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Abstract This study focuses on future forest cover change

in Buzau Subcarpathians, a landslide prone region in Roma-

nia. Past and current trends suggest that the area might expect

a future increase in deforestation. We developed spatially

explicit scenarios until 2040 to analyze the spatial pattern of

future forest cover change and potential changes to landslide

risk. First, we generated transition probability maps using the

weights of evidence method, followed by a cellular automata

allocation model. We performed expert interviews, to

develop two future forest management scenarios. The Alter-

native scenario (ALT) was defined by 67 % more deforesta-

tion than the Business as Usual scenario (BAU). We

integrated the simulated scenarios with a landslide suscepti-

bility map. In both scenarios, most of deforestation was pro-

jected in areas where landslides are less likely to occur. Still,

483 (ALT) and 276 (BAU) ha of deforestation were projected

on areas with a high-landslide occurrence likelihood. Thus,

deforestation could lead to a local-scale increase in landslide

risk, in particular near or adjacent to forestry roads. The

parallel process of near 10 % forest expansion until 2040 was

projected to occur mostly on areas with high-landslide sus-

ceptibility. On a regional scale, forest expansion could so

result in improved slope stability. We modeled two additional

scenarios with an implemented landslide risk policy,

excluding high-risk zones. The reduction of deforestation on

high-risk areas was achieved without a drastic decrease in the

accessibility of the areas. Together with forest expansion, it

could therefore be used as a risk reduction strategy.

Keywords Forest change � Land-cover change �
Scenarios � Spatial simulation � Carpathians � Landslide risk

Introduction

Changes to the forest cover can result in a variety of negative

environmental consequences. Deforestation, for example,

can affect the vegetation composition and water balance and

can increase erosion rates (Glade 2003; Ghimire et al. 2013).

This leads to increased environmental risks, such as landslide

occurrence, and can have strong impacts on the human well-

being on a larger scale (Tasser et al. 2003; Körner et al. 2005;

Papathoma-Köhle and Glade 2013). Reforestation due to

grassland abandonment can also lead to negative conse-

quences, among them habitat loss, lower biodiversity levels,

and a more homogenous landscape (Olsson et al. 2000;

Chemini and Rizzoli 2003). Studying how human-environ-

ment interactions can change the forest cover is therefore

essential (Rounsevell et al. 2006).

Scenario development combined with land change

models is an important tool for exploring future conse-

quences of environmental changes (Verburg et al. 2004).

Scenarios are images of possible, likely futures (Abildtrup

et al. 2006). They encourage creativity and help generate
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visions and help us to plan for a desirable future (Deshler

1987). Moreover, by breaking the established pattern of

planning, scenarios can help us to prepare for possible

undesirable future developments (Wollenberg et al. 2000).

They offer a possibility to analyze available response

options, hence aiding decision makers (Shearer 2005;

Kriegler et al. 2012). Scenarios of land change have thus

been applied in numerous domains: impacts on flood risk

(Barredo and Engelen 2010), soil erosion (Hessel et al.

2003), habitat availability (Falcucci et al. 2008), influence

of protected areas (Soares-Filho et al. 2006), and effects on

biodiversity levels (Giupponi et al. 2006).

In this study, we focus on future forest cover change

scenarios of the Subcarpathians of Buzau County in

Romania. Recent deforestation trends and a dense network

of landslides in the area suggest a need for analyzing

potential consequences of future forest management (Malek

et al. 2014). Thus, we concentrated on possible future

deforestation patterns, as a result of changes to the amount

and pattern of forest harvesting. The area was selected due

to its complex socio-economic trajectory since 1989, as

well as growing pressures to increase forest harvesting.

The Carpathians are a major European mountain range

and biodiversity hotspot, which host one of the largest

continuous forest ecosystems in Europe. Forest expansion

and deforestation are considered among the major envi-

ronmental issues in the Carpathian region (Björnsen Gurung

et al. 2009). Long-term forest expansion due to land aban-

donment in the Carpathian region is in line with the trends

of other European mountain areas (Kozak et al. 2007b). The

fall of communist regimes in Europe after 1989, however,

leads to radical political and socio-economic changes in the

region. The post 1989 era was characterized by the fall of

large-scale collective agricultural associations, new land-

use policies, and land ownership reforms resulting in

numerous new land owners (Mathijs and Swinnen 1998;

Lerman et al. 2004). Numerous authors identify land

abandonment and reforestation as some of the most

important land-cover changes in the region (Kuemmerle

et al. 2008; Müller et al. 2009; Taff et al. 2009; Baumann

et al. 2011; Griffiths et al. 2013). One particularly remark-

able process, differing from other European mountain areas,

is the increase in quantity and changes in the spatial pattern

of deforestation as a consequence of both legal and illegal

logging (Knorn et al. 2012; Griffiths et al. 2012, 2014). It is

among the most significant land-cover change processes in

Buzau Subcarpathians in terms of possible negative con-

sequences (Malek et al. 2014).

The first objective of the study is to understand possible

future changes to forest management in a transitional

European mountainous region. More precisely, the objec-

tive is to generate future spatially explicit scenarios taking

into account future changes to forest harvesting, instead of

only extrapolating past trends. To achieve this, we com-

bined geographic information systems (GIS) and land

change modeling with expert interviews. Secondly, forest

management in a mountainous and landslide prone area is

closely linked to landslide risk management. Thus, the

second objective was to investigate the relationship

between future forest management and landslide risk. We

overlaid the forest cover change scenarios with a landslide

susceptibility map. Finally, our third objective was to

analyze the effect of implementing a landslide risk reduc-

tion strategy for forest management. This was done, by

excluding areas of high risk and evaluating the changes this

had on the simulation outcomes.

Study Area

The study area (Fig. 1) lies in South East Romania in Buzau

County (centroid 45�270300N, 26�3002300E). It covers

2421 km2 of the Subcarpathian hills between the higher

Carpathian mountains and the Buzau plain. The Sub-

carpathians rise up to 1370 m, with the mean elevation of the

area being 429 m. Geologically, the area consists mainly of

Neogene molasse deposits. The geology of the area together

with the mean slope of 11.5� is a significant predisposing

factor for landslide occurrence (Micu and Bălteanu 2013).

