respectively, that are

equally good with respect to some chosen optimization criterion, the solution that is better in

a utilitarian view is taken; if they are equally good even in this view, a decision is made simply

based on lexicographical precedence. A limitation of this rule will be discussed below.

We are now in the position to formulate the algorithm outlined above in precise terms:

Recursive Ex-Ante (REA) Policy.

Input: A problem instance (X ,Y, S, p, f). Output: A set πREA(X ,Y, S, p, f) of solutions

Z ∈ Z to problem (X ,Y, S, p, f), and an assigned evaluation vector f̄ .

• Case T = 1: The instance is given by a single decision node, possible options x1
1, . . . , x

r1
1

for the action x1, and r1 leaves to which cost vectors f(x1
1), . . . , f(xr11 ) are assigned, where

f(xρ1) = (fi(x
ρ
1))i∈N (ρ = 1, . . . , r1). Let Ū1 = arg minx1 I(fi(x1) : i ∈ N) be the set of all

decisions x1 that lead to minimal evaluations of I on the set of leaves. Furthermore, let

U1 = {x∗1 ∈ Ū1 | f(x∗1) � f(x1) ∀x1 ∈ Ū1} be the set of minimal elements in U1. Just as Ū1,

the set U1 can contain more than one element. However, by the property that the linear

order � is antisymmetric, U1 can only contains actions x∗1 to which the same cost vector

f(x∗1) is assigned.

(i) Define the set of solutions πREA(X ,Y, S, p, f) as the set U1.

(ii) Define the evaluation vector as the (unique) vector f̄ = f(x∗1), where x∗1 ∈ U1.

• Case T > 1: Denote, for each (x1, s1), the (x1, s1)-reduced instance by

(X (x1,s1),Y(x1,s1), S(x1,s1), p(x1,s1), f (x1,s1)).
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Each of these |Y1| · |S1| instances has T − 1 stages. Recursive calls of the procedure yield

for each of these instances

– the set of solutions, U (x1,s1) = πREA(X (x1,s1),Y(x1,s1), S(x1,s1), p(x1,s1), f (x1,s1)),

– the assigned evaluation vector f̄ (x1,s1).

Compute for each x1 ∈ X1 = {x1
1, . . . , x

r1
1 }:

βi(x1) =
∑
s1∈S1

p(s1) f̄
(x1,s1)
i (i ∈ N), β(x1) = (βi(x1))i∈N

where p(s1) denotes the probability that the first random event is s1 (see (3)). The vector

β(x1) yields an evaluation of decision x1 from the viewpoint of all individuals. Let V̄1 =

arg minx1 I(βi(xi) : i ∈ N), and let V1 = {x∗1 ∈ V̄1 |β(x∗1) � β(x1) ∀x1 ∈ V̄1} be the set

of minimal elements in V̄1. Again, by the antisymmetry of �, the set V1 can only contain

solutions x∗1 to which the same vector β(x∗1) is assigned.

(i) Let s1
1, . . . , s

k1
1 be the elements of S1, arranged in a fixed pre-specified order. Define

the set of solutions πREA(X ,Y, S, p, f) as the set of all strategies Z with a nested-

form representation Z = [x1; Z(1), . . . , Z(k1)] where x1 ∈ V1 and Z(κ) ∈ U (x1,sκ1 )

(κ = 1, . . . , k1).

(ii) Define the evaluation vector as the (unique) vector f̄ = β(x∗1), where x∗1 ∈ V1.

end

An obvious limitation of the application of a tie-break order, say (7), is that it violates

impartiality. Suppose the algorithm is indifferent between two solutions where the first implies

costs (1, 2) for two individuals i = 1, 2, while the second one implies costs (2, 1). Then Eq. (7)

would prescribe to take the first solution. Thus, the payoffs of the individuals depend on the

indices they get. However, three comments are in place: (i) In the context of deterministic

solution algorithms and non-transferable utilities, the violation of impartiality is inescapable

anyway, as for a problem instance with T = 1 and two leaves with assigned cost vectors (1, 2)

and (2, 1), each deterministic algorithm is forced to make a decision for one of them, i.e., cannot

be impartial. (ii) Omitting the constraint of being deterministic, our solution algorithm can

easily be made impartial by a straightforward randomization, where before the algorithm is

applied, the indices of the individuals i ∈ N are shuffled by a random permutation. (iii)

Generically, for real-valued costs, the situation
∑

i∈N fi =
∑

i∈N gi leading to a decision that
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violates impartiality does not occur. If fixed-point numbers or floating-point numbers are used

to represent real-valued costs, it can occur, but only as an exception and not as the regular case.

Evidently, the REA strategy for (X ,Y, S, p, f) can be computed by backward induction: start

with the computation of the optimal actions at the nodes of decision level T , assign the sets U

and the evaluation functions f̄ to these nodes, go then back to decision level T − 1 and repeat

the procedure, etc.

Example 1. For the instance of Fig. 1(a) and the Rawlsian measure, the REA policy assigns

the evaluation vectors (5, 0), (0, 3), (3, 4) and (3, 3) to the nodes D2 to D5, respectively, where

for achieving the tie break in node D3, the order of Eq. (7) has been used. The optimal choices

are going up in nodes D2 – D4, and down in node D5. By mixing under probabilities (1/2, 1/2),

the vectors β(1) and β(2) on decision level 1 compute as (2.5, 1.5) and (3, 3.5), respectively.

Therefore, the evaluation vector in D1 becomes (2.5, 1.5), and the optimal choice is going up.

In total, the optimal strategy (written in nested form) is [1; 1, 1]. It is easy to verify that the

GEP policy yields another solution, namely [2; 1, 2]. In particular, this shows that in general,

the policies REA and GEP differ from each other. ./

Proposition 5. For any equitable aggregation function I : Rn → R, the Recursive Ex-Ante

Policy is time-consistent.

