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Endorsements

“The application of disaster risk reduction has saved millions of lives and 
helped communities globally. But the ecosystems on which communities 
depend upon for their protection, economic well-being and recovery 
have, until now, been largely ignored in disaster risk reduction. Incorpo-
rating ecosystems into disaster risk reduction can save lives, aid recovery 
and help build a more resilient and secure planet for all. This timely book 
is an essential tool for policymakers, scientists, economists, sociologists, 
and practitioners on why and how to integrate ecosystems into disaster 
risk reduction. Scientific studies have repeatedly confirmed the role of 
healthy ecosystems in providing resilience against disasters; and they 
have demonstrated how environmental degradation contributes to more 
severe disasters including droughts, floods, and storm surges. A key chal-
lenge is how to integrate this knowledge into policy and planning. Multi-
disciplinary approaches that combine ecology and engineering, science 
with sociology and economics have to be implemented. This book pro-
vides a sobering evaluation of the consequences of ignoring ecosystems 
in disaster risk reduction. But it also offers a range of well-considered 
and practical solutions which could be used in many existing regulations, 
policies and risk reduction activities.”
Deborah Brosnan, Environment and Policy Scientist, University of Cali-
fornia, Davis, One Health Institute

“In 2004, the earth shook, the waters rose, and the Indian Ocean tsunami 
changed the world. Almost a quarter of a million coastal dwellers died 
that day. Several years later, the earth shook again, this time in Haiti, and 
a disturbingly similar number of people lost their lives. In both cases, 



 sustainable, healthy ecosystems could have substantially mitigated these 
disasters.

Recent disasters in Japan, the US East Coast, and several in SE Asia 
including Thailand and the Philippines, have led to a simple yet  unsolvable 
question: How can the world’s most vulnerable populations reduce the 
risk posed by natural hazards?

The Role of Ecosystems in Disaster Risk Reduction brings together the 
world’s experts on how the natural environment has evolved tools to 
buffer against natural hazards in real, sustainable and cost effective ways. 
From coastal ecosystems that buffer large waves while providing valuable 
services to Indian Ocean communities to protective services that forests 
provide in the Swiss Alps, this book is a valuable contribution showing 
how environmentally and economically sustainable solutions can provide 
real benefits to exposed populations and resources.”
Brian G. McAdoo, College Rector, Professor of Science, Yale-NUS 
 College

 “Why do ecosystems matter in disaster risk reduction? This book meets 
an urgent need. Intuitively we understand that working with and not 
against nature will help in protecting us from impacts of extreme natural 
events, but evidence has been lacking regarding the effectiveness and 
 efficiency of such measures, particularly as alternatives to or in combina-
tion with engineered solutions. This rich collection of research findings 
and tested practices takes us around the globe, from coasts to forests, 
from agricultural landscapes to protected areas, from cities to mountains. 
It addresses conflicts between socio-economic development and environ-
mental concerns, taken to its extreme in Cape Town where policymakers 
and planners have had to overcome the legacy of apartheid to find a sus-
tainable trajectory. And it gives readers an array of methods and instru-
ments to help overcome the sector and disciplinary stovepipes that often 
stand in the way of the holistic approaches needed to meet and reconcile 
multiple objectives: protecting vulnerable people and assets, halting the 
erosion of biodiversity and making sustainable use of our natural re-
source base. Those looking for the state of the art in ecosystem-based 
disaster risk reduction now know where to go.”
Johan Schaar, Co-Director, Vulnerability and Adaptation Initiative, 
World Resources Institute

“With the human and economic losses of disaster events projected to 
grow, and with two-thirds of global disaster losses being caused by hydro-
meteorological events, this is a very timely compilation of the evidence 
needed to link up ecosystem management with disaster risk management 
as mutually reinforcing initiatives. It comes at a time when the post-2015 



development paradigm and framework for disaster risk management are 
on the drawing boards. It will surely go a long way in informing the con-
vergence of policies and benchmarks for ecosystem management as an 
integral aspect of climate and disaster risk management, to ensure near-
term development gains and long-term climate and disaster resilience.

An extremely timely and comprehensive publication, a game-changer 
in the approach to natural resource management for sustainable develop-
ment – and for climate and disaster resilience.”
Prashant Singh, Team Leader, Partnerships and Governance, Global Fa-
cility for Disaster Reduction and Recovery (GFDRR) at The World Bank

“How do ecosystems relate to disasters? How do ecosystems contribute 
to disaster risk reduction (DRR)? This book gives us answers to these 
questions.

It is timely to address DRR-related coastal issues and water resources 
management, which are inevitable to countries being prone to water-
related  disasters such as storm surges and tsunamis as well as floods, 
droughts and erosion. Forestry and vegetation cover are also dealt with 
in relation to land management and landslides. These are serious prob-
lems which many parts of the world are facing in the twenty-first century 
under the pressure of sustainable development and survivable societies. 
Future perspectives are also given in concluding chapters.

This book will be of interest to disaster managers and policymakers, 
eco-hydrologists, coastal and water resources planners, engineers and 
managers, research scientists and students, international donor agencies, 
and many professionals from NGOs and the media.”
Kaoru Takara, Disaster Prevention Research Institute, Kyoto University, 
Japan
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Foreword: Why do ecosystems 
matter in disaster reduction?
Margareta Wahlström, Special Representative of the 
Secretary-General for Disaster Risk Reduction and  
Head of the UN Office for Disaster Risk Reduction

The current global framework for disaster risk reduction, the Hyogo 
Framework for Action, was agreed in Kobe, Japan, in January 2005 as the 
world struggled to come to terms with the loss of life and devastation 
caused by the Asian tsunami of a few weeks earlier. Sustainable ecosys-
tems and environmental management were placed top of the list under 
the Hyogo Framework’s Priority for Action No. 4 on reducing underlying 
risk factors, and a few months later Hurricane Katrina engulfed New 
 Orleans in a disaster that was both predictable and predicted. As is often 
the case following major disaster events, there was much focus on what 
should have been done to strengthen the city’s physical infrastructure, 
such as improving the levee and drainage systems or building protection 
walls.

There is, of course, a very important but less appreciated “resilience 
gap” that faced New Orleans and the many small towns and villages that 
bore the brunt of the Asian tsunami, and that was the deterioration of 
their natural defences. In other words, there was a general failure to ap-
preciate why ecosystems matter in disaster risk reduction and how they 
help to build a community’s resilience to disaster events. In the case of 
New Orleans, economic development prior to Katrina had taken place at 
the expense of losing 4,800 km2 of wetlands in the Mississippi Delta, 
which took thousands of years to accumulate and helped to dissipate the 
energy of storm surges in centuries past.