The yearly precipitation in the area is between 630–700 mm,

with heavy spring and summer rainfall. In some parts of the

Subcarpathians, landslides (Fig. 1a) cover more than two-

thirds of the total area (Muică and Turnock 2008). Forests

dominate the landscape (Fig. 1b) covering 40.5 % of the

area (981 km2), followed by grasslands (27.4 %).

With a 40 % share of the regional economy, agriculture

is significant; however, it is declining (MADR 2012).

Forest harvesting is a major economic activity, with wood

mostly being exported (INSSE 2013). The area’s popula-

tion is around 160,000. Since the economic and political

change of 1989, the area witnessed a striking economic

decrease, high depopulation rates (11 % since 1990), and

agricultural abandonment (INSSE 2013). Nevertheless, like

in similar areas in the Romanian Carpathians, forest dis-

turbances increased (Fig. 1c). This could be attributed to a

number of reasons: (1) poor socio-economic conditions in

the area following 1989; (2) Romanian land ownership

reforms, where government owned land was allocated to

private owners; and (3) difficulties in implementing forest

policy (Malek et al. 2014). Before 1989, nearly 100 % of

the forests were government property, whereas in 2010,

34.7 % of the forests were privately owned (INSSE 2013).

Besides the increase in the number of owners, the owner-

ship spatial pattern is characterized by numerous smaller

plots, which increases the difficulty of forest management

(Bălteanu and Popovici 2010). Increasing the amount of
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forest harvesting in the area could be a significant part of

regional economic growth. It is, however, important to

analyze the consequences of these activities in the area, as

the increase in forest exploitation could result in a higher

demand for new road and landslide risk mitigation infras-

tructure, as well as reforestation measures.

Materials and Methods

Preparation of Spatial Factors of Forest Cover

Change

Forest cover maps for the years 1989, 2000, and 2010 were

obtained through hybrid classification of LANDSAT

images previously presented by Malek et al. (2014). The

forest cover maps consisted of following classes, describ-

ing the changes to the forest cover between 1989 and 2010

(Fig. 2): persistent forest (stable forest), forest expansion

(new forest), and deforestation (forest cover removed). The

overall accuracies for the 1989, 2000, and 2010 forest

cover maps are 85.7, 87.3, and 89.2 %, respectively. The

post-classification accuracy assessment of the 1989–2010

forest cover change map (Table 1) revealed the accuracy of

the change detection and estimated its uncertainty descri-

bed as a 95 % confidence interval (Olofsson et al. 2013;

Malek et al. 2014).

We prepared the following spatial factors of forest cover

change: slope and elevation derived from a 25 m resolution

digital elevation model for Buzau County from IGAR

Fig. 1 Location of study area.

Typical examples of a landslide

activity, b forest-dominated

landscape, and c deforestation
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(2012), distance to settlements generated from the land-

cover map, and distance to roads generated from the road

network map. We also defined exclusion areas, where

forest harvesting is legally forbidden: Natura 2000 pro-

tected areas, protected forests (ecologically significant

forests), and all slopes above 25� (FAO 1997). We pro-

cessed all spatial factors with the obtained data on forest

associations (districts) in a GIS and resampled them to the

30 m resolution of the land-cover maps (Quantum GIS

Development Team 2013).

Spatial Allocation Model

We developed a spatially explicit forest cover change

model in Dinamica EGO. The software is suitable for

raster-based simulation of numerous land-cover changes on

a high spatial resolution (Soares-Filho et al. 2002). It has

already been applied to urban modeling, agricultural

expansion, and forest dynamics (de Almeida et al. 2003;

Maeda et al. 2011; Kamusoko et al. 2013). Two different

techniques were combined to spatially allocate forest cover

changes: weights of evidence (WoE) and cellular automata

(CA). While we applied the WoE method to generate a

forest cover change transition probability map, we used the

CA model to spatially allocate the changes to the forest

cover on a 30 m resolution.

WoE is a Bayesian probability method, where individual

influences of the spatial factors affecting a transition from

one land cover to another are calculated from the historic

frequency of that transition (Bonham-Carter 1994). We

applied WoE as it is robust in handling missing data, and

minimizing bias and subjectivity when evaluating different

criteria (Hosseinali and Alesheikh 2008; Thapa et al.

2013). WoE values present the probability that a land-cover

transition will occur for a particular spatial factor of

change. In this case, the WoE values describe the rela-

tionship between a specific spatial factor and a forest cover

change process. High values promote a particular

Fig. 2 Forest cover map and

with observed changes between

1989 and 2010

Table 1 Accuracy of

1989–2010 forest cover changes

and the uncertainty defined as a

95 % confidence interval (CI)

range

Forest cover class User’s accuracy (%) Producer’s accuracy (%) 95 % CI (%)

Persistent forest 96.0 92.3 4.3

Forest expansion 84.0 85.7 31.8

Deforestation 86.0 93.5 37.0
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transition, whereas lower values discourage them. Dinam-

ica EGO enables the generation of a spatially explicit

probability map, where each cell is described by the tran-

sition probability, based on WoE values. We calculated the

probability map using the changes to the forest cover

between 1989 and 2010 (Fig. 2) for both deforestation and

forest expansion.

CA allocation models are effective at simulating spatial

patterns of land change and are very adaptable; thus, they

are able to simulate a wide variety of dynamic spatial

processes (Wijesekara et al. 2014). CA models are bottom-

up models, where the landscape is defined as a grid of cells

associated with a state, in this case land-cover types (En-

gelen et al. 1995). The cells change their states with each

time step, according to the neighborhood defined by adja-

cent cells influencing the central cell, and transition rates

that are the same for the whole landscape (Mitsova et al.

2011). The CA allocation model in Dinamica EGO consists

of two stochastic allocation algorithms, the expander and

the patcher. Both algorithms sort out the cells with highest

transition probability in the initial land-cover map and then

randomly select the calculated amount of cells using an

internal stochastic selection procedure (Soares-Filho et al.

2002). The expander algorithm models the expansion of

existing patches of a particular land cover (e.g., forest

expansion on the account of adjacent abandoned grass-

lands). The patcher algorithm, on the other hand, generates

new patches within a patch defined by a different land

cover. This way, forest dynamics were modeled more

realistically. Observed clear-cutting in the study area did

not occur in the form of clearing the forest edge, but mostly

as new non-forest patches within a larger patch of forest

(Fig. 2). The expander function was attributed to forest

expansion, whereas deforestation was assigned mostly

(95 % of the transition) to the patcher function.