Proof. The proof is straightforward and omitted for the sake of brevity. 2

Finally, we would like to note that although the REA policy is typically easier to determine

computationally than the GEA policy, the former should not be considered as a heuristic ap-

proximation to the later. A decision maker committed to consistent planning would argue that

her/his recursive planning procedure is exactly what should be done, and that it is the GEA

approach which is wrong by proposing decisions that, by the same GEA philosophy, will possibly

be reversed already in the next decision stage. In game theory, a quite analogous consideration

leads to the exclusion of Nash equilibria that are not “subgame-perfect”.

6 An Application to Shelter Location-Allocation

In this section, the theory of the previous sections will be applied to deal with an extended

version of a shelter location-allocation model published in [Mostajabdaveh et al., 2018]. In the

original model of the latter paper, the task consists in the determination of the location of

shelters to which people are to be evacuated after some natural disaster, as well as in the
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allocation of population nodes to the established shelters. The decision is subject to uncertainty

on the demands (i.e., on geographical location and impact of the disaster), represented by a set

of random scenarios with given probabilities. Both the location and the allocation decision are

supposed to be made in the pre-disaster phase. The objective function relies on the distances

each victim has to traverse to reach the assigned shelter, and uses the function I = µ + λ ·∆

(cf. Section 4 in the present paper) as the equitable aggregation function.

A drawback of the model in [Mostajabdaveh et al., 2018] is that it assumes that alloca-

tion decisions are already made before the disaster has stricken. There are cases where a pre-

allocation of population nodes to shelters may be reasonable. In other cases, however, it may

be seen as an unnecessary restriction of flexibility, considering that the assignment of victims

to shelters could just as well be made dependent on the concrete circumstances of the situa-

tion as it can be observed after the disaster, in particular on the realized distribution of the

demand. However, it is clear that as soon as allocation is made a second-stage decision, one

obtains an inequity-averse two-stage stochastic optimization model. The concepts presented in

[Mostajabdaveh et al., 2018] do not allow to cope with this situation, but those in Sections 3 – 5

of the present paper do.

In the following, we shall develop a model for shelter location and population-to-shelter allo-

cation under (stochastically represented) uncertainty, where the location decision is a first-stage

decision, and the allocation decision is a second-stage decision. This increases the computa-

tional complexity to a large degree. Contrary to [Mostajabdaveh et al., 2018], in our exper-

iments, we even solve our model variants to optimality, which is desirable in order to pro-

duce reliable information on the differences between ex-ante and ex-post approaches. However,

we deal with the simpler case of the Rawlsian measure instead of the Gini-type measure of

[Mostajabdaveh et al., 2018], and we replace the chance constraints used in the last-mentioned

work by their boundary case where the location-allocation has to be feasible under all scenarios.

The latter replacement is not that restricting in our context than it would be in the context of

[Mostajabdaveh et al., 2018], since the flexible allocation provides better chances to cover the

total demand in every scenario.

6.1 The Model

A survey on parameters and variables is given in Table 1. It is assumed that there are m

population nodes (PNs) k ∈ K. Population node k has wk inhabitants. In decision stage 1,

i.e., before the disaster, a decision has to be made on the locations at which shelters are to be
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established. The set of candidate locations is J . Opening a shelter at location j ∈ J incurs

opening costs of gj and provides a capacity for cj victims. The decision variable describing

whether a shelter at location j ∈ J is established is xj ; it is set to the value 1 if the shelter is

opened and to the value 0 otherwise. There is a budget B for the overall opening costs.

The influence of randomness, which is caused by the unpredictable occurrence of the natural

disaster under consideration, is represented by a set S of scenarios whose probabilities ps (s ∈

S) are assumed to be known. Each scenario s ∈ S contains the information on which PNs

are affected by the disaster, and to which extent. The degree of affection of PN k ∈ K in

scenario s ∈ S is expressed by the demand value bsk, where 0 ≤ bsk ≤ wk. The quantity bsk

describes the number of individuals from PN k who need to be evacuated in scenario s.

The second-stage decision, to be made after the onset of the disaster, concerns the question

of how to allocate PNs to opened CLs. This decision is described by variables yskj (s ∈ S, k ∈

K, j ∈ J). We set yskj = 1 if in scenario s, PN k is allocated to the shelter in CL j. Evacuation

along a certain distance in a post-disaster environment is connected with discomfort and danger

(subsumable by the technical term “deprivation cost” in the humanitarian operations literature)

which we assume, in this work, to be proportional to the distance to be traversed. (This is a first

approximation; also more complex dependencies could be modelled.) Let dskj denote the distance

between PK k and CL j in scenario s. We explicitly allow a dependence of the distance on the

scenario, since in some scenarios, some links of the transportation network may be destroyed,

such that the shortest paths between nodes vary with s. We look for solutions covering in each

scenario the entire demand without violating a capacity constraint. It is clear that there are

instances for which a feasible solution does not exist; however, on the assumption that there is

at least one CL in the considered region that provides a practically unlimited capacity (e.g. by

the possibility to set up an arbitrary number of rub halls), the demand can always be covered,

probably at the price of very long distances to be traversed.