If one considers that floods disrupt the lives of over 100 million people 
every year, then it seems obvious that ecosystems have a role to play in 
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limiting the impacts on our built environment and that we cannot simply 
pretend we can avoid harm by constructing more dykes, dams, spillways 
and other built structures. The proper use and preservation of natural 
and constructed wetlands not only help withstand storm surges but also 
reduce the volumes of rainwater runoff in urban areas. A key benefit of 
wetlands and environmental buffers is to act as flood retention basins 
and reduce flooding in built-up areas. One statistic worth pondering in 
relation to the value of well-managed ecosystems is that 1.3 million trees 
can catch 7 billion m3 of rainwater per year, which amounts to a major 
reduction in stormwater drainage.

This is a welcome and timely publication that will make a major con-
tribution towards shaping the successor to the Hyogo Framework for 
 Action, which expires in 2015. It is also a forceful and eloquent reminder 
that environmental management is an essential part of best practice in 
disaster risk reduction.
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The role of vegetation cover change 
in landslide hazard and risk
Maria Papathoma-Koehle and Thomas Glade

Introduction

Landslides cause economic losses as well as considerable loss of life 
worldwide. They are commonly triggered either by hydro-meteorological 
events or by earthquakes. However, preconditioning factors such as to-
pography, geology, soils, hydrological conditions, landslide history and 
vegetation cover determine the response of a landslide-prone catchment 
to a specific trigger. In this chapter, the focus is on the role of vegetation 
within the preconditioning factors and how a change might influence the 
consequent landslide risk. Also, aspects of climate change are addressed.

According to the Intergovernmental Panel on Climate Change (IPCC) 
Working Group I (2007), the type, frequency and intensity of extreme 
events such as heatwaves, droughts and floods are expected to change as 
a result of climate variations. Moreover, in a recent IPCC report (2012) it 
is suggested that there is high confidence that changes in heavy precipita-
tion will affect landslides in some regions. Moreover, landslide occur-
rence in terms of magnitude, intensity, temporal pattern and spatial 
extent might be affected by this change. For example, increasing precipi-
tation frequency and intensity as well as changes in soil temperature 
leading to a changed soil moisture regime can reduce slope stability 
(UNU, 2006). At large scales, higher temperature and mild winters will 
cause permafrost melting and saturation of soils, which might affect slope 
stability and eventually the occurrence of landslides (Bärring and Pers-
son, 2006). Bo et al. (2008) also point out that climate change will affect 
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the stability of slopes owing to changes in vegetation and in ground and 
surface water levels and they list the types of slopes that are most vulner-
able to such change. Indeed, not all landslide types are expected to have 
the same reaction to these climatic changes. According to Geertsema et 
al. (2007), landslide types such as debris slides, debris flows and rock fall 
respond rapidly to these hydro-meteorological variations, whereas other 
types, such as earth slides and flows, have a delayed response. Responses 
are also heavily dependent on the magnitude of the triggering event.

Not only might climate change directly affect landslide occurrence but 
it can also influence the preconditioning factors of landslide initiation. 
For example, vegetation transformation driven by climate change might 
lead to changed slope stability and consequent landslide occurrence. 
However, such changes occur at different scales. Whereas direct interven-
tions such as deforestation are occurring in rather smaller regions over 
short periods, climate change is affecting larger regions and principally at 
longer time scales. Thus, changes in vegetation cover as the result of cli-
mate change may be two-fold (see Figure 12.1): (1) climate change might 
slowly but constantly develop vegetation cover (for example, a slow shift 
in the tree line), and (2) extreme events might result in rapid changes 
(for example, fires remove forests or wind destroys forest cover). In addi-
tion to climatic stresses, anthropogenic forces often result in dramatic 
vegetation changes. Such forces might be related to (3) the logging of 

Figure 12.1 Schematic representation of various options for vegetation change in 
a given catchment/region with (1) continuous climate change; (2) extreme hydro-
meteorological events; (3) forest logging; and (4) changes in agricultural practices
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 forests in large areas or (4) changes in agricultural practices owing to 
policy decisions or farmers’ economic motives.

Numerous studies have investigated the role of vegetation in relation 
to the occurrence of hazardous phenomena such as landslides, rock falls 
and debris flows (Alcántara-Ayala et al., 2006; Bathurst et al., 2009; Dor-
ren et al., 2004, 2006; Gerrard and Gardner, 2002; Glade, 2003a; Green-
way, 1987; Kuriakose et al., 2006; Masuya et al., 2009; Schmidt et al., 2001; 
Steinacher et al., 2009; Sudmeier-Rieux et al., 2011; Wasowski et al., 2007; 
Woltjer et al., 2008). They all regard vegetation as an important factor 
that influences slope stability.

Changes in vegetation as a result of climate change or anthropogenic 
factors may affect landslide occurrence but they may also play an impor-
tant role in increasing or decreasing the physical vulnerability of individ-
ual elements at risk. Since vulnerability is of major importance to risk 
assessments and risk reduction strategies, as emphasized in the Hyogo 
Framework for Action 2005–2015, its role has to be closely examined and 
taken into consideration by decision-makers. Vulnerability is affected by 
people moving into previously forested areas with consequent impacts on 
landscapes because of the construction of critical infrastructure, the 
building of urban areas, a change in land use in regions cleared of forests, 
etc. Thus, the elements at risk and vulnerability are increasing concur-
rently with a reduction in vegetation cover. In addition, removal of “pro-
tection forests” in already developed regions might increase the 
vulnerability of existing critical infrastructure or houses (see below on 
protection forests).

Hence, the effects of climate change should not be overestimated. It 
is very difficult to assess the impact of climate change on slope stability 
owing to a lack of data on historical landslide activity and to other fac-
tors that also affect slope stability (Alcántara-Ayala et al., 2006). These 
other factors range from anthropogenic slope modifications, such as level-
ling, to a changed hydrological regime through drainage and also water 
supply to the slopes. According to Winter et al. (2010), these factors might 
have a positive or a negative influence on slope stability that even ex-
ceeds that of climatic changes. For example, Wasowski et al. (2007) con-
cluded for their investigated catchment in Italy that changed slope 
stability is related not to climate change but to land-use change. Never-
theless, all authors dealing with the effects of climate change on natural 
hazards point out that it is urgent for decision-makers to consider climate 
change and put mitigation and adaptation strategies high on their agenda.

This chapter examines the ways in which changes in vegetation cover 
can affect the spatio-temporal pattern of landslide occurrences, its re-
lated consequences and the implications that these changes might have in 
decision-making and disaster management. We review the trends in 
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 vegetation change resulting from climate change and anthropogenic fac-
tors and the possible consequences for landslide occurrence and overall 
landslide risk. We present recent strategies of using land cover and vege-
tation for landslide risk reduction and emphasize the possible gaps and 
needs for future research.