By analyzing landscape metrics of changes between

1989 and 2010, we obtained the parameters of the spatial

pattern of forest cover change: mean patch size and patch

size variance (Gustafson 1998). We used them together

with isometry to generate a more plausible pattern of

spatial allocation of forest cover change (Table 2). The

mean patch size and the variance define the size and its

diversity of the new patches, and isometry describes how

equal in shape and compact the new patches are. Isometry

lower than 1 results in less equal and between 1 and 2 in

more equal patches (Soares-Filho et al. 2002).

We used the 2010 map as the initial time step when

allocating future scenarios. The model performed the

allocation individually in each forest district, dividing

forest harvesting among forest associations. Each forestry

association manages forest harvesting in their own district,

meaning that the estimated deforestation is distributed

among districts and not only throughout the whole region.

Model Validation

We validated both the WoE transition potential and the CA

allocation model. We applied the receiver operating char-

acteristic (ROC) analysis to validate the WoE transition

potential model. The ROC analysis is widely applied to

assess the performance of raster-based spatial models

generating a probability map (Pontius and Schneider 2001;

Mas et al. 2013). ROC is a quantitative method to compare

a reference binary variable with an index map, usually a

continuous probability or suitability map (Mas et al. 2013;

Pontius and Parmentier 2014). The binary variables in our

example are the presence versus absence forest expansion

and deforestation maps for the period 1989–2010. The

index maps are the WoE transition potential maps for forest

expansion and deforestation based on observations from

the same time period. The resulting ROC curve indicates

the rates of false and true positive, and its area under curve

(AUC) summarizes the predictive power of the map com-

pared to a random map (Mas et al. 2013). To ensure the

independence of the selected spatial factors, we calculated

the Cramer’s Coefficient.

To validate the spatial allocation CA model, we calcu-

lated kappa simulation (Ksimulation), components of agree-

ment and disagreement, and figure of merit. Similar to the

Kappa statistic, Ksimulation is a coefficient of agreement

between the simulated and observed land-cover changes. It,

however, accounts for land-cover persistence and expresses

only the agreement in the simulated and observed changes,

instead of the comparison of the complete simulated and

reference land-cover map (van Vliet et al. 2011). It indi-

cates the agreement on the scale between -1 and 1, where 1

means perfect agreement, 0 the level of agreement expected

by chance, and -1 no agreement (van Vliet et al. 2011).

Together with Ksimulation, two other statistics are calculated:

Ktransition (agreement in quantity of land-cover changes) and

Ktransloc (agreement in the allocation of land-cover chan-

ges). We performed the Ksimulation calculation comparing

the observed and simulated 1989–2010 forest cover change

map with the Map Comparison Kit (Visser and de Nijs

2006). Furthermore, we calculated the components of

agreement and disagreement by performing a three map

comparison (Pontius et al. 2011). The two components of

agreement are persistent and changed areas that are

simulated correctly. The components of disagreements are

changes simulated as persistence, persistence simulated

as changes and changes that were simulated wrong

(different land-cover change simulated than observed).

Finally, we calculated the figure of merit, a statistic

indicating model accuracy in percent. It describes the

ratio between the overlap of observed and simulated change

and the union of the observed and simulated change

(Pontius et al. 2007a, b).
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Scenario Development

We conducted 13 semi-structured interviews and group

meetings with forestry, environmental, and risk experts on

the local level (forest association), as well as on the

regional level (county) in July and September 2012.

Interviews contained questions on observed and expected

future forest cover changes, their consequences and

importance; influence of socio-economic development; the

role of different levels of decision-making (local, regional,

national); and also possible effects of external driving

forces, such as political changes. We adopted the Drivers–

Pressures–State–Impact–Response (DPSIR) framework

(EEA 1999) to translate the expert knowledge to a con-

ceptual deforestation model (Fig. 3). Together with the

experts, we identified each part of the DPSIR, simulating

the cause-response framework of planning and manage-

ment of forest harvesting in the region. This enabled us to

structure the relationship between the driving forces of

deforestation with their consequences. We later used the

DPSIR model to develop forest cover change scenarios and

the allocation model. Together with the experts, we defined

the drivers, pressures, and response parameters of the

conceptual model (Fig. 3) in advance (Table 2). The state

and impact parts were a result of subsequent modeling and

presented the resulting deforestation and the potential

landslide risk.

Based on the conceptual deforestation model (Fig. 3),

we developed two forest cover change scenarios: Business

as Usual (BAU) and Alternative scenario (ALT). In both

scenarios, we modeled two processes of forest cover

change: deforestation and forest expansion. Deforestation

was defined as a land-cover transition from forest to non-

forest, as a result of clear-cutting. In the study area, clear-

cutting is characterized as the removal of all trees in a pre-

defined and limited area, usually smaller than 3 ha.

Although it is not a prevailing forest management practice

in Romania, it is the main focus of the developed scenarios.

Deforestation can increase the occurrence of landslides,

acknowledged both by the involved experts and literature

Table 2 Scenario characteristics

Alternative BAU

Drivers

Forest policy Immediate changes to the forest policy, oriented

toward desires of the wood processing industry

The current forest policy, complete

implementation after 2020

Wood processing industry Increase of the allowed harvested forests, 66 %

increase of clear-cutting, increase of size of

areas that can be subject to clear-cutting

Increase of the allowed harvested forests

Pressures

Amount of deforestation

Net annual increment (NAI) -13.2 % until 2040 -13.2 % until 2040

Forest growing stock ?24.2 % until 2040 ?24.2 % until 2040

Allowed forest harvesting per NAI 42 % (2010) to 85 % (2040) 42 % (2010) to 85 % (2040)

Spatial pattern of forest cover change

Mean patch size (MPS) Deforestation: 2.5

Forest expansion: 2.0

Deforestation: 2.5, 2.0 after 2020

Forest expansion: 2.0

MPS variance Deforestation: 5.5

Forest expansion: 4.0

Deforestation: 5.5, 5 after 2020

Forest expansion: 4.0

Isometry Deforestation: 0.9

Forest expansion: 0.8

Deforestation: 0.9

Forest expansion: 0.8

Transition rate Deforestation: estimated annual deforestation,

5 % clear felling potential

Forest expansion: 0.32 % annual transition rate

(1989–2010 observation)

