Estimation of Vector Autoregressive Processes Based on Chapter 3 of book by H.Lütkepohl: New Introduction to Multiple Time Series Analysis

> Yordan Mahmudiev Pavol Majher

> > December 13th. 2011

Yordan Mahmudiev, Pavol Majher ()

Estimation of VAR Processes

ELE NOR

Contents

- Introduction
- Multivariate Least Squares Estimation
 - Asymptotic Properties of the LSE
 - Example
 - Small Sample Properties of the LSE
- 3 Least Squares Estimation with Mean-Adjusted Data
 - Estimation when the process mean is known
 - Estimation when the process mean is unknown
 - The Yule-Walker Estimator
 - Maximum Likelihood Estimation
 - The Likelihood Function
 - The ML Estimators
 - Properties of the ML Estimator

ELE NOR

Introduction

Basic Assumptions:

- $y_t = (y_{1t}, \ldots, y_{Kt})' \in \mathbb{R}^K$
- available time series y₁,..., y_T, which is known to be generated by stationary, stable VAR(p) process

$$y_t = \nu + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t$$
 (1)

where

- $u = (\nu_1, \dots, \nu_K)'$ is $K \times 1$ vector of intercept terms
- A_i are $K \times K$ coefficient matrices
- u_t is white noise with nonsingular covariance matrix Σ_u
- moreover p presample values for each variable, y_{-p+1},..., y₀ are assumed to be available

Notation

$$Y := (y_1, ..., y_T)$$

$$B := (\nu, A_1, ..., A_p)$$

$$Z_t := (1, y_t, y_{t-1}, ..., y_{t-p+1})'$$

$$Z := (Z_0, ..., Z_{T-1})$$

$$U := (u_1, ..., u_T)$$

$$y := vec(Y)$$

$$\beta := vec(B)$$

$$\mathbf{b} := vec(B')$$

$$\mathbf{u} := vec(U)$$

$$(K \times T)$$

 $(K \times (Kp + 1))$
 $((Kp + 1) \times 1)$
 $((Kp + 1) \times T)$
 $(K \times T)$
 $(KT \times 1)$
 $((K^2p + K) \times 1)$
 $((K^2p + K) \times 1)$
 $(KT \times 1)$

Estimation (1)

• using this notation, the VAR(p) model (1) can be written as

$$Y=BZ+U,$$

• after application of vec operator and Kronecker product we obtain

$$\mathsf{vec}(Y) = \mathsf{vec}(BZ) + \mathsf{vec}(U) = (Z' \otimes I_K)\mathsf{vec}(B) + \mathsf{vec}(U),$$

which is equivalent to

$$\mathbf{y} = (Z' \otimes I_K)\beta + \mathbf{u}$$

note that covariance matrix of u is

$$\Sigma_{\mathbf{u}} = I_T \otimes \Sigma_u$$

Yordan Mahmudiev, Pavol Majher ()

ELE NOR

ヨトィヨト

Estimation (2)

• multivariate LS estimation (or GLS estimation) of β minimizes

$$S(\beta) = \mathbf{u}'(I_{\mathcal{T}} \otimes \Sigma_u)^{-1}\mathbf{u} =$$

= $[\mathbf{y} - (Z' \otimes I_{\mathcal{K}})\beta]'(I_{\mathcal{T}} \otimes \Sigma_u^{-1})[\mathbf{y} - (Z' \otimes I_{\mathcal{K}})\beta]$

note that

$$S(\beta) = \mathbf{y}'(I_T \otimes \Sigma_u^{-1})\mathbf{y} + \beta'(ZZ' \otimes \Sigma_u^{-1})\beta - 2\beta'(Z \otimes \Sigma_u^{-1})\mathbf{y}$$

• the first order conditions

$$\frac{\partial S(\beta)}{\partial \beta} = 2(ZZ' \otimes \Sigma_u^{-1})\beta - 2(Z \otimes \Sigma_u^{-1})\mathbf{y} = 0$$

after simple algebraic exercise yield the LS estimator

$$\hat{eta} = ((ZZ')^{-1}Z\otimes I_{\mathcal{K}})$$
y

Estimation (3)