Linking the above-mentioned modelling components to concepts and notation of Section 3,

we consider the distance to be traversed by each victim i ∈ N as the cost fi(Z, s) assigned to

this individual under solution Z and scenario s. A solution Z consists now of the pair (x, y),

where x collects the first-stage decision variables xk, and y collects the second-stage decision

variables yskj . Obviously, if individual i lives in PN k ∈ K and is affected by the disaster, then

fi(Z, s) =
∑

j∈J d
s
kj y

s
kj . Actually, this distance depends only on y and not on x, but note that

it is indirectly influenced by x as x restricts the set of feasible y.
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Table 1: Parameters and Decision Variables

Notation Description

J set of candidate locations (CLs); |J | = m

K set of population nodes (PNs); |K| = n

wk number of inhabitants of PN k ∈ K

S set of scenarios; |S| = M

ps probability of scenario s ∈ S

bsk demand in PN k ∈ K under scenario s ∈ S

dskj distance between PN k ∈ K and CL j ∈ J in scenario s ∈ S

cj capacity of CL j ∈ J

gj opening cost for a shelter at CL j ∈ J

B budget

xj 1 if CL j ∈ J is opened, 0 otherwise

yskj 1 if in scenario s ∈ S, PN k ∈ K is allocated to CL j ∈ J , 0 otherwise

6.1.1 Global Ex-Post Formulation

Let us start with the GEP approach. It turns out that by this approach, a problem representation

by a two-stage stochastic program is obtained. (As we shall see later, this is not anymore the

case for the REA approach.)

In the first decision stage, the location decision, i.e., that on the vector x = (x1, . . . , xm), has

to be made. A strategy Z for the overall process is now given as Z(s) = (Z1, Z2(s)) = (x, ys),

where ys denotes the second-stage decision under scenario s ∈ S, i.e., the allocation decision.

Recall that the Rawlsian measure I = max is used. Thus, according to Eq. (2), the objective

function is min
∑

s∈S ps maxk∈K f̂k(Z(s), s) where the cost function f̂k(Z(s), s) = f̂k((x, y
s), s)

is defined as

f̂k((x, y
s), s) =


∑

j∈J d
s
kj y

s
kj , if bsk > 0.

0, otherwise.

(We write now f̂k instead of fk, as the index k refers to entire PNs rather than to individuals.)

In the second decision stage, for given scenario s, the allocation ys is optimized. After

insertion of the optimal ys, we get the value R(x, s) = maxk∈K f̂k((x, y
s), s) of the recourse cost.

The recourse cost R(x, s) expresses the maximum distance to be traversed from an affected PN

to the allocated shelter, given location decision x and scenario s, if the allocations have been

chosen in an optimal way. Although f̂ does not depend on x directly, R(x, s) depends on x

since the variables ys are linked to x by constraints yskj ≤ xj for all k ∈ K, j ∈ J and s ∈ S.
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The first-stage objective optimizes the expected recourse costs; the first-stage opening costs do

not occur in the objective as a separate term, but influence the solution through the budget

constraint.

In total, first-stage and second-stage program take the following form:

1st stage: min
x

∑
s∈S

psR(x, s) (8)

s.t.
∑
j∈J

gjxj ≤ B (9)

xj ∈ {0, 1} ∀j ∈ J (10)

2nd stage: R(x, s) = min
ys

σs (11)

s.t. σs ≥
∑
j∈J

dskj y
s
kj ∀k ∈ K with bsk > 0 (12)

∑
j∈J

yskj = 1 ∀k ∈ K (13)

yskj ≤ xj ∀k ∈ K, j ∈ J (14)∑
k∈K

bsk y
s
kj ≤ cj ∀j ∈ J (15)

yskj ∈ {0, 1} ∀k ∈ K, j ∈ J (16)

The objective function Eq. (8) represents the expected recourse cost. Eq. (9) is the budget

constraint for the opening costs. Eq. (10) defines the opening decision variables as binaries. The

objective Eq. (11) of the second-stage program minimizes the worst-case distance to be traversed

by any affected individual to the allocated shelter. By Eq. (12), this distance is bounded from

below by every distance from an affected PN to the allocated shelter. Note that for this bound,

all we need to know about bsk is whether or not bsk > 0. This is a consequence of choice of the

Rawls measure which only cares about the cost of the “worst off” individual. Constraint (13)

requires that each PN is allocated to exactly one CL. By constraint (14), it is ensured that a

CL j can only be assigned to a PN if at shelter is opened at CL j. Constraint (15) makes sure

that the total number of victims assigned to CL j does not exceed the capacity of CL j. Eq. (16),

finally, defines the second-stage decision variables as binaries. Observe that (11) – (16) is an

ILP; relaxation of the integrality constraint (16) within a branch-and-bound (or branch-and-cut)

framework yields an LP.
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6.1.2 Recursive Ex-Ante Formulation

In a similar way as for the GEP policy, the REA policy for the considered location-allocation

problem can be formulated as a mathematical program. However, it turns out that the resulting

formulation does not have the structure of a two-stage stochastic program. Rather than that, a

bilevel program is obtained, as it will be seen. Let

y∗(x, s) ∈ arg min
ys
{σs | Eqs. (12)− (16)} (17)

be a solution of (11) – (16), that is, an optimal allocation y∗ = (y∗kj)j∈J leading under first-stage

decision x and under scenario s to a solution value of R(x, s). If there are several such solutions,

we select one of them that is minimal under the tie-break order (7). We assume that if in a PN k

with wk inhabitants, the number of affected individuals is bsk, then each individual i from PN k

has the same probability of bsk/wk of being affected by the disaster. Then if the allocations are

defined by the second-stage solutions y∗(x, s), the expected cost of an individual from PN k is

ϕk(x) =
∑
s∈S

ps ·
bsk
wk
·
∑
j∈J

dskj y
∗
kj(x, s). (18)

By construction, for I = max, the REA policy minimizes the maximum of the values ϕk(x) over

all individuals or, which is the same, over all PNs k.

The optimal first-stage decision is given as the solution of

min
x
{ρ | ρ ≥ ϕk(x) ∀k ∈ K, Eqs. (9)− (10)}.