Deforestation: Estimated annual deforestation,

3 % clear felling potential

Forest expansion: 0.32 % annual transition rate

(1989–2010 observation)

Response

Current exclusion zones Deforestation: slopes[25�, protected areas, and

forests

Forest expansion: grasslands in protected areas

Deforestation: slopes[25�, protected areas, and

forests

Forest expansion: grasslands in protected areas

Landslide risk reduction scenarios:

high-risk exclusion zones

Areas with[50 % landslide susceptibility in the

90 m distance from roads and settlements

Areas with[50 % landslide susceptibility in the

90-m distance from roads and settlements
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(Schmidt et al. 2001; Glade 2003). Following expert

interviews, we developed a simplified model that calculates

scenario-based deforestation transition rates, resulting in

the demand for forest areas in spatial terms. We used a

simplified annual deforestation estimation model:

dt ¼
ft � nt � at � ct

gt
;

where for the year t, dt is the estimated annual deforestation

in ha, ft the allowed forest harvesting defined as percentage

of the net annual increment, nt the net annual increment in

m3/ha, at forest areas in ha, ct the clear-cutting potential in

% of total forest harvesting, gt the forest growing stock in

m3/ha.

In our conceptual model, the forest policy and wood

processing industry influence the allowed forest harvesting

(Fig. 3; Table 2). They are based on the proposed outlook

for the development of Romanian forest resources (Schel-

haas et al. 2006). The allowed forest harvesting Pressure

has the same biophysical assumptions in both scenarios: an

increase of the growing stock (total standing tree volume)

and the decrease of the net annual increment (average

annual volume increase) per hectare (Table 2). Forest data

for Buzau County for the year 2010 served as a starting

point: the mean growing stock was 217 m3 per hectare, and

the mean net annual increment was 6 m3 per hectare. The

maximum annual clear-cutting potential was estimated to

be 3 % of the total amount of allowed forest harvesting

(Bohateret 2012), even though the potential can vary

among different forest types. This potential defines the

limit of allowed forest harvesting through clear-cutting and

is set as a threshold for protection and sustainable man-

agement of Romanian forests (Giurgiu 2004). Differences

in growing stock, net annual increment, and clear-cutting

potential across the landscape were not taken into account,

as the data on spatial variation of forest types, quality, and

age were not available. Therefore, we used mean values for

the whole Buzau Subcarpathians. The two scenarios differ

in the amount and spatial pattern of clear-cutting. The BAU

scenario follows existing policy, thus, maintaining the

potential of clear-cutting at 3 % of the total forest har-

vesting. The involved experts identified the existing policy

as sustainable. Its problems are related to its implementa-

tion: field control of allowed clear-cuts is currently difficult

due to lack of personnel, funds, and institutional issues,

resulting in excessive clear-cutting in sizes above the legal

3 ha. Therefore, we applied a time lag of 10 years in this

scenario, where the values for the size of clear-cuts remain

the same until 2020. This way we simulated the successful

implementation of the current policy after 10 years from

2010 on one side, and compensation in form of smaller

clear-cut areas due to excessive clear-cuts until 2020. Thus,

the mean size of clear-cut patches after 2020 was 2 ha,

instead of 2.5 ha as observed between 1989 and 2010

(Table 2). The ALT was oriented toward the desired goals

of investors in the wood harvesting and processing indus-

try. Involved experts revealed that investors in the forestry

sector support the increase of the allowed clear-cutting.

This would enable easier, faster, and less costly exploita-

tion of forest resources, especially with the existent forest

Fig. 3 Drivers–pressures–

state–impact–response

conceptual deforestation model
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road network. Thus, in the ALT, the percentage of clear-

cutting in the total forest harvesting rose up to 5 %, with

the remaining larger mean size of clear-cut patches

(2.5 ha). Finally, we modeled two additional scenarios: an

implemented simplified risk policy for the BAU and ALT

scenario. Here, we excluded all areas highly susceptible to

landslides in the 90 m vicinity of roads and settlements as

explained later in the Landslide risk section.

Additionally, we modeled future forest expansion. We

defined it as a change from non-forest to forest from

grasslands or other vegetation to forest. This process was

taken into account in both scenarios, as we wanted to study

the potential positive impact of forest expansion on land-

slide risk and compare it to the impact of deforestation. The

transition rate for forest expansion was the same for both

scenarios. It followed the observed trends between 1989

and 2010, simulating more long-term forest expansion

trends instead of the more recent ones. We modeled forest

expansion only on the basis of past remote-sensing obser-

vations and the influence of the spatial factors of forest

expansion as described later. Therefore, forest expansion

was not subject to any forest harvesting scenarios. Non-

forest areas that were transformed into forest areas during

the run of the model were not considered for deforestation.

According to Romanian legislation, these areas will not

have reached the appropriate age for exploitation in the

modeled time span (Parlamentul României 1996). They can

be considered in calculating the allowed forest harvesting

after 10 years (FAO 1997).

Landslide Risk

We overlaid the model outputs with a landslide suscepti-

bility map for Buzau County (Hussin et al. 2013; Zumpano

et al. 2014) in a GIS (Fig. 4a). Landslide susceptibility is

the probability of spatial occurrence of known landslides

under a set of environmental characteristics (Glade and

Crozier 2005; Guzzetti et al. 2006). Susceptibility maps

can therefore be used to predict the locations of future

landslides; based on an assumption, they will occur on the

same conditions as they did in the past (Guzzetti et al.