Landslide hazard, vulnerability and risk

Landslides can be defined as the downslope movement of soil, rock or 
debris as the result of gravitational forces, which can be triggered by 
heavy rainfall, rapid snow melting, slope undercutting, etc. (see, for ex-
ample, Crozier, 1999; Glade and Crozier, 2005b). The term “landslide” is 
used in this chapter for shallow landslides (defined by BRP, BWW and 
BUWAL, 1997, as less than 2 metres deep), debris flow (solid material 
with a high water content) and rock fall (loose stones and boulders) ac-
cording to the internationally widely accepted definitions of Cruden and 
Varnes (1996) and Dikau et al. (1996). These types of landslides are 
mainly affected by vegetation cover and human activity, in contrast to 
deep-seated landslides, which are less likely to be stabilized by vegetation 
cover and are more affected by geological and hydrological conditions. 
The impact of landslides on buildings and infrastructure ranges from zero 
(if no buildings are exposed) or minimum (if landslide magnitude is mi-
nor and only negligible damage can be expected) to maximum (collapse 
or burial of buildings and infrastructure, loss of life and loss of agricul-
tural land; refer to Glade and Crozier, 2005b, for more details). As far as 
debris flows and soil flows are concerned, not only do they influence the 
stability of buildings, but also, during low-magnitude events, material can 
enter buildings through doors or windows and damage building interiors 
(Holub and Fuchs, 2009). In contrast, large-magnitude events damage or 
even destroy the building structure such as walls (see Figure 12.2). On 
the other hand, rock falls usually affect individual buildings rather than 
large areas and they may also damage building interiors. Although, in 
 Europe, large-magnitude landslides have a low probability of claiming 
lives, the concentration of assets on steep slopes, high standards of living 
and high population densities have rendered European households vul-
nerable to even small-magnitude landslide events (Blöchl and Braun, 
2005).

The majority of studies concerning landslide hazards focus on hazard 
assessments (mapping and zoning), landslide modelling and landslide risk 
management. Although hazard assessments are very important for disas-
ter risk reduction, understanding the vulnerability of the built envir-
onment, the natural environment and society is equally important. 
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Figure 12.2 Examples of the consequences of landslide occurrence for different 
event magnitudes: (a) shallow translational or rotational landslide; (b) debris 
flow; (c) rock fall; (d) subsidence and (e) rock avalanche
Source: Based on Glade and Crozier (2005b).
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Vulnerability assessment of elements at risk of landslide-related phe-
nomena is a relatively new field of research (Glade, 2003b; Hufschmidt 
and Glade, 2010; Zhihong et al., 2010), which additionally brings together 
scientists from different disciplines (Fuchs, 2009). Because there is no 
common definition of vulnerability across all disciplines (the social sci-
ences, the natural sciences, engineering), each group of scientists provides 
its own definition, clearly demonstrating the lack of common language 
and hindering vulnerability research from moving forwards (Brooks, 
2003). In the social sciences, vulnerability is related only to the social 
context, whereas engineers and natural scientists try to define thresholds 
in order to determine acceptable risk and at what point risk reduction 
measures should be taken (Bohle and Glade, 2007).

As far as physical vulnerability is concerned, the most common defini-
tion used by natural scientists and engineers is the one proposed by the 
Office of the United Nations Disaster Relief Coordinator (UNDRO, 
1984: 3): “Vulnerability is the degree of loss to a given element, or set of 
elements, within the area affected by a hazard. It is expressed on a scale 
of 0 (no loss) to 1 (total loss).” On this basis, the majority of vulnerability 
assessment methods for landslides either estimate the associated vulner-
ability (Glade, 2003b) or concentrate on creating vulnerability curves that 
connect the intensity of a process to the degree of economic loss of build-
ings (Bohle and Glade, 2007). In a review of methods for assessing vul-
nerability to alpine hazards, Papathoma-Köhle et al. (2011b) suggest that 
nearly half of the methods apply vulnerability curves. However, that 
means that in most cases only one characteristic of the element at risk 
(usually the building type) and of the phenomenon (intensity expressed 
as, for example, the thickness of the deposit in the case of debris flow) 
is taken into consideration. However, there are studies referring to 
other vulnerability indicators, such as demographics and vegetation cover 
near buildings (for example, Bell and Glade, 2004; Kappes et al., 2012; 
 Papathoma-Köhle et al., 2007).

Papathoma-Köhle et al. (2007) introduced a framework to undertake 
an assessment of the vulnerability of buildings to landslides, based on the 
development of an “elements at risk database”. It takes into considera-
tion the characteristics and use of buildings, their importance for the local 
economy and the demographic characteristics of the inhabitants (popula-
tion density, age, etc.). In a modification of this methodology for multi-
hazards, the type of vegetation surrounding a building is also taken into 
consideration (Papathoma-Köhle et al., 2011a; Kappes et al., 2012) in as-
sessing its overall physical vulnerability. Four categories of vegetation 
surrounding buildings are presented: no trees, few trees, closed tree line 
and buildings located within the forest. However, the role of different 
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vegetation types in protecting an element at risk has yet to be further 
explored.

The role of vegetation cover in landslide risk

Vegetation can reduce the probability of a landslide through the reduc-
tion of the soil pore-water pressure and can reduce the possibility of soil 
erosion through reinforcement of soil properties through the root system. 
In Figure 12.3, the destabilized slopes on the unforested part of the hills 
in East Cape, North Island, New Zealand, are shown. Alternatively, vege-
tation can increase the hazard by overloading the slope with weight and 
by weakening the regolith strength through movement of the roots, for 
example during strong wind storms (Popescu, 2002; Sidle et al., 1985; 
Steinacher et al., 2009). Another observed effect is that the vegetation 
cover indeed stabilizes the slope through root reinforcement; however, if 
the slope fails, the root weight could actually increase the size of the 

Figure 12.3 Destabilized slopes on the unforested part of the hills, East Cape, 
North Island, New Zealand
Photo: Michael Crozier.
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landslide. In the case of shallow landslides, rock fall or debris flows, veg-
etation can also reduce the vulnerability of elements at risk. Here, vege-
tation not only prevents the initiation of the landslide process but also 
acts as a protective barrier. In this section, the role of vegetation in land-
slide hazard, the vulnerability of the elements at risk and, finally, land-
slide risk are discussed through some examples for shallow landslides, 
debris flows and rock fall.