• the Hessian of $S(\beta)$

$$\frac{\partial^2 S}{\partial \beta \partial \beta'} = 2(ZZ' \otimes \Sigma_u^{-1})$$

is positive definite $\Rightarrow \hat{\beta}$ is minimizing vector

• the LS estimator can be written in differen ways

$$\hat{\beta} = \beta + ((ZZ')^{-1}Z \otimes I_{\mathcal{K}})\mathbf{u} =$$

= $vec(YZ'(ZZ')^{-1})$

another possible representation is

$$\hat{\mathbf{b}} = (I_K \otimes (ZZ')^{-1}Z) \operatorname{vec}(Y'),$$

where we can see that multivariate LS estimation is equivalent to OLS estimation of each of the K equations of (1)

Asymptotic Properties (1)

Definition

A white noise process $u_t = (u_1t, ..., u_Kt)'$ is called **standard white noise** if the u_t are continuous random vectors satisfying $E(u_t) = 0$, $\Sigma_u = E(u_tu_t)$ is nonsingular, u_t and u_s are independent for $s \neq t$ and

$$E|u_{it} u_{jt} u_{kt} u_{mt}| \leq c$$
 for $i, j, k, m = 1, \dots, K$, and all t

for some finite constant c.

• we need this property as a sufficient condition for the following results:

$$\Gamma := plim \frac{ZZ'}{T} \text{ exists and is nonsingular}$$
$$\frac{1}{\sqrt{T}} \sum_{t=1}^{T} vec(u_t Z'_{t-1}) = \frac{1}{\sqrt{T}} (Z \otimes I_K) \mathbf{u} \xrightarrow{d} \mathcal{N}(0, \Gamma \otimes \Sigma_u)$$

Asymptotic Properties (2)

• the above conditions provide for consistency and asymptotic normality of the LS estimator

Proposition

Asymptotic Properties of the LS Estimator

Let y_t be a stable, K-dimensional VAR(p) process with standard white noise residuals, \hat{B} is the LS estimator of the VAR coefficients B. Then

$$\hat{B} \xrightarrow[T \to \infty]{p} B$$

and

$$\sqrt{T} \left(\hat{\beta} - \beta \right) = \sqrt{T} \operatorname{vec}(\hat{B} - B) \xrightarrow[T \to \infty]{d} \mathcal{N}(0, \Gamma^{-1} \otimes \Sigma_u)$$

Asymptotic Properties (3)

Proposition

Asymptotic Properties of the White Noise Covariance Matrix Estimators

Let y_t be a stable, K-dimensional VAR(p) process with standard white noise residuals and let \overline{B} be an estimator of the VAR coefficients B so that $\sqrt{T} \operatorname{vec}(\overline{B} - B)$ converges in distribution. Furthermore suppose that

$$\bar{\Sigma}_u = \frac{(Y - \bar{B}Z)(Y - \bar{B}Z)'}{T - c},$$

where c is a fixed constant. Then

$$\sqrt{T} \left(\bar{\Sigma}_u - UU'/T \right) \xrightarrow{p}{T \to \infty} 0.$$

Example

Example (1)

- three-dimensional system, data for Western Germany (1960-1978)
 - fixed investment y_1
 - disposable income y_2
 - consumption expenditures y₃

Example (2)

- assumption: data generated by VAR(2) process
- LS estimates are the following

$$\widehat{B} = (\widehat{\nu}, \widehat{A}_1, \widehat{A}_2) = YZ'(ZZ')^{-1}
= \begin{bmatrix} -.017 & -.320 & .146 & .961 & -.161 & .115 & .934 \\ .016 & .044 & -.153 & .289 & .050 & .019 & -.010 \\ .013 & -.002 & .225 & -.264 & .034 & .355 & -.022 \end{bmatrix}$$

• stability of estimated process is satisfied, since all roots of the polynomial det $(I_3 - \hat{A_1}z - \hat{A_2}z^2)$ have modulus greater than 1

Example

Example (3)

• we can calculate the matrix of t-ratios

-0.97	-2.55	0.27	1.45	-1.29	0.21	1.41
3.60	1.38	-1.10	1.71	1.58	0.14	-0.06
3.67	-0.09	2.01	-1.94	1.33	3.24	-0.16

