

Department Molecular Systems Biology

Vlora Mehmeti, Christiana Staudinger and Stefanie Wienkoop Department of Molecular Systems Biology, University of Vienna, Faculty of Life Sciences, Vienna, Austria vlora.mehmeti@univie.ac.at

Background

We will show that depending on nitrogen sources, the response of *Medicago truncatula* to abiotic stresses is resulting in differential metabolic changes. Possible mitigation effects of salt and drought stress due to plants-symbiont interactions were previously reviewed by Dimpka et al. (2009). However, the underlying molecular mechanisms remain to be unraveled. Therefore we used *M. truncatula* growing under two different nitrogen nutritions:

- a) fertilized with 2,5mM ammonium nitrate and
- b) nitrogen fixing plants inoculated with Sinorrizobium meliloti.

Methanol/chloroform/water extracts from shoots and roots were analyzed using triple quadrupole and GC-TOF mass spectrometry.

Results

N-fixing plants show a higher tolerance to DROUGHT than the fertilized plants (le)

While he nitrogen fertilized plants show a higher tolerance to **SALT** (ri)

Metabolite		root			shoot		
fold changes	S ₅₀ io vs Cio	S ₂₀₀ io vs Cio	Dio vs Cio	S ₅₀ io vs Cio	S ₂₀₀ io vs Cio	Dio vs Cio	
gaba	0.5	0.5	2.0	1.2	1.1	0.5	
aspartate	3.3	0.6	2.8	0.6	1.2	0.3	
leucine	ns	1.1	ns	2.2	2.2	2.0	
threonate	2.9	ns	2.8	0.6	0.8	0.7	
glutamate	0.6	0.9	ns	ns	1.1	ns	
proline	ns	1.5	12.1	0.8	0.8	ns	
fumarate	2.3	ns	3.3	1.5	1.7	0.5	Drought (D)
galactonate	2.8	ns	2.0	1.9	0.9	ns	Salt stress (S):
sucrose	4.4	ns	2.1	1.3	1.4	1.0	$S_{50} = 50 \text{mM}$
myo-inositol	0.7	1.6	2.0	24.2	1.2	ns	S ₂₀₀ =200mM
ononitol	ns	ns	2.0	2.0	1.2	ns	io= Inoculated
pinitol	ns	1.2	ns	1.5	1.6	ns	with S.meliloti
Specific significant changes observed on the N-fiving plants:							

Specific significant changes observed on the N-fixing plants:

DROUGHT

Shoots DECREASE of aspartate, malonate, maleate, fumarete, threonate, **Roots**: INCREASE of beta-alanine, ribitol, threonate, malate, ribonate, gluconate, succinate

- SALT

S50-Shoots: DECREASE of glycerate and pyroglutamate and INCREASE of benzoate, ononitol and oxalat **S50-Roots:** DECREASE of fumarate, maleate, glycerate **S200-Shoots:** DECREASE of ketoglutarate, methyl-d-glycoside and succinate and INCREASE of isoleucine, glutamate and maltose **S200-Roots:** DECREASE of benzoate and ethanolamine

Conclusion

- Significant difference between nitrogen metabolism in response to salt and drought stress.
- Type of the N-source seems to have a major impact on the differential regulation to stress

DROUGHT: the roots of the N-fixing show stronger increase of metabolites than N-fertilized plants SALT: the roots of the N-fertilized plants show stronger increase of metabolites than N-fixing plants

References& Acknowledgement

Dimpka, Ch., Weinand, T., & Asch, F. (2009), **Plant–rhizobacteria interactions alleviate abiotic stress**, *Plant, Cell and Environment*, Vol. **32**, pp. 1682–1694.

Mosys Team & FWF for the finnancial support [P23441-B20