Different land uses and corresponding vegetation cover can have a sig-
nificant influence on slope stability. During a rainstorm event in 2004 in 
the East Cape region of North Island, New Zealand, large areas were 
 affected by landslides. As other studies have shown, the region has under-
gone significant land-use changes over the past century owing to the con-
version of hillsides into farm pastures (for example, DeRose et al., 1995). 
Areas affected by landslides recover very slowly, often never returning to 
pre-landslide conditions (Smale et al., 1997). The landslide process often 
starts as shallow translational soil slides, which develop within the chan-
nels into mud and debris flows. As soon as the displacement of the rego-
lith has been initiated, the transported materials turn into very liquefied 
matter. Once the drainage line or channel has been reached, these flow 
types can travel for very long distances, from tens to hundreds of metres 
downslope, causing damage to buildings and infrastructure that lie in 
their way. In contrast, forested slopes remain stable (Figure 12.3). Obvi-
ously, the magnitude of this triggering event was not large enough to 
destabilize the areas covered by forests to a similar extent. In the case of 
this specific event, the forest functioned as a protection against regolith 
destabilization and subsequent landsliding. However, this does not imply 
that the forested region and the exposed elements at risk located further 
downstream in the valleys are completely safe. It can be expected that, 
with an increasing triggering magnitude, even forested areas and ele-
ments at risk near the destabilized slopes will be affected. For events with 
a magnitude lower than or similar to that of 2004, forest cover can clearly 
be regarded as a protection against shallow landslides and consequent 
mud and debris flows.

Also in terms of landslide risk, the consequences are heavily dependent 
on the vegetation cover in the source areas of the catchment. In the case 
of 2004, regions below the forests were safe and did not experience any 
significant damage from landslides. In contrast, exposed elements at risk 
located in the non-forested regions experienced significant damage ran-
ging from extensive mud cover (see Figure 12.4) to completely damaged 
houses and infrastructure. Therefore, management of vegetation cover can 
extensively influence landslide occurrence and consequent landslide risk.

In other regions outside New Zealand, a considerable number of 
 studies have investigated the role of vegetation (in most cases forests) in 
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slope stability and landslide occurrence. Peduzzi (2010) investigated the 
role of vegetation in slope stability in North Pakistan and concludes that 
the “presence of denser vegetation has a mitigation effect on landslide 
susceptibility” (Peduzzi, 2010: 633). He supports this argument with the 
results of landslide modelling with and without considering vegetation 
density, determined through the Normalized Difference Vegetation  Index. 
The susceptibility of the area to landslides rose by 15.1 per cent when the 
presence of vegetation was not taken into consideration (Peduzzi, 2010). 
On the other hand, Popescu (2002) suggests that, although vegetation 
often reduces the occurrence of landslides through water content reduc-
tion and root anchoring, it may also have the opposite effect. He lists 
some negative effects of vegetation on slope stability, such as the fact that 
trees may destabilize slopes owing to their weight and their exposure to 
wind forces. Additionally, Popescu suggests that the roots of trees and 
plants can penetrate and expand the joints of rock, thus destabilizing the 
slope. However, he emphasizes that these effects are minor and that the 
positive effects of the vegetation on slope stability are the dominant ones.

Figure 12.4 Extensive mud and debris deposits behind a fence following exten-
sive landsliding in the catchment, East Cape, North Island, New Zealand
Photo: Michael Crozier.
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The role of woody vegetation (trees and plants with hard stems) in 
slope stability is discussed extensively by Marston (2010). The mechan-
isms that influence slope stability are divided into two categories: hydro-
logical and mechanical (see Table 12.1, which is modified from Greenway, 
1987, and Sidle and Ochiai, 2006).

As far as rock fall is concerned, Corominas et al. (2005) suggest that 
falling rocks often lose their kinetic energy as the result of the presence 
of trees and never make it to the lowest part of the slope. However, Bigot 
et al. (2009) suggest that forests can offer protection to buildings only if 

Table 12.1 The influence of woody vegetation on slope stability

Mechanisms

Influences on types  
of landslides

Shallow, rapid Deep-seated

Hydrological mechanisms
Interception of rainfall and snow by canopies of 

vegetation, promoting evaporation and 
reducing water available for infiltration

B B

Root systems extract water from the soil for 
physiological purposes (via transpiration), 
leading to lower soil moisture levels

B B

Roots, stems and organic litter increase ground 
surface roughness and soil’s infiltration 
capacity

MA MA

Depletion of soil moisture may cause 
desiccation cracks, resulting in higher 
infiltration capacity of water to a deeper 
failure plane

MA MA

Mechanical mechanisms
Individual strong woody roots anchor the lower 

soil mantle into the more stable substrate
B MB

Strong roots tie across planes of weakness along 
the flanks of potential landslides

B B

Roots provide a membrane of reinforcement to 
the soil mantle, increasing soil shear strength

B B

Roots of woody vegetation anchor into firm 
strata, providing support to the upslope soil 
mantle through buttressing and arching

B MB

The weight of trees (surcharge) increases the 
normal and downhill force components

MA/MB MA/MB

Wind transmits dynamic forces to the soil 
mantle via the tree bole

A MA

Source: Marston (2010).
Note: A = mechanism adverse to stability; MA = marginally adverse mechanism; 
MB = marginally beneficial mechanism; B = beneficial mechanism.
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the forest structure is adapted to this function. They also consider forests 
to be not only aesthetically more appealing in comparison with other 
protective measures such as nets and dams, but also cheaper to maintain. 
Numerous research studies have been carried out, and there is still ongo-
ing investigation in order to determine the effect of protection forests on 
rock falls (Dorren et al., 2004, 2006; Masuya et al., 2009; Woltjer et al., 
2008; see also below on protection forests).

The effect of vegetation on debris flow initiation and propagation has 
often been investigated in the past (Pabst and Spies, 2001). Kuriakose et 
al. (2006) quantify the effect of vegetation on the initiation of debris flow 
by using numerical simulation. The results revealed that, although during 
high-intensity rainfall the mitigating role of vegetation might be reduced, 
vegetation remains crucial to slope stability. Kuriakose et al. also point 
out that the mechanical effect (that is, root cohesion) rather than the hydro-
logical effect of vegetation seems to play the most important role.

Rickli and Graf (2009) investigate the differences in shallow landslide 
occurrence between open land and areas covered with forests. By looking 
at six different landslide areas in Switzerland, they conclude that land-
slide density in open land is clearly higher than landslide density in for-
ested areas. As far as landslide dimensions are concerned, there are no 
significant differences, with the exception that landslide depth is greater 
in forested terrain. Finally, Rickli and Graf (2009) suggest that shallow 
landslides in forested terrain are triggered in areas with steeper slope 
 inclination.

