STUDY OF SOLAR CELLS BASED ON UPGRADED METALLURGICAL GRADE SILICON

V. SCHLOSSER, F. KUCHAR, K. SEEGER Ludwig Boltzmann Institut für Festkörperphysik, Wien, Austria

Summary

In this work we present a study on the applicability of diffused solar cells when cast upgraded metallurgical grade silicon (UMG-Si) is used. Cells have been prepared from differently processed UMG-Si and for comparison from high purity FZ-Si. The material was characterized by the minority carrier diffusion length, which was obtained from spectral response measurements. A two-diode equivalent circuit model was used in order to evaluate pn-junction characteristics under illumination and in the dark.

1.INTRODUCTION

At present the diffusion technology is the cheapest approach to manufacture large area solar cells on a large scale production line. The use of upgraded metallurgical grade silicon as a starting material can reduce the total energy consumption necessary for solar cell manufactoring up to 50% compared to high purity silicon. Until now only sliced wafers of UMG-Si grown by different methods have reached satisfactory quality. Continuous sheet growth techniques are still in evaluation. Therefore the results of this work are restricted to thick ($d \sim 400 \text{ µm}$) sliced wafers where the minority carrier diffusion length is one order of magnitude smaller (L \sim 50 µm) than the cell thickness. As a consequence additional process steps that can increase the solar cell output such as applying a back surface field (1) have negligible influence on these cells. In our experiments the solar cells (area $1-4 \text{ cm}^2$) were made on wafers delivered "as cut" from differently processed UMG-Si (Tab.I.). Standard techniques have been used for surface preparation, pn-junction diffusion, metallization, and AR-layer deposition.

2.DATA ANALYSES

The UMG-Si quality is described by the diffusion length (L) of the minority carriers in the base region.

L = [τD

(2.1)

- D ... Diffusion coefficient
- τ ... lifetime of carriers

The absorption coefficient of Si for wavelengths smaller than the wavelength corresponding to the gap energy ($\varepsilon_g = 1.12$ eV at 300 K) is nearly independent of defects incorporated in the material. Therefore the generated photo current density (j_L) depends only on L and the incident light distribution (1). The diffusion length was obtained from spectral response

[†] Work supported by Shell-Austria, and the Forschungsförderungsfonds der gewerblichen Wirtschaft, Austria. measurements (2). The correlation between L of the examined wafers and the short sircuit current density $(j_{SC} \approx j_L)$ is shown in Fig.1 for AM1.5 irradiation at 27°C. The results are in good agreement with results obtained on pure Si (3) and therefore show that the Quality of UMG-Si can be sufficiently well described by L.

To study the influence of the pn-junction characteristics on solar cell parameters a two-diode equivalent DC-circuit model was used (Fig.2).

j _{ext} =	j _L -j _{rg} -j _{diff} -j _{SH}	÷.,	(2.2)

 $v_{ext} = v_{int} j_{ext} R_S$ (2.3)

 $j_{rg} = j_{01} [exp(q V_{int}/2kT) - 1]$ (2.4)

$$j_{01} \propto W\Sigma \sigma_{T} N_{T}$$
 (2.5)

 $j_{diff} = j_{02} [exp(q V_{int}/kT) - 1]$ (2.6)

$$j_{02} \simeq n_{1}^{2} q \left[\frac{D_{p}}{L_{p} N_{D}} + \frac{D_{n}}{L_{n} N_{A}} \right]$$
(2.7)

 $j_{SH} = G_{SH} V_{int} (G_{SH} = R_{SH}^{-1})$ (2.8)

For a more detailed treatment see for example (4). Under the following assumptions upper limits of solar cell parameters (CFF, V_{OC} , η) was calculated using Eq.(2.2). (i) $R_S = G_{SH} = 0$; (ii) $j_L \cong j_{SC}$, the highest measured values are taken; (iii) $j_{O1} = 1.10^{-7} \text{ Acm}^{-2}$ taken from the best results obtained on pure FZ-Si; (iv) j_{O2} was calculated using (2.7) and values of (5). The results are summarized in Tab.II and the calculated efficiencies are shown in Fig.3.

3.RESULTS

From the processed solar cells I-V curves in the dark (a) and under illumination (b) were recorded. V_{oc} and j_{SC} were measured as a function of light intensity (c). The j-V curves were fitted by the diode parameters j_{01} , j_{02} , R_S , and G_{SH} from the equivalent circuit model to match all three j-V curves (a, b, and c) with one set of parameters according to (6). Results are shown in Tab.III. In Tab.IV the measured solar cell parameters are summarized. In each run 5 arbitrarily chosen samples together with one reference cell (pure FZ-Si) were made. Out from a typical run the parameters of the cell with the highest (+) and the lowest (-) collection efficiency are given. Furthermore the values of the best cells are expressed in per cent of the calculated values (Tab.II and Fig.3). Mean value, <x>5, are given in order to show material inhomogeneities. The cell with the lowest efficiency made from HEM-Si exhibits 2 etch pits typical for localized particles (7). These localized particles together with the high defect density observed on surfaces of HEM-Si wafers are probably the reason for the large variation of solar cell parameters.