2005; Petschko et al. 2014). This way, they are useful when

a landslide hazard map is either missing or incomplete, as

is in this case. Therefore, we used these data as a proxy for

landslide risk. The used landslide susceptibility map had

been generated using 8 variables: altitude, aspect, planar

curvature, profile curvature, slope, internal relief, soil, and

land cover (Hussin et al. 2013; Zumpano et al. 2014). We

assessed each scenario in terms of occurrence of defor-

estation in landslide susceptibility classes. Finally, we

modeled two additional scenarios where we simulated both

scenarios again with high-landslide risk areas excluded. As

a proxy for high-landslide risk in this data-poor area, we

defined areas with above 50 % landslide susceptibility in

the distance of 90 m of significant elements at risk (set-

tlements, roads, Fig. 4b). We compared the results with the

two scenarios without landslide information, to identify the

possible costs of this simplified risk policy. We achieved

this by observing the occurrence of deforestation for both

scenarios in slope classes and distance to roads, as proxies

for accessibility.

Results

Weight of Evidence and Forest Cover Change

Probability

The WoE varied substantially between deforestation and

forest expansion (Fig. 5). The probability for deforestation

decreased with the distance from roads, whereas it slightly

increased for forest expansion (Fig. 5a). The probability for

deforestation decreased with increasing slopes and sub-

stantially increased for forest expansion (Fig. 5b). The

probability map for forest expansion showed that remote

areas on higher altitudes and steeper slopes had a higher

probability for forest expansion (Fig. 6a). More accessible

grasslands and pastures on gradual slopes and lower alti-

tude were therefore less susceptible to abandonment and

forest expansion. The probability map for deforestation

showed that the role of altitude is less significant, and

factors like distance to roads and slopes are more important

(Fig. 6b).

Simulated Scenarios

The 2040 scenarios show all locations where deforestation

was projected to occur during the 30-year model run. For

example, if an area had experienced deforestation in the

earlier years of the run, this area was still portrayed as

deforested in 2040. This way, we demonstrated the full

spatial distribution of the landscape affected by deforesta-

tion. There were no considerable differences in the spatial

distribution of forest cover changes between the two sce-

narios (Fig. 7). This is because they were both based on

identical spatial factors and transition probability maps

(Fig. 6). The two scenarios did, however, differ in the total

2010 forest areas subject to deforestation until 2040: 2.2 %

in the Alternative and 1.3 % in the BAU scenario

(Table 3). The amount of forest expansion was 99.93 km2,

resulting in an 8 % increase of forest cover in the Alter-

native, and an 8.8 % increase in the BAU scenario. For

both scenarios, this meant a 14.3 % decrease in grasslands.
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Model Performance

The ROC curve and AUC indicate the projection accuracy

of the forest cover transition probability maps for both

simulated transitions and are presented in Fig. 8. The

projection accuracy was higher for the forest expansion

probability map compared to the deforestation probability

map. Both transition probability maps exhibited a signifi-

cantly different predictive power compared to a random

map. Moreover, all spatial factors had a Cramer coefficient

below 0.25, with 0.5 being a threshold under which the

spatial factors are independent (de Almeida et al. 2003).

The performance of the spatial allocation model was

assessed both in terms of agreement in quantity and

Fig. 4 a Landslide

susceptibility map (modified

from Hussin et al. 2013 and

Zumpano et al. 2014) and

b areas excluded for the

additional model run: areas over

50 % susceptibility within a

90-m distance from settlements

and roads
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location and is summarized in Table 4. The Ksimulation,

KTransition, and KTransloc of the spatial allocation model were

all well above 0. The model so performs better as expected

by chance, however, still demonstrates a level of uncer-

tainty described by the character of these agreement met-

rics (van Vliet et al. 2011). The components of agreement

together with the figure of merit indicate a lower predictive

power of the model in terms of exact pixel locations.

Moreover, the simulated changes (correct and errors) are

minor compared to the correctly simulated persistence.

Landslide Risk

The vast majority of deforestation was modeled in areas

with low landslide susceptibility, as opposed to forest

expansion (Table 3). In total, 483 ha in the Alternative run

Fig. 7 2040 forest cover

scenarios: a Alternative,

b BAU; scenarios considering

landslide risk: c Alternative,

d BAU

Table 3 Distribution of forest cover change scenarios and baseline among landslide susceptibility classes

Susceptibility (%) Scenarios (ha) (%) Baseline 2010 (km2) (%)

Deforestation alternative Deforestation BAU Forest expansion Total area Forest Non-forest areas

0–20 980.7 (45.9) 607.7 (47.4) 1844.7 (18.5) 1172.7 (48.4) 364.3 (37.1) 808.2 (56.2)

20–40 673.8 (31.5) 399.5 (31.1) 1407.0 (14.1) 534.2 (22.1) 350.6 (35.7) 183.1 (12.7)

40–60 374.7 (17.5) 219.8 (17.1) 1839.7 (18.4) 328.7 (13.6) 203.4 (20.7) 125.3 (8.7)

60–80 105.7 (4.9) 53.8 (4.2) 2344.4 (23.4) 216.9 (9.0) 59.5 (6.1) 158.0 (10.9)

80–100 2.9 (0.1) 1.9 (0.1) 2558.2 (25.6) 168.5 (7.0) 3.2 (0.3) 165.3 (11.5)

Total 2138 1283 9993 2421 981 1440

The values for the scenarios are in ha and % of the total forest cover change process, the values for the baseline are in km2 and %
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and 276 ha in the BAU scenario were projected to occur in

areas with a landslide susceptibility over 40 %. The

amount of deforestation remained the same in model runs

with excluded highly susceptible areas, with a slightly

different spatial distribution (Fig. 7c and d). There are two

main reasons behind the majority of deforestation being

projected in areas with low susceptibility. First, the WoE

and consequent deforestation probability maps promoted

deforestation on areas with lower slopes (Figs. 5b and 6).

Secondly, non-forest areas had a higher likelihood of being

characterized with higher landslide susceptibility than

forest areas. In our example, more than 80 % of forests

were defined with a susceptibility value below 50 %

(Table 3). This means that a landslide would be less likely

to occur on a forested area, as opposed to a non-forested

area with similar environmental characteristics (slope,

lithology). This is not surprising, as evidence shows the

positive influence of roots mechanically reinforcing soils in

forested landscapes (Schmidt et al. 2001).

We demonstrated the impact of implementing a risk

policy by observing the changes in the distribution in dis-

tance and slope classes in the two additional scenarios

(Fig. 9). We did not observe any evidence on increasing

the distance of clear-cuts from roads. There were gains and

losses in both the near and more distant 10-quantile classes

(Fig. 9a). The impact of the risk policy is more significant

when looking at differences to distribution in slope classes.