However, note that for determining this solution, the second-stage solutions y∗(x, s) have already

to be known. Thus, we obtain a bilevel programming structure: Imagine two decision makers,

the leader who chooses the first-stage solution x, and the follower who makes the second-stage

decision. When deciding on x, the leader has already to take into account that each possible

choice of x will result in a corresponding choice of y∗(x, s) for each s ∈ S, optimized with respect

to the follower’s objective function. This gives a bilevel program. The follower’s problem de-

composes into M = |S| independent subproblems, one for each scenario. We get the formulation

in Table 2.

Example 2. For an illustration of the difference between the GEP and the REA approach in

the concrete framework of the shelter location application, consider Figure 2. Two earthquake

scenarios s(1) and s(2) threaten an area where two cities lie. Earthquake s(1) would only hit

city 1, while earthquake s(2) would hit both cities. It is estimated that the two scenarios are
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Table 2: Bilevel program

min
x
ρ (19)

s.t. ρ ≥
∑
s∈S

ps ·
bsk
wk
·
∑
j∈J

dskj y
s
kj ∀k ∈ K (20)

Eqs. (9)− (10) (21)

min
σ1

σ1 (22)

s.t. σ1 ≥
∑
j∈J

d1kj y
1
kj ∀k ∈ K with b1k > 0 (23)

∑
j∈J

y1kj = 1 ∀k ∈ K (24)

y1kj ≤ xj ∀j ∈ J (25)∑
k∈K

b1k y
1
kj ≤ cj ∀j ∈ J (26)

y1kj ∈ {0, 1} ∀k ∈ K, j ∈ J (27)

. . . . . .

min
σM

σM (28)

s.t. σM ≥
∑
j∈J

dMkj y
M
kj ∀k ∈ K with bMk > 0 (29)

∑
j∈J

yMkj = 1 ∀k ∈ K (30)

yMkj ≤ xj ∀j ∈ J (31)∑
k∈K

bMk yMkj ≤ cj ∀j ∈ J (32)

yMkj ∈ {0, 1} ∀k ∈ K, j ∈ J (33)

equally likely. One and only one shelter can opened, either at point a or at point b. The

distances between cities and the potential locations of the shelter are shown in the figure. The

inequity-averse measure is the Rawlsian measure I = max, that is, the maximum cost (i.e.,

distance) over all individuals.

In the second decision stage, both the GEP and the REA approach assign each affected city

to the opened shelter. This results in the following costs (distances to be traversed) (f1, f2) for
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the inhabitants of city 1 and 2, respectively:

Shelter in a : s(1) (only city 1 affected) : (3, 0)

s(2) (both cities affected) : (3, 6)

Shelter in b : s(1) (only city 1 affected) : (4, 0)

s(2) (both cities affected) : (4, 1)

The GEP approach minimizes the expected value of the inequity-averse measure (i.e., the maxi-

mum) of the costs. If location a is chosen, maximum costs of 3 and 6 result in the first and in the

second scenario, respectively, so this choice is evaluated by the expected value 1
2 · 3 + 1

2 · 6 = 4.5.

Analogously, the choice of location b is evaluated by the expected value 1
2 · 4 + 1

2 · 4 = 4, which

is smaller than 4.5. Therefore, GEP selects location b in its first-stage decision.

Conversely, the REA approach minimizes the inequity-averse measure (i.e., the maximum)

of the expected values of the costs. If location a is chosen, the expected costs of the individuals

in city 1 and 2, respectively, are given by the vector 1
2 · (3, 0) + 1

2 · (3, 6) = (3, 3). The Rawls

measure applied to (3, 3) is 3, so this is the evaluation of choice a by REA. If, on the other hand,

location b is chosen, the expected costs of the individuals in city 1 and 2, respectively, are given

by the vector 1
2 · (4, 0) + 1

2 · (4, 1) = (4, 0.5). The Rawls measure applied to (4, 0.5) is 4, which

is larger than 3. Therefore, REA would (contrary to GEP) choose location a.

Intuitively, the difference can be outlined as follows: while GEP only looks at the fairness of

the final states, REA also takes the chances or risks by which the individuals arrived at these

states into account. Thus, GEP considers it as very undesirable that city 2 can end up with a

large distance of 6 to be traversed. REA, on the other hand, sees this large value compensated

to some extent by the possibility that city 2 might not be affected by the earthquake at all, and

is more concerned about the disadvantage city 1 has to face by the position of b closer to city 2

than to city 1. ./

6.2 Computational Solution

The solution of the two-stage stochastic program of Subsection 6.1.1 is standard. Note, how-

ever, that the computational complexity of this problem is considerably increased, compared

to ordinary (continuous) stochastic programs, because of the integrality constraints on both

the first-stage decision and the second-stage decision. For the numerical solution of two-stage

stochastic programs with integer recourse, see [Carøe and Tind, 1998].

Even more challenging is the solution of the bilevel program of Subsection 6.1.2. It is known

that already in the case where both the upper level and the lover level problem of a bilevel
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earthquake 1

earthquake 2

Figure 2: Example for showing the difference between GEP and REA in the shelter location

application.

problem are ordinary LPs, the bilevel problem is in general NP-hard (see [Colson et al., 2005]).

In our case, we have integer problems in both levels, and the lover level contains M subproblems

to be solved, one for each scenario.

To be able to solve (not too large) instances to optimality nevertheless, we choose the fol-

lowing approach. The upper-level problem (the choice of x) is solved by complete enumeration.

The lower-level problems, each of the structure of (22) – (27), are solved by CPLEX. These lower

level subproblems of REA are identical to the second-stage subproblems (11) – (16) of GEP, so

their solutions can be used for both approaches. However, while the GEP solution procedure

only needs the solution values, the REA solution procedure needs also the solutions ys them-

selves, more precisely: in case of ambiguity, it needs those solutions ys that are minimal under

the tie-break order (7). The latter requirement can be ensured by the following extension of

the CPLEX calls: First of all, solve (11) – (16), which gives an optimal solution value of (σs)∗.