4. CONCLUSIONS

From the results the following conclusions are drawn :

- (i) Starting from commercially available metallurgical grade silicon (mg-Si) ingots, 2×CZ pulling is not sufficient to produce silicon of a quality necessary to reach 10% conversion efficiency.
- (ii) Even without using selected mg-Si the Heat Exchanger Method is able to produce silicon of better quality than it can be done by 2×CZ. Furthermore only one recrystallization cycle is necessary.
- (iii) Major difficulties using HEM material are : inhomogeneities of impurity distribution and localized defects partly due to enclosed particles. Since HEM is a new technology further improvements can be expected.
 - (iv) Using a sequence of 2×CZ+2×FZ can produce silicon with a quality close to high purity Si. This material can be considered to give an upper limit of possible purification of mg-Si by recrystallization techniques only.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Dietze from Siemens München and Dr. C.P.Khattak from Crystal Systems for supplying the UMG-Si wafers and Dipl.Ing. Rechberger for valuable assistance.

REFERENCES

- (1) H.J.HOVEL, Semiconductors and Semimetals, Vol.11 (Academic Press, 1975)
- (2) E.D.STOKES, T.L.CHU, Appl.Phys.Lett. 30 (1977) p.425
- (3) J.A.AMICK, A.K.GHOSH, Proc. of the Symposium on Materials and New Processing Technologies for Photovoltaics. (The Electrochemical Soc. Pennington, N.J., 1981) p.196
- (4) A.K.GHOSH, C.FISHMAN, T.FENG, J.Appl.Phys. 51 (1980) p.446
- (5) H.Y.TADA, J.R.CARTER, Jr., B.E.ANSPANGH, R.G.DOWNING: "Solar Cell Radiation Handbook" (JPL Publication 82-69, 1982) Appendix B
- (6) M.WOLF, H.RAUSCHENBACH : "Solar Cells", Ed. by C.E.Backus (IEEE 1976) p.146
- (7) C.P.KHATTAK, F.SCHMID, P.H.ROBINSON, R.V.D'AIELLE, Proc. of 16th IEEE PV-Specialists Conf. (San Diego 1982).

2

Fig.1.: Measured short circuit current density versus measured minority carrier diffusion length for differently processed UMG-Si.

Fig.3.: Calculated upper limit of conversion efficiency versus minority carrier diffusion length of UMG-Si.

Table I.: Material Characteristics

Producer	Siemens ¹⁾	Crystal Systems ²)	Siemens ¹⁾	Siemens ¹⁾	Wacker 3) Chemitronic		
Starting material	com.av.	com.av.	select.Si0,	com.av.			
Crystal growth	2×CZ	1×HEM 2×CZ 2		2×CZ+2×FZ	FZ		
Crystallinity	s.	nearly s. ⁰⁾	s.	s.,d.f.	s.,d.f.		
Resistivity/Ωcm	p/0.025	p/0.13-0.25	n/0.15	p/0.12-0.18	p/1-2		
Diff.length/µm	3-8	7-15	10-20	40-50	> 100		
Notation	mg-Sil	HEM	mg-Si2	mg-Si3	pure FZ Si		
1) München,FRG			d.f	dislocation	free		
2) Salem,Mass.USA			cz	Czochralski pulling			
³⁾ Burghausen,FRG FZ Float zone pro					process		
com.av comments single crys	Crystal gro Heat Exchan	wth by ger <u>M</u> ethod					
o)1 out of 10 5×5	⁰ 1 out of 10 5×5 cm ² wafers show grain boundaries (~3 cm)						

	mg-Sil	HEM	mg-Si2	mg-Si3	pure FZ Si
j _L ×10 ⁻² Acm ⁻²	·1.18	2.09	2.35	2.84	34.3
j ₀₂ ×10 ⁻¹³ Acm ⁻²	1.5	1.5	10	1.5	39
V _{oc} V	0.600	0.625	0.605	0.635	0.590
CFF	0.727	0.739	0.762	0.748	0.786
v v	0.480	0.510	0.500	0.520	0.500
$j_{max} \times 10^{-2} \text{ Acm}^{-2}$	1.1	1.9	2.2	2.6	3.2

Table II.: Calculated Solar Cell Parameters

Table III.: Fitted Diode Parameters at T = 300K

	HEM		mg-Si3		pure FZ Si	
	÷	+	-	+	0	th
j ₀₁ ×10 ⁻⁷ Acm ⁻²	5.10	2.85	5.60	3.35	1.05	1.0
j ₀₂ ×10 ⁻¹¹ Acm ⁻²	2.05	0.605	1.65	1.20	1.70	0.39
R _S Ωcm ²	3.7	0.97	0.83	0.45	0.60	. 0
$G_{SH}^{-1} \times 10^{-3} \Omega^{-1} \text{ cm}^{-2}$	19	0.054	3.3	0.068	0.004	0

best (+), worst (-), typical (o) cell out of 5

th ... values for calculating the upper limit of AM1.5 efficiency

Table IV.: Solar Cell P	Parameters (AM1.5 conditions,	Pinc=1kWm ⁻² ,	T=27°C)
-------------------------	-------------------------------	---------------------------	---------

		-	+	×exp/xth	<x>5</x>	∆× *)
	j _{sc} mAcm ⁻²	28.3	26.4		26.7	5.6
	v _{oc} v	0.530	0.545	85.8	0.539	1.3
mg-Si3	CFF	0.66	0.73	97.6	0.70	8.1
	Eff.%	9.9	10.5	78.9	10.1	4.9
	j _{sc} mAcm ⁻²	20.8	20.2		20.3	6.8
	v _{oc} v	0.495	0.550	88.0	0.525	7.1
HEM	CFF	0.41	0.71	96.1	0.58	26.3
	Eff.%	4.3	7.9	81.4	5.8	32.2
	j mAcm ⁻²		34.0			
	v v		0.555	94.1		
pure FZ-Si	CFF		0.76	96.4		
	Eff.%		14.3	88.3		,

*) in per cent