In the ALT, more deforestation was projected on steeper

areas (above 15�), whereas in the BAU scenario, substan-

tially more changes occurred in the slope class between 5

and 10 degrees (Fig. 9b). Considering both distribution

differences, the accessibility of clear-cuts decreased in the

Alternative and did not change in the BAU scenario. Thus,

the implemented risk policy could result in additional costs

to forest exploitation when raising the clear-cut limit (Al-

ternative) and no costs in the BAU clear-cut quantities.

Discussion and Conclusion

Current and past forest changes in the Carpathian region

are well understood. The complex causes of forest cover

changes are well studied and focus among others on

changes to the ownership, forest policy, and emergence of

private forestry and wood processing industry (Ioras and

Abrudan 2006; Griffiths et al. 2012; Munteanu et al. 2014;

Griffiths et al. 2014). Nevertheless, there is a lack of future

projections on how continuing socio-economic and policy

changes can affect the forest cover in a region in socio-

economic transition, such as the Carpathians. In this study,

we generated future forest cover scenarios in a region in the

Romanian Carpathians. These scenarios were based on

identified possible changes to current forest policy. We

then assessed potential future changes to landslide risk and

the effect of a risk mitigation policy.

The deforestation estimation part of the model differs

substantially from other similar scale forest cover change

studies. It is based on the identified changes in regards to

the allowed forest harvesting and clear-cutting. This is not

the case in several other studies, where estimates are based

on observed historic forest cover transition rates: examples

range among others from Brazil (Yanai et al. 2012),

Indonesia (Fuller et al. 2011), to Laos (Kamusoko et al.

2013). These examples, however, offer insight into the
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for forest expansion and deforestation

Table 4 Model performance described by the metrics of Kappa

simulation, components of agreement and disagreement, and figure of

merit

Kappa simulation Agreement

Ksimulation 0.23

Ktransition 0.95

Ktransloc 0.24

Components of agreement and

disagreement

% of the whole

land-cover map

Agreement

Persistence simulated correctly 91.4

Change simulated correctly 1.2

Disagreement

Change simulated as persistence 3.8

Persistence simulated as change 3.6

Change simulated as wrong change 0.0

Figure of merit 14.2
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spatial allocation procedure and the identification of spatial

factors (elevation, slope, distance to settlements, roads).

The process of forest expansion was based on remote-

sensing observations between 1989 and 2010. Forest

expansion in the Carpathians is a long-term process similar

to other European mountain areas (Mather 2001; Kozak

et al. 2007a; Munteanu et al. 2014). Therefore, we chose a

longer period to simulate a long-term forest expansion

trend. The possible different rates of past forest expansion

were thus not considered in the scenarios. Some parts of the

Romanian Carpathians did, however, experience different

rates of forest expansion due to different land abandonment

rates in the past decades (Griffiths et al. 2013).

It remains difficult to assess the performance of land-

cover change models, as they are calibrated with past

observations, particularly when dealing with the location of

changes and not just their quantity (Veldkamp and Lambin

2001). Nevertheless, we consider the performance of the

modeling framework as acceptable due to several reasons.

The WoE model for both transitions exhibits a satisfactory

performance as indicated by the ROC curve and AUC

value. The spatial allocation model is also performing

significantly better compared to a random map and is

comparable with similar land change models developed in

Dinamica EGO (Soares-Filho et al. 2002; Maeda et al.

2011; Kamusoko et al. 2013; Thapa et al. 2013). When

looking at the Kappa simulation statistics, the model per-

forms significantly different when compared to a random

map (van Vliet et al. 2011). Nevertheless, the model

exhibits a wide range of uncertainty when simulating the

location of future changes, as described by the figure of

merit metric. It has, however, been shown that applications

in study areas where the observed net changes are minor,

tend to have a lower figure of merit (Pontius et al. 2007a).

In this example, the majority of the study area is indeed

expected not to change. The calculated scenario amounts

can be considered relatively insignificant when compared

to the whole study area. Furthermore, previous applications

of the CA allocation in Dinamica EGO have shown, that

the model performs very well when simulating the spatial

pattern of land-cover changes. This is characterized by

relatively high success rates of simulated land-cover

changes in the multi-pixel neighborhood of the observed

reference pixel, compared to the success rate of simulating

exact locations (Hagen 2003; Maeda et al. 2010). Never-

theless, looking at the exact locations of simulated change

should be done with care, as the uncertainty of the spatial

allocation model is aggregated with the uncertainties in the

input land-cover and susceptibility maps.

Several studies have addressed the influence of future

land-cover changes on risk, either through identifying risk

hotspots (Promper et al. 2014) or overlaying the scenarios

with a hazard map (Barredo and Engelen 2010). Due to

lack of data on landslide hazard or risk, we used a landslide

susceptibility map. Landslide susceptibility analysis has

already been used to study the influence of past and current

land cover (Chitu et al. 2015; Reichenbach et al. 2015).

Still, landslide data used for generating the susceptibility

map could ignore landslides occurring in forests. This

could result in underestimation of susceptibility values in

forests and overestimation of susceptibility values on non-

forest areas. The projected amount of deforestation in areas

with higher landslide susceptibility cannot be considered

insignificant, as the Subcarpathians are a relatively densely

populated area. However, as most of the forest expansion

was projected on areas with higher landslide susceptibility,

we expect an overall regional decrease in landslide sus-

ceptibility. These results are not surprising, as reforestation

has already been acknowledged to improve slope stability

and could be considered as a risk reduction measurement

(Phillips and Marden 2005). Our study did not only confirm

that it also quantified these positive effects of forest

expansion in terms of areas subject to a decrease in land-

slide susceptibility. This way, the results can be used for

evaluating the impact of forest management on landslide

risk. Different landslide risk reduction measures can be
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prioritized using the results: areas with prioritized defor-

estation regulation or planned reforestation. Moreover, the

methodology itself could be further elaborated in the future

by introducing additional extreme scenarios such as large-

scale forest fires (Reichenbach et al. 2014).