• these quantities can be compared with critical values from a t-distribution

• d.f. = $KT - K^2p - K = 198$ or d.f. = T - Kp - 1 = 66

- for a two-tailed test with significance level 5% we get critical values of approximately ± 2 in both cases
- apparently several coefficients are not significant ⇒ model contains unnecessarily many free parameters

Yordan Mahmudiev, Pavol Majher ()

Small Sample Properties

- difficult do analytically derive small sample properties of LS estimation
- numerical experiments are used, such as Monte Carlo method
- example process

$$y_t = \begin{pmatrix} 0.02\\ 0.03 \end{pmatrix} + \begin{pmatrix} 0.5 & 0.1\\ 0.4 & 0.5 \end{pmatrix} y_{t-1} + \begin{pmatrix} 0 & 0\\ 0.25 & 0 \end{pmatrix} y_{t-2} + u_t$$
$$\Sigma_u = \begin{pmatrix} 9 & 0\\ 0 & 4 \end{pmatrix} \times 10^{-4}$$

1000 time series generated of length T = 30 (plus 2 presample values)
u_t ~ N(0, Σ_u)

Empirical Results

empirical				empirical percentiles of t -ratios						
parameter	mean	variance	MSE	1.	5.	10.	50.	90.	95.	<u>99</u> .
$\nu_1 = .02$.041	.0011	.0015	-1.91	-1.04	-0.64	0.62	1.92	2.29	3.12
$\nu_2 = .03$.038	.0005	.0006	-2.30	-1.40	-1.02	0.25	1.65	2.11	2.83
$\alpha_{11,1} = .5$.41	.041	.049	-2.78	-2.18	-1.74	-0.43	0.92	1.28	2.01
$\alpha_{21,1} = .4$.40	.018	.018	-2.61	-1.74	-1.28	0.04	1.28	1.71	2.65
$\alpha_{12,1} = .1$.10	.078	.078	-2.27	-1.67	-1.35	-0.03	1.29	1.67	2.38
$\alpha_{22,1} = .5$.44	.030	.034	-2.69	-1.97	-1.59	-0.35	0.89	1.30	2.06
$\alpha_{11,2} = 0$	05	.056	.058	-2.75	-1.93	-1.50	-0.24	1.02	1.38	2.09
$\alpha_{21,2} = .25$.29	.023	.024	-1.99	-1.32	-0.99	0.20	1.45	1.81	2.48
$\alpha_{12,2} = 0$	07	.053	.058	-2.48	-1.91	-1.61	-0.28	0.97	1.39	2.03
$\alpha_{22,2} = 0$	01	.023	.024	-2.71	-1.72	-1.36	-0.03	1.18	1.53	2.18
	degrees of			percentiles of t -distributions						
	freedo	m(d.f.)		1.	5.	10.	50.	90.	95.	<u>99</u> .
	T - Kp - 1 = 25			-2.49	-1.71	-1.32	0	1.32	1.71	2.49
	K(T - Kp - 1) = 50			-2.41	-1.68	-1.30	0	1.30	1.68	2.41
	∞			-2.33	-1.65	-1.28	0	1.28	1.65	2.33
	(normal distribution)									

Yordan Mahmudiev, Pavol Majher ()

イロト イヨト イヨト イヨト

三日 のへで

Process with Known Mean (1)

- The process mean μ is known
- The mean-adjusted VAR(p) is given by

$$(y_t - \mu) = A_1 (y_{t-1} - \mu) + \dots + A_p (y_{t-p} - \mu) + u_t$$

• One can use LS estimation by defining:

$$Y^{0} \equiv (y_{t} - \mu, ..., y_{T} - \mu) \qquad A \equiv (A_{1}, ..., A_{p})$$
$$Y^{0}_{t} \equiv \begin{bmatrix} y_{t} - \mu \\ \vdots \\ y_{t-p+1} - \mu \end{bmatrix} \qquad X \equiv \left(Y^{0}_{0}, ..., Y^{0}_{T-1}\right)$$

ELE NOR

イモトイモト

Process with Known Mean (2)

$$\mathbf{y^0} \equiv \operatorname{vec}(Y^0)$$
 $\alpha \equiv \operatorname{vec}(A)$

• Then the mean-adjusted VAR(p) can be rewritten as:

 $Y^0 = AX + U$ or $\mathbf{y}^0 = (X' \otimes I_K) \alpha + \mathbf{u}$ where \mathbf{u} is defined as before.