After that, solve the program

min
ys

∑
k∈K

∑
j∈J

bsk d
s
kj y

s
kj (34)

s.t. (σs)∗ ≥
∑
j∈J

dskj y
s
kj ∀k ∈ K with bsk > 0 (35)

Eqs. (13)− (16) (36)

The objective function Eq. (34) is the utilitarian objective function, multiplied by the number

of individuals. (In case of further ambiguity, take the lexicographically smaller solution.) This
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produces the solution ys required in the upper level problem of the bilevel formulation.

7 Price of Fairness of the Allocation

Following [Bertsimas et al., 2011], it would be desirable to determine the price of fairness (PoF)

of the GEP solution and of the REA solution. The PoF of solution xπ provided by a given

policy π for a certain instance is defined as

PoF =
cost(xπ)− cost(xu)

cost(xu)
(37)

where cost is expressed in the utilitarian measure, i.e., as average cost over all individuals, and xu

is the utilitarian solution: the solution minimizing the utilitarian measure for the given instance.

It is clear that for positive costs, the PoF has always a nonnegative value.

Analytical results on the PoF of the policies GEP and REA for the overall location-allocation

problem of Section 6 may be difficult to obtain. The current section derives, for both approaches,

a tight bound for the PoF of the allocation subproblem (i.e., the second-stage subproblem) of

the location-allocation problem. Recall that in the second stage, the two approaches coincide.

In the next section, we shall provide numerical results on the PoF for special instances of the

overall problem.

For fixed location decision x, consider two solutions yr and yu, where yu is the utilitarian

solution of the allocation subproblem, and yr is the Rawlsian solution of the allocation sub-

problem with tie-break order (7), i.e., the solution used in the second stage of GEP or REA. In

particular, yr has the properties that (i) it minimizes the maximal distance between PNs and

assigned shelters, and (ii) among the solutions that do the same, it solves the tie-break condi-

tion (34) – (36). Obviously, for expressing “cost” in Eq. (37), we can replace “average cost” by

“total cost” without changing the quotient. Let µ̄ denote the total cost of all individuals, i.e.,

average cost µ multiplied by the number of individuals, and let Kr = µ̄(yr) and Ku = µ̄(yu).

Observe that Kr and Ku are uniquely defined, since for two different solutions yr and y′r of

(34) – (36), we have µ̄(yr) = µ̄(y′r), and for two different utilitarian solutions yu and y′u, the

equality µ̄(yu) = µ̄(y′u) holds as well. The quantity of interest is PoF = Kr/Ku − 1.

Let wmax = maxk∈K wk, wmin = mink∈K wk, and suppose that all distances dkj (k ∈ K, j ∈

J) are sorted in ascending order as d(1) ≤ d(2) ≤ . . . ≤ d(mn).

Proposition 6. With the notation above and with x+ = max(x, 0), the price of fairness of the
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GEP or the REA approach for the allocation part of the location-allocation problem satisfies

PoF ≤

[
wmax
wmin

· max
n+1≤i≤mn

∑i−1
`=i−n d

(`)∑n−1
`=1 d

(`) + d(i)
− 1

]+

Proof. Consider a specific Rawlsian allocation yr, and a specific utilitarian allocation yu. Each

allocation y defines a subset of distances dkj = d(`) which are “used” in the allocation, i.e., get

the value ykj = 1. The allocation yr minimizes, among all feasible allocations, the value of the

longest used distance; the allocation yu minimizes, among all feasible allocations, the average

value of the used distances. Two cases can be distinguished:

Case (a): Also the allocation yu minimizes the value of the longest used distance among all

feasible allocations. Then yu also satisfies both conditions (i) and (ii) stated above for yr. That

is, yu is equivalent to yr, and therefore Kr = Ku and PoF = 0.

Case (b): The longest used distance in yu is strictly larger than the longest used distance

in yr. Let i = max{` | allocation yu uses d(`)}. Then yr does not use distance d(i) anymore, but

only distances d(`) with ` < i. Obviously, n + 1 ≤ i ≤ mn, since i < n is impossible, as n

distances have to be used, and if i = n, then yu would use just the distances d(1), . . . , d(n) and

would therefore provide a minimal possible maximum distance, contrary to the assumption. For

each allocation y, the total cost can be represented as µ̄(y) =
∑
w(i) d(i), where the sum is over

all distances used by y, and w(i) = wk for that PN k to which distance d(i) = dkj pertains.

Let us now subdivide case (b) by distinguishing all possibilities i = n+1, . . . ,mn. Denote by

Ir the set of indices ` of the distances used by yr, and by Iu the set of indices ` of the distances

used by yu. We have |Ir| = |Iu| = n. Furthermore, Ir ⊆ {1, . . . , i − 1} and Iu = I ′u ∪ {i} with

I ′u ⊆ {1, . . . , i− 1}. Then

Kr =
∑
`∈Ir

w(`) d(`) ≤ wmax
∑
`∈Ir

d(`) ≤ wmax
i−1∑
`=i−n

d(`)

and

Ku =
∑
`∈Iu

w(`) d(`) =
∑
`∈I′u

w(`) d(`)+w(i) d(i) ≥ wmin
∑
`∈I′u

d(`)+wmin d
(i) ≥ wmin

(
n−1∑
`=1

d(`) + d(i)

)
.

Hence, for that i ∈ {n+ 1, . . . , nm} that is defined by the given yu,

PoF ≤ wmax
wmin

·
∑i−1

`=i−n d
(`)∑n−1

`=1 d
(`) + d(i)

− 1.