Furthermore, the role of vegetation in maintaining slope stability has 
been investigated globally by numerous scientists in several case studies. 
Despite these efforts, there is still the need for more research on the role 
of vegetation in relation to the occurrence of rock fall. The vast majority 
of studies conclude that the role of vegetation in slope stability is positive 
but its significance varies depending on specific local characteristics such 
as topography, lithology and hydrology.

Change in vegetation cover and its effect on slope stability

Changes in vegetation cover can result from climate change and from an-
thropogenic activity (for example, deforestation, land-use change, logging, 
arson). 

Climate change

With respect to climate change, plants may respond in three ways: 
 persistence, migration and extinction (Theurillat and Guisan, 2001). 
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 According to Theurillat and Guisan, possible changes in vegetation in the 
Alps owing to climate change may include altitudinal shifts of vegetation, 
changes in its composition and changes in the growth and productivity of 
grasslands. More specifically, as far as Switzerland is concerned, an in-
crease of 3.3°C in mean air temperature would cause an upward altitudi-
nal shift of 600 metres, which would reduce the area of alpine vegetation 
belt by 63 per cent (Theurillat and Guisan, 2001). However, the response 
of tree species in the Alps may vary. For example, a rise in temperature 
might increase the radial growth of the larch pine (Larix decidua), but at 
the same time it will reduce the radial growth of the Scots pine (Pinus 
sylvestris) because of the lack of water (Theurillat and Guisan, 2001).

In a wider study of the Euro-Mediterranean area, it is suggested that 
vegetation in Southern and Eastern Europe as well as in North Africa 
will be most affected by climate change. In more detail, in coastal north-
ern Africa and Spain, grass will be replaced by temperate trees, whereas 
in non-coastal northern Africa there might be a transition to bare ground 
conditions as a result of severe drought (Anav and Mariotti, 2011). Ac-
cording to the same study, in Eastern Europe boreal vegetation and grass 
will be replaced by temperate deciduous trees owing to higher tempera-
tures and increased rainfall.

In the United States, the impact of climate change on vegetation has 
already been observed, although it varies throughout the country. Model-
ling of vegetation change under different climatic scenarios for the 
United States has shown that, for moderate climate change scenarios, 
vegetation density will increase, but that, under more severe climate 
change scenarios, there will be a decrease in vegetation density. Espe-
cially in the eastern United States, catastrophic fires may cause a transi-
tion from forest to savanna (Bachelet et al., 2001). In addition, existing 
land-use practices (for example, timber harvesting, vegetation conversion, 
fire, road construction, residential development, mining activities) may 
accelerate or counteract the response of vegetation to climate change 
 (Sidle et al., 1985; Wasowski et al., 2007). For this reason, land-use plan-
ning that takes into account climate change effects on vegetation is cru-
cial (Theurillat and Guisan, 2001).

Deforestation

According to the Food and Agriculture Organization of the United Na-
tions (FAO, 2010), deforestation is decreasing worldwide, although the 
rate of deforestation is still alarmingly high. Every year in the last dec-
ade, 13 million hectares of forest were converted to agriculture or were 
lost from natural causes. Furthermore, the deforestation rate varies 
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 significantly from country to country. For example, countries such as 
 Brazil or Indonesia managed to reduce the rate of forest loss, whereas in 
Australia the rate increased as a result of forest fires (FAO, 2010). More-
over, forest areas managed for the protection of soil and water increased 
by 59 million hectares worldwide, mainly because of extensive forest 
planting in China (FAO, 2010).

Despite these general trends, deforestation is of major importance on 
hilly or mountainous slopes with regard to landslide occurrence. Al-
though there are numerous, detailed studies on the effects of deforesta-
tion on slopes and adjacent landslide occurrence (for example, Gerrard 
and Gardner, 2002; Wang, 2004), no overall and global information is cur-
rently available on this topic.

Forest fires

Forest fires are often the result of a combination of factors, which may 
include ignition agents, fuel condition, topography, climate, wind velocity 
and direction, precipitation and humidity. Many studies suggest that an 
increase in forest fires should be expected as a result of climate change 
(for example, Flannigan et al., 2000). In particular, studies show that there 
has been an increase in forest fires in North America and Europe. Inten-
sive forest fires strip slopes of vegetation, which could also have a signifi-
cant impact on the occurrence of landslides (Cannon et al., 1998, 2001; 
Gabet, 2003). According to Rice (1977) the immediate effect of wild fires 
is similar to the effect of clear-cuts and may not immediately affect land-
slide occurrence. At a later stage, however, the remaining roots of the old 
vegetation will disappear, the macro-pores in the regolith will increase 
and the landslide hazard may increase. Moreover, Johansen et al. (2001) 
suggest that, following a fire, the amount of mineral soil exposed may in-
crease by 60–70 per cent. By applying rainfall simulation and comparing 
the results with rainfall simulation on unburned plots, they conclude that 
burned plots produced 25 per cent more sediment yield than the un-
burned plots.

Cannon et al. (2003) suggest that burned plots of land are very suscep-
tible to debris flow events. Following a fire, the soil is dry and incapable 
of absorbing rainwater. As a consequence there is increased overland 
flow. The increased runoff may lead not only to extensive soil erosion but 
also to the transport and deposition of this material in the lower areas of 
the catchment, for example by channelized debris flows (Cannon et al., 
2003). The effect of vegetation change on slope stability may be greater 
from logging, which is short lived (5–20 years, the period between  residual 
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root decay and subsequent regeneration), compared with forest fires 
 (Sidle et al., 1985).

Land-use change

In order to assess the impact of land-use change on landslide occurrence, 
many scientists have developed models that consider land-use scenarios 
in order to assess this impact. For example, Vanacker et al. (2003) mod-
elled the impact of land-use change on landslide occurrence in the Andes, 
and Van Beek (2002) and Van Beek and Van Asch (2004) have developed 
several scenarios of land-use change in order to assess changes in 
 landslide-susceptible areas in the Mediterranean.

In Mediterranean environments in Europe, the abandonment of culti-
vated agricultural land is increasing as a result of globalization, mechani-
zation and intensification (Van Beek, 2002). Van Beek and Van Asch 
(2004) use a physically based model in order to assess the spatial and 
temporal landslide activity for two scenarios of land-use change involving 
land abandonment. The results demonstrate that landslide activity is 
likely to decrease and consequently the areal extent of landslides will 
hardly change. These results might have implications for perceived haz-
ard levels and for the landslide hazard zonation of the area. Vanacker et 
al. (2003) modelled landslide susceptibility with a model that suggested 
that land-use change would continue in the same way that it had over the 
preceding 37 years in the Ecuadorian Andes. The modelling results 
clearly indicate that the conversion of secondary forest to grassland or 
cropland is likely to increase shallow landslide activity.