• The LS estimator is:

$$\hat{lpha} = \left((XX')^{-1} X \otimes I_{\mathcal{K}}
ight) \mathbf{y^0} \quad ext{ or } \quad \hat{A} = Y^0 X' \left(XX'
ight)^{-1}$$

• If y_t is stable and u_t is white noise, it follows that

$$\sqrt{T} \left(\hat{\alpha} - \alpha \right) \stackrel{d}{\to} \mathcal{N} \left(0, \Sigma_{\hat{\alpha}} \right) \text{ where } \hat{\alpha} = \Gamma_{Y} \left(0 \right)^{-1} \otimes \Sigma_{u} \text{ with } \\ \Gamma_{Y} \left(0 \right) \equiv E \left(Y_{t}^{0} \left(Y_{t}^{0} \right)' \right).$$

Process with Unknown Mean (1)

• Usually the process mean is not known and we have to estimated it:

$$ar{y} = rac{1}{T}\sum_{t=1}^T y_t$$

Plugging in for each y_t expressed from
 (y_t - μ) = A₁ (y_{t-1} - μ) + ... + A_p (y_{t-p} - μ) + u_t and rewriting
 gives:

Process with Unknown Mean (2)

$$\bar{y} = \mu + A_1 \left[\bar{y} + \frac{1}{T} \left(y_0 - y_T \right) - \mu \right] + \dots + A_p \left[\bar{y} + \frac{1}{T} \left(y_{-p+1} + \dots + y_0 - y_{T-p+1} - \dots - y_T \right) - \mu \right] + \frac{1}{T} \sum_{t=1}^T u_t$$

- The exact meaning of elements such as y_{-p+1} for p>1 is unclear (presample observations).
- Equivalently:

$$(I_{K} - A_{1} - ... - A_{p})(\bar{y} - \mu) = \frac{1}{T}z_{T} + \frac{1}{T}\sum_{t=1}^{I}u_{t}$$

where $z_{T} = \sum_{i=1}^{p}A_{i}\left[\sum_{j=1}^{i-1}(y_{0-j} - y_{T-j})\right]$

Process with Unknown Mean (3)

• Obviously
$$E\left(z_T/\sqrt{T}\right) = \frac{1}{\sqrt{T}}E\left(z_T\right) = 0$$

• Moreover, as y_t is stable $var\left(z_T/\sqrt{T}\right) = \frac{1}{T} Var\left(z_T\right) \xrightarrow[T \to \infty]{} 0$

z_T/√*T* converges to zero in mean square and (*I_K* - *A*₁ - ... - *A_p*)(*ȳ* - μ) has the same asymptotic distribution as ¹/_{√T} ∑^T_{t=1} *u_t*By the CLT ¹/_{√T} ∑^T_{t=1} *u_t* ^d→ *N*(0, Σ_u)

Process with Unknown Mean (4)

• therefore, if y_t is stable and u_t is white noise:

$$\sqrt{T}\left(\bar{y}-\mu\right)\overset{d}{
ightarrow}\mathcal{N}\left(0,\Sigma_{\bar{y}}
ight)$$

with $\Sigma_{\bar{y}} = (I_{K} - A_{1} - ... - A_{p})^{-1} \Sigma_{u} (I_{K} - A_{1} - ... - A_{p})'^{-1}$

 another way of estimating the mean is obtained from the LS estimator:

$$\hat{\mu} = \left(I_{\mathcal{K}} - \hat{A}_1 - \dots - \hat{A}_{\mathcal{P}}\right)^{-1}\hat{\nu}$$

these two ways are asymptotically equivalent

Process with Unknown Mean (5)

- Replacing μ with \bar{y} in the vectors and matrices from before, e.g. $\hat{Y}^{0} \equiv (y_{t} - \bar{y}, ..., y_{T} - \bar{y})$ gives the corresponding LS estimator: $\hat{\hat{\alpha}} = \left(\left(\hat{X}\hat{X}'\right)^{-1}\hat{X} \otimes I_{K}\right)\hat{\mathbf{y}}^{\mathbf{0}}$
- This estimator is asymptotically equivalent to LS estimator for a process with known mean $\hat{\alpha}$

$$\begin{split} & \sqrt{T} \left(\hat{\hat{\alpha}} - \alpha \right) \stackrel{d}{\to} \mathcal{N} \left(0, \Gamma_{Y} \left(0 \right)^{-1} \otimes \Sigma_{u} \right) \\ \text{with } \Gamma_{Y} \left(0 \right) \equiv E \left(Y_{t}^{0} \left(Y_{t}^{0} \right)' \right) \end{split}$$