The CA allocation algorithm simulates the choice of

plots (cells) subject to deforestation and can explain the

influence of the implemented risk policy. In the case of an

excluded area (due to high susceptibility), the changes

occurred in the nearest cells with a similar deforestation

probability. This did not result in evident changes to the

distance of deforestation from roads, however, could still

result in deforestation on steeper slopes. Therefore, the

evidence on higher costs related to the accessibility of the

clear-cuts is stronger in the case of slopes and less evident

in the case of the distance.

Deforestation could also lead to other consequences

besides the potential changes to landslide risk. Among

others, it might affect habitat fragmentation and changes to

landscape connectivity (Körner et al. 2005; Millenium

Ecosystem Assessment 2005). This is important, as the

Buzau Subcarpathians are characterized by a high fre-

quency of European large carnivores such as the brown

bear (Ursus arctos) and the wolf (Canis lupus) (van Maa-

nen et al. 2006). Thus, we suggest additional research on

analyzing the impact of deforestation on biodiversity.

Forest expansion can also have a wide variety of other

consequences, e.g., it can be beneficial for bird and large

mammal habitats (Baur et al. 2006; Bowen et al. 2007;

Navarro and Pereira 2012). Forest expansion can also have

detrimental effects. Several studies have emphasized the

influence of forest expansion and loss of grasslands on

ecosystem services provisioning: loss of high-value nature

grasslands, landscape diversity, and potential loss of

important habitats (MacDonald et al. 2000; Fischer et al.

2008; Zimmermann et al. 2010).

In this study, we focused on plausible scenarios; how-

ever, we could also study less likely, extreme scenarios.

First example is scenarios where forest management is

following only market demands, thus promoting less costly

large-scale clear-cutting (Thapa et al. 2013). Secondly,

possible influence of new road infrastructure could be

studied (Maeda et al. 2011; Kamusoko et al. 2013). Fur-

thermore, our scenarios did not take into account illegal

logging, a significant issue in the Carpathian region

(Griffiths et al. 2012; 2014). Due to lack of data and the

randomness of the phenomena, we believe other approa-

ches such as agent-based modeling should address this

issue. Finally, we could investigate radical political chan-

ges, similar to the events after 1989 (ownership reforms,

introduction of a market economy), or possible shocks as a

dramatic wood demand due to bioenergy policy changes.

The level of plausibility of both developed scenarios (both

are likely to happen) also leads to seemingly small differ-

ences between the two scenarios. Our results, however,

showed that already allowing an increase in amount and

size of clear-cutting could lead to significant changes to

landslide risk. Moreover, we showed that avoiding this risk

could lead to higher costs to forest harvesting in case of the

increase in clear-cutting. Therefore, we believe that our

approach is especially significant in providing information

on possible changes to landslide risk and the effect of risk

related policies.

Scenarios are not exact projections of future states of the

environment (Abildtrup et al. 2006). Nevertheless, they can

serve as a valuable tool to study policy decisions, leading

to improved knowledge on forest exploitation and protec-

tion. Even though the uncertainties of data and the model

have to be taken into account, the results suggest most

likely areas where deforestation might occur in the future.

Therefore, they could be prioritized as locations, where risk

reduction measures need to be considered (reforestation,

technical works). Moreover, improving the model with

better data—especially in terms of landslide risk—could

lead to more precise results, enabling the support and

improvement of decision-making in forest management.

The use of scenarios as a methodology for studying

land-cover changes has been studied thoroughly on dif-

ferent scales and in different areas. This study, however,

presents a new approach integrating qualitative methods

such as interviews, with geospatial technologies such as

GIS and spatial simulation. The developed scenarios were

based on the understanding of the system of forest man-

agement and were not based solely on extrapolating past

trends. Moreover, the scenarios are spatially explicit,

enabling the identification of the spatial pattern of change

and possible critical areas of forest cover change. Another

innovative aspect of the study is that it analyzes possible

changes to landslide risk, as a consequence of future forest

cover change. Finally, this study contributes to the under-

standing of future environmental consequences of today’s

decisions in the field of forest and land-use management in

the Carpathian region.
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Papathoma-Köhle M, Glade T (2013) The role of vegetation cover

change for landslide hazard and risk. In: Renaud FG, Sudmeier-

Rieux K, Estrella M (eds) The role of ecosystems in disaster risk

reduction. UNU-Press, Tokyo, pp 293–320
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Rounsevell M, Reginster I, Araújo MB et al (2006) A coherent set of

future land use change scenarios for Europe. Agric Ecosyst

Environ 114:57–68. doi:10.1016/j.agee.2005.11.027

Schelhaas MJ, van Brusselen J, Pussinen A, et al. (2006) Outlook for

the Development of European Forest Resources, a study

prepared by the European Forest Sector Outlook Study (EFSOS).

Environmental Management

123

http://dx.doi.org/10.1080/17474230701218244
http://dx.doi.org/10.1007/s10342-006-0160-4
http://dx.doi.org/10.1016/j.gloenvcha.2012.05.005
http://dx.doi.org/10.1016/j.gloenvcha.2012.05.005
http://dx.doi.org/10.1007/s10113-008-0050-z
http://dx.doi.org/10.1006/jema.1999.0335
http://dx.doi.org/10.1016/j.agsy.2010.07.004
http://dx.doi.org/10.1016/j.agsy.2010.07.004
http://dx.doi.org/10.1016/j.jag.2010.09.008
http://dx.doi.org/10.3390/land3010052
http://dx.doi.org/10.3390/ijgi2030869
http://dx.doi.org/10.1086/452384
http://dx.doi.org/10.1086/452384
http://dx.doi.org/10.1007/s10346-013-0382-8
http://dx.doi.org/10.1016/j.landurbplan.2010.10.001
http://dx.doi.org/10.1016/j.landurbplan.2010.10.001
http://dx.doi.org/10.1080/17474230802645881
http://dx.doi.org/10.1080/17474230802645881
http://dx.doi.org/10.1016/j.landusepol.2014.01.012
http://dx.doi.org/10.1007/s10021-012-9558-7
http://dx.doi.org/10.1016/j.rse.2012.10.031
http://dx.doi.org/10.1016/j.rse.2012.10.031
http://dx.doi.org/10.1023/A:1008173628016
http://dx.doi.org/10.1023/A:1008173628016
http://dx.doi.org/10.5194/nhess-14-95-2014
http://dx.doi.org/10.5194/nhess-14-95-2014
http://dx.doi.org/10.1007/s10980-013-9984-8
http://dx.doi.org/10.1016/S0167-8809(01)00187-6
http://dx.doi.org/10.1007/s00168-007-0138-2
http://dx.doi.org/10.1111/j.1467-8306.2007.00577.x
http://dx.doi.org/10.1111/j.1467-8306.2007.00577.x
http://dx.doi.org/10.1080/00045608.2010.517742
http://dx.doi.org/10.1016/j.apgeog.2014.05.020
http://dx.doi.org/10.1016/j.apgeog.2014.05.020
http://dx.doi.org/10.1007/s00267-014-0357-0
http://dx.doi.org/10.1007/s00267-014-0357-0
http://dx.doi.org/10.1016/j.agee.2005.11.027