By taking all possibilities for i and by including case (a), we get the result. 2

27



Corollary. On the conditions of Prop. 6, the following upper bound on the PoF, expressed by

the number n of PNs and the maximum and minimum PN sizes wmax and wmin, respectively,

is valid:

PoF ≤ (wmax/wmin) · n− 1. (38)

Proof. The statement follows immediately from Prop. 6 by
∑i−1

`=i−n d
(`) /

(∑n−1
`=1 d

(`) + d(i)
)

≤ n · d(i−1) / d(i) ≤ n. 2

The bound given by the Corollary above may seem weak, but the following result shows that

at least if cases where the triangle inequality is not fulfilled are included, the order O(n) of the

bound is best-possible:

Proposition 7. For distances that need not satisfy the triangle inequality, the order O(n) of

the upper bound in Eq. (38) is tight.

Proof. Since we are only interested in the dependence on n, it suffices to show tightness for the

special case wmax = wmin. For arbitrary n, set m = n, K = {1, . . . , n}, J = {n+1, . . . , 2n}, and

cj = 1 for all j ∈ J . Assume that the location decision x opens all shelters, i.e., xk = 1 for all k.

An allocation y is then given by a permutation matrix (ykj)k∈K, j∈J , containing binary values

where all lines sum up to 1 and all columns sum up to 1 as well. Consider now the distance

matrix D = (dkj) with the following entries:

dkj =


ε, if 2 ≤ k ≤ n and j = n+ k,

1, if ((1 ≤ k ≤ n− 1 and j = n+ k + 1) or (k = n and j = n+ 1)),

1 + ε, for all other pairs (k, j) ∈ {1, . . . , n} × {n+ 1, . . . , 2n}.

Therein, 0 < ε < 1/n. The matrix D is not yet a complete distance matrix between all 2n

considered nodes; it would have to be extended by choosing distances between PNs and PNs on

the one hand, and between CLs and CLs on the other hand, and it is not guaranteed that such

an extension can be performed without violating the triangle inequality. However, the distance

values added by this extension do not play a role for the following consideration.

The utilitarian solution yu assigns, for all k, the k-th CL (index n + k in the overall node

representation) to the kth PN, since using all n− 1 available epsilon entries in the lines 2 to n

is the only possibility to push down the total cost (the sum of the distances) to a value smaller

than 2. This gives Ku = 1 + nε. On the other hand, the Rawlsian solution yr is the matrix

obtained from the matrix yu by shifting the 1-elements cyclically to the right by one position,

i.e., it assigns, for all k = 1, . . . , n − 1, the (k + 1)th CL (index n + k + 1 in the overall node
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representation) to PN k, and the first CL (index n + 1 in the overall node representation) to

PN n: It is easy to see that while this yields a maximal distance of 1, for each other allocation,

a maximal distance of 1 + ε results. This gives Kr = n.

We obtain PoF = Kr/Ku − 1 = n/(1 + nε) − 1. For ε = δ/n with sufficiently small δ, this

value comes arbitrarily close to the bound n− 1 given by (38) for equal PN sizes. 2

Of course, Propositions 6 – 7 do not give sufficient information about the PoF in the average

case. We investigate the question of the “typical size” of the PoF for the overall two-stage

location-allocation problem (with Euclidean distances) in the next section, using numerical

experiments.

8 Numerical Results

Computational experiments were carried out to test the approaches of the previous sections,

and, in particular, to compare the solutions produced by the GEP policy and the REA policy,

respectively. We generated random test instances according to the procedure below.

(a) A total of n population nodes and m candidate locations were selected uniformly at

random in the unit square [0, 1]2. This gave the sets K and J , respectively. From the obtained

points in the square, the distances dkj (k ∈ K, j ∈ J) were computed as Euclidean distances.

In the tests, we did not make the distances scenario-dependent.

(b) For each PN k ∈ K, the numbers wk of inhabitants were chosen uniformly at random

from the interval [wmin, wmax].

(c) Scenarios s ∈ S were generated as follows: Each scenario represents the area affected

by the disaster under consideration. We focused on the case of earthquakes. Therefore, the

affected area was assumed to be given by an epicenter (epis1, epis2) of the disaster and by a

radius rads. The epicenter was selected uniformly at random from [0, 1]2, while the radius was

selected uniformly at random from [radmin, radmax] = [0.1, 0.7]. The PNs k ∈ K within a

distance smaller or equal to rads were assumed to be hit by the disaster. To determine the

number of affected people within such a PN, a fraction fracsk ∈ [0.5, 1], selected uniformly at

random from this interval, was chosen, and bsk was set to the value fracsk ·wk. For PNs k with a

distance larger than rads to the epicenter, bsk was set to 0. The number of scenarios was chosen

as M = 5.

(d) The opening costs gj were assumed as identical for all shelters. As a consequence, the

budget constraint is equivalent to the constraint that a fixed number q of shelters can be opened.
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(e) The capacities cj of the shelters j ∈ J were chosen uniformly at random from the interval

[cmin, cmax] = [1000, 1500].

We tested all combinations of the following choices: (i) n = 10, 20, (ii) (m, q) = (7, 3), (8, 4),

(10, 5), (12, 6), (15, 4), (20, 3), (iii) [wmin, wmax] = [50, 1000], [400, 600].

This gives 24 instance types of different sizes, the largest of which (e.g., those with 15

CLs, out of which 4 shelters have to be selected) are already of realistic size for some practical

application cases. For each of the 24 instance types, 5 instances were randomly generated. In

total, this produces 100 test instances.