The Yule-Walker Estimator (1)

 Recall from the lecture slides that for VAR(1) it holds: $A_1 = \Gamma_v(0)\Gamma_v(1)^{-1}$ and in general $\Gamma_v(h) = A_1\Gamma_v(h-1) = A_1^h\Gamma_v(0)$ • Extending to VAR(p): $\Gamma_y(h) = [A_1, ..., A_p] \begin{vmatrix} \Gamma_y(h-1) \\ \vdots \\ \Gamma_y(h-p) \end{vmatrix}$ or: $[\Gamma_{y}(1),...,\Gamma_{y}(p)] = [A_{1},...,A_{p}] \begin{bmatrix} \Gamma_{y}(0) & \dots & \Gamma_{y}(p-1) \\ \vdots & \ddots & \vdots \\ \Gamma_{y}(-p+1) & \dots & \Gamma_{v}(0) \end{bmatrix}$

The Yule-Walker Estimator (2)

$$\left[\Gamma_{y}(1),...,\Gamma_{y}(p)\right]=A\Gamma_{Y}\left(0\right)$$

- Hence, $A = [\Gamma_y(1), ..., \Gamma_y(p)] \Gamma_Y(0)^{-1}$
- If p presample observations are available, the mean μ can be estimated by:

$$\bar{y}^* = \frac{1}{T+\rho} \sum_{t=-\rho+1}^T y_t$$

• Then
$$\hat{\Gamma}_{y}(h) = rac{1}{T+p-h} \sum_{t=-p+h+1}^{T} (y_t - \bar{y}^*) (y_{t-h} - \bar{y}^*)'$$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

The Yule-Walker Estimator (3)

- The Yule-Walker Estimator has the same asymptotic properties as the LS estimator for stable VAR processes.
- However, it could be less attractive for small samples. The following example shows that asymptotically equivalent estimators can give different results for small samples (here T=73)

$$\bar{y} = \begin{bmatrix} 0.018\\ 0.020\\ 0.020 \end{bmatrix} \qquad \hat{\mu} = \left(l_3 - \hat{A}_1 - \hat{A}_2\right)^{-1} \hat{\nu} = \begin{bmatrix} 0.017\\ 0.020\\ 0.020 \end{bmatrix}$$

ELE SQC

The Yule-Walker Estimator (4)

$$\widehat{\widehat{A}} = \left(\widehat{\widehat{A}}_{1}, \widehat{\widehat{A}}_{2}\right) = \begin{bmatrix} -.319 & .143 & .960 & -.160 & .112 & .933 \\ .044 & -.153 & .288 & .050 & .019 & -.010 \\ -.002 & .224 & -.264 & .034 & .354 & -.023 \end{bmatrix}$$
$$\widehat{A}_{YW} = \begin{bmatrix} -.319 & .147 & .959 & -.160 & .115 & .932 \\ .044 & -.152 & .286 & .050 & .020 & -.012 \\ -.002 & .225 & -.264 & .034 & .355 & -.022 \end{bmatrix}$$

三日 のへの

イロト 不得 トイヨト イヨト

Maximum Likelihood Estimation

• Assume that the VAR(p) is Gaussian, i.e.

$$\mathbf{u} = \operatorname{vec}\left(U\right) = \begin{bmatrix} u_1 \\ \vdots \\ u_T \end{bmatrix} \sim \mathcal{N}\left(0, I_T \otimes \Sigma_u\right)$$

• The probability density of ${\boldsymbol{u}}$ is

$$f_{\mathbf{u}}(\mathbf{u}) = \frac{1}{(2\pi)^{KT/2}} \left| I_{\mathcal{T}} \otimes \sum_{u} \right|^{-1/2} exp\left[-\frac{1}{2} \mathbf{u}' \left(I_{\mathcal{T}} \otimes \sum_{u}^{-1} \right) \mathbf{u} \right]$$