Meusburger and Alewell (2008) investigated the ways that land-use and 
climate changes are influencing the occurrence of landslides by investi-
gating spatial landslide distributions in the Urseren Valley in Switzerland 
between 1959 and 2004. In this period, the area affected by landslides in-
creased by 92 per cent. This can be explained only by the increase in ex-
treme rainfall events and by land-use change. Specifically, goat pastures 
and spring pastures had disappeared and remote and less productive 
areas had been abandoned, being replaced by uncontrolled grazing within 
confined areas. Moreover, the abandonment of traditional farming prac-
tices, in combination with the mechanization of local agriculture, might 
have contributed to increased soil erosion and consequently to the occur-
rence of landslides. On the other hand, areas colonized by shrubs show 
low landslide density (Meusburger and Alewell, 2008).

Glade (2003a) focuses on geomorphic responses to anthropogenic 
land-use and land-cover changes in New Zealand. By analysing sedimen-
tation rates in swamp, lake, coastal and marine environments, Glade 
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(2003a) concludes that the deforestation that took place after the arrival 
of the European settlers was connected with increased landslide activity, 
which was reflected in the sedimentation rates in these environments.

Common to all these studies is the strong interlinkage between landslide 
occurrence and changes in vegetation cover. Indeed, the link can work 
both ways. As argued above, forest cover can protect regions against 
landsliding for lower-magnitude triggering events but may also expand 
the landslide regions for large triggering events despite root reinforce-
ment of the ground. Nevertheless, the focus of this chapter so far has 
been on the role of vegetation in preventing the initiation of landslides; 
the possible change in landslide risk and relevant disaster reduction strat-
egies have yet to be addressed in detail.

Disaster reduction strategies

Vegetation has often been used by planners for hazard reduction and to 
protect exposed elements against various hazard types such as tsunamis 
(Forbes and Broadhead, 2007; Ohira et al., 2012; Tanaka et al., 2006) and 
snow avalanches (Brang et al., 2006; Clouet and Berger, 2010; Schönen-
berger et al., 2005). In many cases, restoration of vegetation coverage can 
serve as a cost-effective mitigation measure (Peduzzi, 2010). For example, 
in the case of tropical cyclones in Viet Nam, planting and protecting man-
grove forests as a protection measure not only proved to be seven times 
cheaper than dyke maintenance but also offered secondary benefits to 
society such as exploitation of mangrove products by locals in order to 
increase their income (IFRC, 2002).

In the case of landslides, Popescu (2002) suggests that, although in the 
post-war period landslides were seen as “engineering problems” that 
would require “engineered solutions” such as the construction of walls 
and fences or the use of nets for rock fall, in recent decades there has 
been a clear shift towards non-structural solutions and environmental 
consideration. This shift is related to a number of reasons. Not only are 
civil engineering solutions such as slope flattening, tied-back retaining 
walls or sheet piles very expensive but they may not justify direct short-
term economic investments (Bo et al., 2008). On the other hand, meas-
ures such as reforestation schemes to manage landslide hazards may have 
additional benefits to society, for example employment in forestry and 
the export of forest products (Phillips and Marden, 2005). As a side- 
effect, forests might also be used for recreational purposes. Most recently, 
the aesthetic aspect of landscapes, including forested landscapes, has been 
expressed as an important added value to society (Taboroff, 2003).
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Within disaster reduction strategies, spatial landslide hazard analysis is 
of major importance for landslide risk assessments. The types of methods 
range from heuristic assessments to statistical and physically based mod-
elling. Here, the type and spatial distribution of vegetation are some of 
the main factors determining, respectively, landslide distribution and haz-
ards. Consequently, vegetation is commonly taken into account in spatial 
landslide hazard analysis and in the delimitation of landslide hazard 
zones (Van Beek and Van Ash, 2004; Wilkinson et al., 2002).

Besides its consideration within spatial analysis, vegetation is also used 
to assist risk reduction strategies worldwide (for example in France – 
Berger and Rey, 2004) in order to enhance slope stability (O’Loughlin, 
1984). In particular, protection forests have regularly been used for slope 
stabilization in many countries in the world for many decades and even 
centuries (Stoffel et al., 2005). Here, the steep landslide-prone terrain is 
of particular importance. According to the FAO (2010), approximately 
330 million hectares of forest (about 8 per cent of the world’s forests) 
have as their objective the conservation of soil and water, avalanche con-
trol, sand dune stabilization, desertification control or coastal protection. 
The protective functions of the forest are summarized by Sakals et al. 
(2006) under the following two categories: retaining material in upslope 
conditions; containing, confining and resisting material during transport 
and deposition.

Of course, a forest’s ability to protect an area from landslides depends 
also on its position in relation to the hazard. Clouet and Berger (2010) 
summarize the ability of forests to control different hazards in the depar-
ture and deposition zones (Table 12.2).

Berger and Rey (2004) recognize the role of forests in protecting 
against natural hazards in mountainous areas; however, they suggest that 
their role also depends on the position of the forest, the type of vegeta-
tion, its age and the spatial scale of the hazard. They stress that the pro-
tection of the forest can be active (when it is located in the hazard 

Table 12.2 The ability of forests to control natural hazards

Natural hazard Location Forest control implemented

Avalanches Departure zone
Transit and stopping zone

Yes
No

Rock falls Departure zone
Transit and stopping zone

Yes
Yes

Landslides Departure zone
Transit and stopping zone

No
No

Source: Clouet and Berger (2010).
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departure zone) or passive (when it is located in the departure and stop-
ping zones). Yet the role of forests is rarely taken into account in risk 
mapping (Berger and Rey, 2004). Clouet and Berger (2010) suggest that 
the age of the forest can significantly decrease its protective efficiency. 
Although they recognize that forest management is very important, they 
suggest that silvicultural interventions may be very expensive. For this 
reason, Clouet and Berger (2010) have developed an analysis tool based 
on Geographic Information Systems that can assist in the prioritization 
and identification of areas within the forest where intervention is needed.

Berger and Rey (2004) stress that there is a need for a common guide 
as a tool for decision-making in the management of forests that offer 
protection against natural hazards in countries such as Austria, France 
and Switzerland. They present an example from France and make recom-
mendations for better forest management for controlling natural hazards 
in mountainous areas. They discuss the methodological steps for protec-
tive forest delimitation. In France, the delimitation of protective forest 
areas is used in risk prevention plans. In 2006, a set of guidelines for pro-
tection forest maintenance was published (Wehrli et al., 2007).