We applied the solution method of Subsection 6.2 which uses CPLEX for the solution of the

scenario-specific subproblems. The resulting computation times were very favorable: Even the

larger instances needed only up to 2 minutes of computation time on an ordinary PC. Note,

however, that we used only M = 5 scenarios; the computation time scales linearly in the number

of scenarios, so that for 1000 scenarios, runtimes in the order of 7 hours are to be expected. This

is still feasible, considering that the choice of shelter locations is a strategic decision which does

not have to be made under time pressure, and the (second-stage) allocation decision is fast.

Table 3 shows some numerical results for the 100 test instances. Outcome measures have

been averaged over each set of 5 instances belonging to the same instance type, so that each line

contains the aggregated results for an instance type. The first 5 columns of the table define the

instance type. In the last 4 columns, the following outcome measures are reported:

(i) GEP-by-REA: This is the quotient ante(xGEP )/ante(xREA). Therein, xGEP and xREA de-

note the optimal location decisions provided by the GEP policy and the REA policy, respectively,

and ante(x) is the ex-ante objective function applied to x, i.e., the value maxk
∑

s ps f̂k(x, s),

where f̂k(x, s) represents the cost of PN k in scenario s. Thus, GEP-by-REA expresses how

good the GEP solution would be evaluated from the viewpoint of the REA solution. Lower

values are better. If the GEP solution is optimal also with respect to the criterion applied by

REA, then GEP-by-REA takes the minimal value of 1.

(ii) REA-by-GEP: This is the quotient post(xREA)/post(xGEP ). Therein, xGEP and xREA

are as above, and post(x) is the ex-post objective function applied to x, i.e., the value∑
s ps maxk f̂k(x, s), with f̂k(x, s) as above. Thus, REA-by-GEP expresses how good the REA

solution would be evaluated from the viewpoint of the GEP solution. Again, the minimal pos-

sible value is 1.

(iii) PoF(REA): This is the price-of-fairness (see Eq. (37)) of the REA solution.

(iv) PoF(GEP): This is the price-of-fairness of the GEP solution.
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Table 3: Comparison REA vs. GEP

n m q wmin wmax GEP-by-REA REA-by-GEP PoF(REA) PoF(GEP)

10 7 3 50 1000 1.0115 1.1046 0.4385 0.1575

10 8 4 50 1000 1.0138 1.1190 0.1561 0.1235

10 10 5 50 1000 1.0035 1.1324 0.3576 0.1741

10 12 6 50 1000 1.0000 1.0921 0.1167 0.0702

10 15 4 50 1000 1.1006 1.0746 0.2925 0.2441

10 20 3 50 1000 1.2157 1.1274 0.2196 0.2816

20 7 3 50 1000 1.0000 1.0275 0.0581 0.0705

20 8 4 50 1000 1.1906 1.0492 0.0772 0.1695

20 10 5 50 1000 1.0726 1.0376 0.0253 0.0561

20 12 6 50 1000 1.1121 1.1673 0.1930 0.0875

20 15 4 50 1000 1.2013 1.1359 0.1647 0.1779

20 20 3 50 1000 1.2383 1.0385 0.1134 0.0671

10 7 3 400 600 1.0192 1.0877 0.1783 0.0638

10 8 4 400 600 1.0124 1.1017 0.1528 0.1290

10 10 5 400 600 1.0035 1.1001 0.2200 0.1349

10 12 6 400 600 1.0000 1.0421 0.1356 0.0744

10 15 4 400 600 1.0103 1.1044 0.2177 0.0839

10 20 3 400 600 1.2223 1.1154 0.1699 0.2269

20 7 3 400 600 1.0593 1.0378 0.0614 0.0410

20 8 4 400 600 1.1154 1.0547 0.0664 0.0859

20 10 5 400 600 1.1227 1.0787 0.0962 0.1156

20 12 6 400 600 1.1104 1.1557 0.2499 0.0619

20 15 4 400 600 1.2842 1.1421 0.1891 0.1723

20 20 3 400 600 1.0497 1.0072 0.0586 0.0435

Observations:

(a) The quotients GEP-by-REA and REA-by-GEP do not exceed the value 1.3; their average

values are 1.090 and 1.089, respectively. This means that in mutual cross-evaluations, the two

solutions produced REA and GAP were never worse than the “own” optimum by more than

30 % from the viewpoint of the respective other approach. In the average, each of the two

approaches “wastes” about 10 % from the perspective of the other approach. Even if this is not

a too large number, it should be noted that computational optimization approaches to facility

location problems are usually already regarded as worthwhile if they improve manually found
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solutions by a few percent. Compared to that magnitude, the distinction between ex-ante and

ex-post is certainly not an issue of negligible impact.

(b) In 12 out of the 24 cases (instance types), GEP-by-REA was larger than REA-by-GEP,

and vice versa in the other 12 cases. In other words, GEP sees the REA solution neither more

nor less favorable than REA sees the GEP solution.

(c) All observed PoF values are smaller than 50 %. The average value of the PoF for REA and

GEP over all instances is 16.7 % and 12.1 %, respectively. In 16 out of the 24 cases (instance

types), PoF(REA) was larger than PoF(GEP). In a statistical sign test at significance level

α = 0.05, this confirms the hypothesis that PoF(REA) − PoF(GEP) has a median larger than

zero, compared to the null hypothesis that the median is zero. In less formal terms, the price

of fairness is significantly higher for the ex-ante solution than for the ex-post solution, which

seems to be an interesting, nontrivial result that deserves further investigation.

(d) In a pairwise comparison of the smaller (n = 10) to the larger (n = 20) test cases, it

turns out that PoF(REA) is significantly larger for n = 10 than for n = 20 (α = 0.05). The

same holds for PoF(GEP). In other words, both for REA and GEP, the PoF decreases with the

instance size.