ELE SOC

- 4 回 ト 4 ヨ ト 4 ヨ ト

The Log-Likelihood Function

- From the probability density of **u**, a probability density for $\mathbf{y} \equiv vec(Y)$, $f_{\mathbf{y}}(\mathbf{y})$, can be derived
- After some modification the log-likelihood function is given by:

$$\begin{array}{ll} \ln & l\left(\mu,\alpha,\sum_{u}\right) = \\ -\frac{\kappa T}{2}\ln 2\pi - \frac{T}{2}\ln \left|\sum_{u}\right| - \frac{1}{2}tr\left[\left(Y^{0} - AX\right)'\sum_{u}^{-1}\left(Y^{0} - AX\right)\right] \\ \bullet & \text{From } \frac{\partial \ln(l)}{\partial \mu}, \frac{\partial \ln(l)}{\partial \alpha}, \text{ and } \frac{\partial \ln(l)}{\partial \sum_{u}} \text{ we get the system of normal equations,} \\ & \text{which can be solved for the estimators} \end{array}$$

The ML Estimators

• The three ML Estimators:

$$\tilde{\mu} = \frac{1}{T} \left(I_{\mathcal{K}} - \sum_{i=1}^{p} \tilde{A}_{i} \right)^{-1} \sum_{t=1}^{T} \left(y_{t} - \sum_{i=1}^{p} \tilde{A}_{i} y_{t-i} \right)$$
$$\tilde{\alpha} = \left(\left(\tilde{X} \tilde{X}' \right)^{-1} \tilde{X} \otimes I_{\mathcal{K}} \right) (y - \tilde{\mu}^{*})$$
$$\tilde{\Sigma}_{u} = \frac{1}{T} \left(\tilde{Y}^{0} - \tilde{A} \tilde{X} \right) \left(\tilde{Y}^{0} - \tilde{A} \tilde{X} \right)'$$

三日 のへの

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Properties of the ML Estimator (1)

 The estimators are asymptotically consistent and asymptotically normal distributed:

$$\begin{split} \sqrt{\mathcal{T}} \begin{bmatrix} \tilde{\mu} - \mu \\ \tilde{\alpha} - \alpha \\ \tilde{\sigma} - \sigma \end{bmatrix} \overset{d}{\to} \mathcal{N} \begin{pmatrix} 0, \begin{bmatrix} \Sigma_{\tilde{\mu}} & 0 & 0 \\ 0 & \Sigma_{\tilde{\alpha}} & 0 \\ 0 & 0 & \Sigma_{\tilde{\sigma}} \end{bmatrix} \end{pmatrix} \\ \text{where } \tilde{\sigma} = \textit{vech} \left(\tilde{\Sigma}_{u} \right) \text{ and } \Sigma_{\tilde{\mu}} = \left(I_{\mathcal{K}} - \sum_{i=1}^{p} \tilde{A}_{i} \right)^{-1} \sum_{u} \left(I_{\mathcal{K}} - \sum_{i=1}^{p} \tilde{A}_{i}' \right)^{-1} \end{split}$$

ELE NOR

EN 4 EN

Properties of the ML Estimator (2)

•
$$\Sigma_{\tilde{\alpha}} = \Gamma_Y (0)^{-1} \otimes \Sigma_u$$

• $\Sigma_{\tilde{\sigma}} = 2D_K^+ (\Sigma_u \otimes \Sigma_u) (D_K^+)'$

where D_K is given by $vec(\Sigma_u)=D_Kvech(\Sigma_u)$ and D_K^+ is the Moore-Penrose generalized inverse.

$$\sigma = \operatorname{vech}(\Sigma_{u}) = \operatorname{vech}\begin{bmatrix}\sigma_{11} & \sigma_{12} & \sigma_{13}\\\sigma_{21} & \sigma_{22} & \sigma_{23}\\\sigma_{31} & \sigma_{32} & \sigma_{33}\end{bmatrix} = \begin{bmatrix}\sigma_{11}\\\sigma_{21}\\\sigma_{31}\\\sigma_{22}\\\sigma_{32}\\\sigma_{33}\end{bmatrix}$$

A = N A = N = I = 000

Thank you for your attention!