In Austria, the role of the protective forests was understood as early as 
1870 when the lack of forests in torrential catchments and the poor state 
of existing mountainous forests were considered to have contributed to 
the catastrophic consequences of floods (Austrian Federal Forests, 2009). 
Since then, protective forests have been used to mitigate the impact of 
natural hazards such as avalanches and landslides and, according to the 
Austrian Forest Act, are divided into three categories (FMAFEWM, 
2009):
• site-protection forests: they protect themselves;
• protective forests: they provide protection from natural hazards or 

they enhance and maintain positive environmental effects such as cli-
mate or water balance;

• object-protection forests: they protect human settlements and agricul-
tural areas.

Based on information provided by the Austrian Federal Ministry of Agri-
culture, Forestry, Environment and Water (Bundesministerium für Land- 
und Forstwirtschaft, Umwelt und Wasserwirtschaft), at least 29 per cent 
of Austrian forests are protection forests and there are at least 83 current 
protection forest projects in the country. According to the Ministry, the 
ideal protection forest is a typical mixed forest with several types of old 
trees. As far as tree types are concerned, larch (Larix decidua) is ideal for 
use against rock fall, whereas spruce (Picea) forests are good against 
snow avalanches owing to their density. The Austrian authorities recog-
nize that protection forests are a cheap alternative to structural protec-
tion measures but they also stress that sustainable forest management is 
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required (Austrian Federal Forests, 2009). The necessary actions for the 
protection and management of protection forests in Austria are imple-
mented through the “Protection Forest Platforms” of every federal state 
(FMAFEWM, 2009).

Finally, since the early 1980s there have been measures for the man-
agement of protection forests in Switzerland. A large amount of money is 
invested every year for their protection and management.

Phillips and Marden (2005) review the use of protection forests in New 
Zealand, where the importance of erosion control was already under-
stood in the early 1940s. The first reforestation project using a variety of 
tree species started in 1948 and continued in 1953 with the purchase of 
eroded land by the government for the establishment of dual-purpose ex-
otic forest, for protection against erosion and for timber production. In 
1968 the East Coast Project (1968–1987) was approved so that unforested 
parts of the critical headwaters could be planted with protection forests. 
In 1988, the project was reviewed following Cyclone Bola, which caused 
widespread landslides in the country (Marden and Rowan, 1993). Follow-
ing this event, it was obvious that mature native forest and pine forest 
offered significant protection (Hicks, 1991). In 1992, the East Coast 
Project was replaced by the East Coast Forestry Project, which aimed to 
plant 200,000 hectares in 28 years (Phillips and Marden, 2005).

In Australia, the Australian Geomechanics Society suggested that 
changes in vegetation can clearly increase the landslide risk and, for this 
reason, it includes retention of natural vegetation wherever practicable in 
the guidelines for hillside construction (AGS, 2000). In other countries, 
such as South Korea, Taiwan and Japan, forests are also used for erosion 
control and landslide risk reduction (Phillips and Marden, 2005). In South 
Korea, although erosion control projects started as early as 1907 and the 
forest area now occupies almost 65 per cent of the entire country, the 
majority of the forests consist of very young trees as a result of forest 
management (Phillips and Marden, 2005).

However, although vegetation can be, and often is, used as a non- 
structural protection measure against landslides, Peduzzi (2010) stresses 
that, depending on the slope, increasing vegetation density may not be 
the only solution since other factors contribute to landslide susceptibility, 
such as slope characteristics. For example, a common practice for slope 
stabilization is “bio-engineering”, a combination of techniques to protect 
slopes against erosion, reduce the probability of planar sliding and im-
prove surface drainage (Florineth et al., 2002). Bio-engineering uses ve-
getation in combination with other methods in order to stabilize a slope 
and reduce landslide hazard. According to Singh (2010: 385), bio- 
engineering is “the successful use of vegetation (both live and dead plants 
as well as use of raw materials derived from plants like jute and coir) 
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 together with engineering structures to increase slope stability. These in-
clude the use of vegetation and horticultural practices, coir and jute 
netting, asphalt mulch solution, retards, wattling etc. in combination with 
slope modification and improved agronomic practices.” According to 
Singh, the most economical and simple method for slope stabilization is 
vegetation turfing. Florineth et al. (2002) suggest that the plants used in 
bio-engineering are selected on the basis of pioneer plant character, a 
dense and deep rooting system, potential and adventitious rooting system 
and fast and simple propagation.

In most cases, vegetation has been used mainly to enhance slope stabi-
lization and avoid the occurrence of landslides rather than for mitigating 
the vulnerability of individual elements at risk. A review of studies 
 concerning alpine hazards has shown that there are a limited number of 
vulnerability assessment methodologies dealing with the physical vulner-
ability of elements at risk of landslides (Papathoma-Köhle et al., 2011b). 
The review highlights that most methods do not take into account the 
presence of vegetation (for example forests, single trees, hedges) sur-
rounding the exposed elements at risk (especially buildings). However, 
there are exceptions, such as the methods presented by Papathoma-Köhle 
et al. (2011a) and Kappes et al. (2012), who have included the presence 
of trees surrounding buildings in a database of physical vulnerability in-
dicators for elements at risk.

It is evident that landslide occurrence and consequently landslide risk 
owing to climate change and anthropogenic factors will change signifi-
cantly in the future. It is expected that vegetation change will have an ef-
fect on slope stability, contributing to an increase in landslide risk. The 
following recommendations might be beneficial for societies dealing with 
landslide hazard and risk in the face of climate and vegetation change:
1. Decision-making and planning for mitigation and adaptation should 

be based on an integrated observation and information system. Thus, 
systematic monitoring and robust modelling of landslide occurrence 
and also changes in the factors that affect slope stability (for example 
vegetation change) are very important (Watson and Haeberli, 2004). 
For this reason, a further refinement of models linking climate, slope 
hydrology, vegetation cover and stability is essential (as started by 
Brooks et al., 2004). Robust monitoring will contribute to determining 
the sensitivity of different landslide types to changing boundary condi-
tions such as climate change (Glade and Crozier, 2005a).

2. Legislation should strengthen and expand existing restrictions on de-
velopment in landslide-prone terrain, taking into consideration pos-
sible changes resulting from climate change (Bo et al., 2008). For 
example, in Seattle in the United States, municipal codes forbid the 
removal or clearing of vegetation or trees within landslide-prone areas 
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or any action  detrimental to the habitat (Kazmierczak and Carter, 
2010). In exceptional cases where vegetation removal has to take 
place, a reforestation plan should be ensured (Kazmierczak and Carter, 
2010).