United Nations Economic Commission for Europe (UNECE),

Geneva

Schmidt KM, Roering JJ, Stock JD et al (2001) The variability of root

cohesion as an influence on shallow landslide susceptibility in

the Oregon Coast Range. Can Geotech J 38:995–1024. doi:10.

1139/t01-031

Shearer AW (2005) Approaching scenario-based studies: three

perceptions about the future and considerations for landscape

planning. Environ Plan B Plan Des 32:67–87. doi:10.1068/b3116

Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) Dinamica—a

stochastic cellular automata model designed to simulate the

landscape dynamics in an Amazonian colonization frontier. Ecol

Model 154:217–235. doi:10.1016/S0304-3800(02)00059-5

Soares-Filho BS, Nepstad DC, Curran LM et al (2006) Modelling

conservation in the Amazon basin. Nature 440:520–523. doi:10.

1038/nature04389

Taff GN, Müller D, Kuemmerle T et al (2009) Reforestation in

Central and Eastern Europe after the breakdown of socialism. In:

Nagendra H, Southworth J (eds) Reforesting landscapes.

Springer, Dordrecht, pp 121–147

Tasser E, Mader M, Tappeiner U (2003) Effects of land use in alpine

grasslands on the probability of landslides. Basic Appl Ecol

4:271–280. doi:10.1078/1439-1791-00153

Thapa RB, Shimada M, Watanabe M et al (2013) The tropical forest

in south east Asia: monitoring and scenario modeling using

synthetic aperture radar data. Appl Geogr 41:168–178. doi:10.

1016/j.apgeog.2013.04.009

Van Maanen E, Predoiu G, Klaver R et al (2006) Safeguarding the

Romanian Carpathian ecological network. A vision for large

carnivores and biodiversity in Eastern Europe. Icas Wildlife

Unit, Brasov

Van Vliet J, Bregt AK, Hagen-Zanker A (2011) Revisiting Kappa to

account for change in the accuracy assessment of land-use

change models. Ecol Model 222:1367–1375. doi:10.1016/j.

ecolmodel.2011.01.017

Veldkamp A, Lambin E (2001) Predicting land-use change. Agric

Ecosyst Environ 85:1–6. doi:10.1016/S0167-8809(01)00199-2

Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use

change modelling: current practice and research priorities.

GeoJournal 61:309–324. doi:10.1007/s10708-004-4946-y

Visser H, de Nijs T (2006) The map comparison kit. Environ Model

Softw 21:346–358. doi:10.1016/j.envsoft.2004.11.013

Wijesekara GN, Farjad B, Gupta A et al (2014) A comprehensive

land-use/hydrological modeling system for scenario simulations

in the Elbow River Watershed, Alberta, Canada. Environ Manag

53:357–381. doi:10.1007/s00267-013-0220-8

Wollenberg E, Edmunds D, Buck L (2000) Using scenarios to make

decisions about the future: anticipatory learning for the adaptive

co-management of community forests. Landsc Urban Plan

47:65–77. doi:10.1016/S0169-2046(99)00071-7

Yanai AM, Fearnside PM, de Graça PMLA, Nogueira EM (2012)

Avoided deforestation in Brazilian Amazonia: simulating the

effect of the Juma Sustainable Development Reserve. For Ecol

Manag 282:78–91. doi:10.1016/j.foreco.2012.06.029

Zimmermann P, Tasser E, Leitinger G, Tappeiner U (2010) Effects of

land-use and land-cover pattern on landscape-scale biodiversity

in the European Alps. Agric Ecosyst Environ 139:13–22. doi:10.

1016/j.agee.2010.06.010

Zumpano V, Hussin HY, Reichenbach P et al (2014) A landslide

susceptibility analysis for Buzau County, Romania. Romanian J

Geogr 58:9–16

Environmental Management

123

http://dx.doi.org/10.1139/t01-031
http://dx.doi.org/10.1139/t01-031
http://dx.doi.org/10.1068/b3116
http://dx.doi.org/10.1016/S0304-3800(02)00059-5
http://dx.doi.org/10.1038/nature04389
http://dx.doi.org/10.1038/nature04389
http://dx.doi.org/10.1078/1439-1791-00153
http://dx.doi.org/10.1016/j.apgeog.2013.04.009
http://dx.doi.org/10.1016/j.apgeog.2013.04.009
http://dx.doi.org/10.1016/j.ecolmodel.2011.01.017
http://dx.doi.org/10.1016/j.ecolmodel.2011.01.017
http://dx.doi.org/10.1016/S0167-8809(01)00199-2
http://dx.doi.org/10.1007/s10708-004-4946-y
http://dx.doi.org/10.1016/j.envsoft.2004.11.013
http://dx.doi.org/10.1007/s00267-013-0220-8
http://dx.doi.org/10.1016/S0169-2046(99)00071-7
http://dx.doi.org/10.1016/j.foreco.2012.06.029
http://dx.doi.org/10.1016/j.agee.2010.06.010
http://dx.doi.org/10.1016/j.agee.2010.06.010

	Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzau Subcarpathians, Romania
	Abstract
	Introduction
	Study Area
	Materials and Methods
	Preparation of Spatial Factors of Forest Cover Change
	Spatial Allocation Model
	Model Validation
	Scenario Development
	Landslide Risk

	Results
	Weight of Evidence and Forest Cover Change Probability
	Simulated Scenarios
	Model Performance
	Landslide Risk

	Discussion and Conclusion
	Acknowledgments
	References