(e) Whether the PNs are of comparable size ([wmin, wmax] = [400, 600]) or of largely varying

size ([wmin, wmax] = [50, 1000]) does not have a significant influence on PoF(REA). However,

PoF(GEP) is significantly higher for the case of largely varying sizes (α = 0.05).

The numerical results above should be interpreted with caution as they rely on synthetically

generated instances; future research should test the made observations on real-life instances.

9 Conclusions

Inequity-averse optimization has a broad range of applications, but current methods in this field

seem to be largely restricted to a static decision making context. The results in this work are

a first attempt to extend methods of inequity-averse decision making to a context that is both

stochastic and dynamic. It turns out that this is possible without conceptual difficulties for the

ex-post approach of dealing with inequity under uncertainty. For the ex-ante approach, however,

the issue of time inconsistency has shown to be a major obstacle. In order to overcome this

problem, we proposed a time-consistent version of an ex-ante policy.

The introduced concepts have been applied to a shelter location-allocation problem under

uncertainty, and it has been demonstrated that they allow exact computational solutions for
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not too large problem instances. In particular, experimental comparisons of the ex-post and the

ex-ante approach provide interesting insights.

The present investigation is only a first step and suggests further research in a rich variety of

directions. Let us mention a few. (i) An extension of the approach to continuous decision sets and

continuous probability spaces would be highly desirable. (ii) Infinite time horizons could be dealt

with by methods similar to those applied for Markov Decision Processes. (iii) An extension of the

solution approach from the max-min measure to Gini-based measures or the conditional β-mean

would be a very interesting next step. (iv) Whereas the computational results in this paper

restrict themselves to a particular two-stage model, models for three or more decision stages

could be addressed by specific techniques of scenario-tree analysis, e.g., progressive hedging. (v)

For larger instances of the considered location-allocation problem, more sophisticated solution

methods, exact as well as heuristic ones, should be developed. (vi) Applications in diverse fields,

as health, workforce scheduling or resource sharing might be explored.
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[Karsu and Morton, 2015] Karsu, Ö. and Morton, A. (2015). Inequity averse optimization in operational
research. European Journal of Operational Research, 245(2):343–359.

[Kostreva et al., 2004] Kostreva, M. M., Ogryczak, W., and Wierzbicki, A. (2004). Equitable aggrega-
tions and multiple criteria analysis. European Journal of Operational Research, 158(2):362–377.

[Kulshrestha et al., 2011] Kulshrestha, A., Wu, D., Lou, Y., and Yin, Y. (2011). Robust shelter loca-
tions for evacuation planning with demand uncertainty. Journal of Transportation Safety & Security,
3(4):272–288.

[Li et al., 2011] Li, L., Jin, M., and Zhang, L. (2011). Sheltering network planning and management
with a case in the gulf coast region. International Journal of Production Economics, 131(2):431 – 440.

[Machina, 1989] Machina, M. J. (1989). Dynamic consistency and non-expected utility models of choice
under uncertainty. Journal of Economic Literature, 27(4):1622–1668.

[Marsh and Schilling, 1994] Marsh, M. T. and Schilling, D. A. (1994). Equity measurement in facility
location analysis: A review and framework. European Journal of Operational Research, 74(1):1–17.

[Matl et al., 2017] Matl, P., Hartl, R. F., and Vidal, T. (2017). Workload equity in vehicle routing
problems: A survey and analysis. Transportation Science, 52(2):239–260.

[Mill, 1966] Mill, J. S. (1966). On Liberty. In A Selection of his Works, pages 1–147. Springer.

[Morton, 2014] Morton, A. (2014). Aversion to health inequalities in healthcare prioritisation: A multi-
criteria optimisation perspective. Journal of health economics, 36:164–173.

[Mostajabdaveh et al., 2018] Mostajabdaveh, M., Gutjahr, W. J., and Salman, F. S. (2018). Inequity-
averse shelter location for disaster preparedness. IISE Transactions, (just-accepted):1–41.

[Myerson, 1981] Myerson, R. B. (1981). Utilitarianism, egalitarianism, and the timing effect in social
choice problems. Econometrica: Journal of the Econometric Society, pages 883–897.

[Nicosia et al., 2017] Nicosia, G., Pacifici, A., and Pferschy, U. (2017). Price of fairness for allocating a
bounded resource. European Journal of Operational Research, 257(3):933–943.

[Nowak et al., 2000] Nowak, M. A., Page, K. M., and Sigmund, K. (2000). Fairness versus reason in the
ultimatum game. Science, 289(5485):1773–1775.

[Noyan et al., 2015] Noyan, N., Balcik, B., and Atakan, S. (2015). A stochastic optimization model for
designing last mile relief networks. Transportation Science.

[Ogryczak, 2000] Ogryczak, W. (2000). Inequality measures and equitable approaches to location prob-
lems. European Journal of Operational Research, 122(2):374–391.

[Ogryczak, 2009] Ogryczak, W. (2009). Inequality measures and equitable locations. Annals of Opera-
tions Research, 167(1):61–86.

[Ogryczak et al., 2014] Ogryczak, W., Luss, H., Pióro, M., Nace, D., and Tomaszewski, A. (2014). Fair
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programming: modeling and theory. SIAM.

[Strotz, 1955] Strotz, R. H. (1955). Myopia and inconsistency in dynamic utility maximization. The
Review of Economic Studies, 23(3):165–180.

34



[Vitoriano et al., 2011] Vitoriano, B., Ortuno, M., Tirado, G., and Montero, J. (2011). A multi-criteria
optimization model for humanitarian aid distribution. Journal of Global Optimization, 51(2):189–208.

[Yitzhaki and Schechtman, 2013] Yitzhaki, S. and Schechtman, E. (2013). More than a dozen alternative
ways of spelling Gini. In The Gini Methodology, pages 11–31. Springer.

35