3. More research on the effects of vegetation on the different landslide 
types should be carried out. Currently, there is some research on the 
functions of different vegetation types in slope stability, but it is not 
commonly detailed by landslide type (for example, debris flows, shal-
low translational landslides, deep-seated rotational landslides).

4. The consequences of vegetation changes for landslide occurrence, and 
thus the landslide risk, have to be further explored. Here, the physical 
vulnerability of elements at risk, such as buildings and infrastructure, 
might be reduced by the presence of vegetation. Notwithstanding stud-
ies on rock fall, there is sparse research on how landslide risk reduc-
tion can be achieved and which characteristics of the vegetation could 
enhance its protective role. This could be done by extensive investiga-
tion of past event damage reports but also by establishing post-event 
damage recording protocols (Glade and Crozier, 2005a; Hübl et al., 2002).

5. There should be a shift from civil engineering measures to sustainable 
silvicultural actions that might also benefit the local economy and 
community, given that the maintenance costs are not as high as for en-
gineering measures.

6. Climate change should be further taken into consideration in land-use 
planning, for example by allocating land susceptible to increased land-
slide activity because of climate change in a way that lowers hazard 
exposure. Examples of good practice are using land for open public 
space and sports fields rather than for housing development. In some 
cases, site abandonment may also be an option (Lee and Jones, 2004).

7. Climate change should be considered in the design of measures for 
slope stabilization and erosion control. For example, the specification 
of structural measures should allow for climate uncertainty or variabil-
ity in the design parameters (Lee and Jones, 2004).

8. Finally, landslide risk assessments should take into account changes in 
climate and vegetation cover – in addition to socioeconomic changes 
(for example, the extension of urbanized regions or the development of 
new critical infrastructure such as transport networks and power lines).

Conclusions

The role of vegetation in landslide occurrence has been investigated for 
many decades. However, its influence on elements at risk (houses, critical 
infrastructure), their vulnerability and overall landslide risk is still an 
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open question. This is even more so considering the short- and long-term 
effects of climate change. Climate and environmental change are ex-
pected to modify vegetation patterns, in particular in sensitive mountain 
areas. Land-cover changes in combination with increased precipitation 
may increase the probability of landslide occurrence. More research is 
needed in order to fully understand the relationship between vegetation 
and geomorphology (Marston, 2010), especially in landslide research. 
 Although most studies suggest that the existence of vegetation increases 
slope stability and reduces the occurrence of landslides, many scientists 
point out that this is not always the case (Marston, 2010; Rickli and Graf, 
2009). There are not sufficient studies quantifying the effects of vegeta-
tion change on landslide occurrence in both time and space and defining 
the thresholds of forests or other vegetation types for stabilizing and 
destabilizing slopes.

Moreover, the change in both landslide magnitude and intensity is still 
a challenging field of research. The use of protection forests is a common 
practice in many countries (for example in Austria, China, France, Japan, 
New Zealand and Switzerland). In most cases, vegetation cover and land 
use are taken into account in landslide hazard assessments and hazard 
zonations. However, the protective role of vegetation as far as reducing 
the physical vulnerability of buildings and infrastructure is concerned is 
usually not considered. More research is needed focusing on the role of 
the vegetation surrounding an element at risk and how this element re-
acts when it is affected by a particular landslide such as a rock fall or deb-
ris flow. Last but not least, vegetation and land-use changes caused by 
climate change should be taken into consideration in decision-making 
and planning processes.
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 ecosystem health and productivity, 234
 ecosystem resilience and, 85
 Global Partnership for Ecosystems and 

Ecosystem Services Valuation and 
Wealth Accounting, 47n6

 habitat communities and, 82
 habitat restoration and protection and, 

159
 hazard regulatory functions, 256
 heterogeneity in, 242
 human demand for, 32
 IWRM helps regulate stress on, 252
 livelihoods, dependence on for, 262
 local communities understand the value 

of, 255
 of Mahanadi Delta, India, 230, 233
 mangrove ecosystem resilience and, 95
 mangrove provide, 83–84, 98, 100
 monetary undervaluation of, 371
 natural resources and, 30
 neighbouring habitats and, 249
 PAARSS and, 273
 payments for, 371, 385, 447
 people derive indispensable benefits from 

nature, 30
 protected areas and, 381–84
 protection and restoration of, 371
 revival of important, 239
 risk management and quantification of, 

153
 risk-averse approach to urban 

development and, 179
 scientific research on, 47
 SEA and, 425



464 INDEx
 

ecosystem services (cont.)
 sustainable reconstruction and reduction 

invulnerability, 428
 UDDTs sanitation technologies and,  

282
 urban centres and, 395–98
 valuing for DRR, 445–47
 water infrastructure and, 256
 watershed or river basin, 400
ecosystem-based adaptation (EbA)
 ecosystems’ relevance for DRR and, 7, 

16, 38
 mangroves as resilient natural coastal 

defences, 96
 in Tonga, 192, 194–95, 199, 207–13
ecosystem-based climate change work in 

Tonga
 climate change adaptation (CCA),  

194–95, 201–2, 212–13
 coastal hazards and, 199, 202
 community-based adaptation (CbA), 192, 

194, 208, 210–13
 cyclones and, 193–94
 DRR and, 194–95, 201–2, 207–8, 212–13
 ecosystem-based adaptation (EbA), 192, 

194–95, 199, 207–13
 NGOs in, 195, 197, 199, 201, 206, 209–12
 non-governmental organization (NGO), 

195, 197, 199, 201, 206, 209–12
 sea level rise (SLR), 191, 196–97, 201, 206
 seawalls in, 199–202, 206–7, 210
 tsunami(s) and, 193, 206–7
ecosystem-based disaster risk reduction 

(Eco-DRR). See also disaster risk 
reduction (DRR); urban DRR and 
ecosystem services

 about, 26–54
 climate change adaptation (CCA), 37–38, 

438–39, 449–50, 452
 disaster risk management (DRM), 426, 
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346–54, 356–57, 359, 361–63
 Dominican Republic and, 14
 Haiti and, 13–14
 linked to slope angle for study area,  

356
 mangrove, 89
 methodology scheme for, 350
 protected areas and, 383
 protection against shallow landslides, 300, 

307
 rock fall risk and, 335
 tree regeneration and, 329
 trends in landslide and, 357
 trends in Nepal’s, 347
 wind destroys, 294

G
GCM. See Global Circulation Model 

(GCM)
GDP. See gross domestic product (GDP)
Geographic Information System (GIS)
 about, 19, CP4, CP6–CP7

 coastal adaptation strategy for Cape 
Town, 173, 181, 188n16

 dynamic river basins and community 
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