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Introduction

Introduction

Basic Assumptions:

yt = (y1t , . . . , yKt)′ ∈ RK

available time series y1, . . . , yT , which is known to be generated by
stationary, stable VAR(p) process

yt = ν + A1yt−1 + . . .+ Apyt−p + ut (1)

where
ν = (ν1, . . . , νK )′ is K × 1 vector of intercept terms
Ai are K × K coefficient matrices
ut is white noise with nonsingular covariance matrix Σu

moreover p presample values for each variable, y−p+1, . . . , y0 are
assumed to be available
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Multivariate Least Squares Estimation

Notation

Y := (y1, . . . , yT ) (K × T )

B := (ν,A1, . . . ,Ap) (K × (Kp + 1))

Zt := (1, yt , yt−1, . . . , yt−p+1)′ ((Kp + 1)× 1)

Z := (Z0, . . . ,ZT−1) ((Kp + 1)× T )

U := (u1, . . . , uT ) (K × T )

y := vec(Y ) (KT × 1)

β := vec(B) ((K 2p + K )× 1)

b := vec(B′) ((K 2p + K )× 1)

u := vec(U) (KT × 1)
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Multivariate Least Squares Estimation

Estimation (1)

using this notation, the VAR(p) model (1) can be written as

Y = BZ + U,

after application of vec operator and Kronecker product we obtain

vec(Y ) = vec(BZ ) + vec(U) = (Z ′ ⊗ IK )vec(B) + vec(U),

which is equivalent to

y = (Z ′ ⊗ IK )β + u

note that covariance matrix of u is

Σu = IT ⊗ Σu
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Multivariate Least Squares Estimation

Estimation (2)

multivariate LS estimation (or GLS estimation) of β minimizes

S(β) = u′(IT ⊗ Σu)−1u =

=
[
y− (Z ′ ⊗ IK )β

]′
(IT ⊗ Σ−1

u )
[
y− (Z ′ ⊗ IK )β

]
note that

S(β) = y′(IT ⊗ Σ−1
u )y + β′(ZZ ′ ⊗ Σ−1

u )β − 2β′(Z ⊗ Σ−1
u )y

the first order conditions
∂S(β)

∂β
= 2(ZZ ′ ⊗ Σ−1

u )β − 2(Z ⊗ Σ−1
u )y = 0

after simple algebraic exercise yield the LS estimator

β̂ = ((ZZ ′)−1Z ⊗ IK )y
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Multivariate Least Squares Estimation

Estimation (3)

the Hessian of S(β)

∂2S
∂β∂β′

= 2(ZZ ′ ⊗ Σ−1
u )

is positive definite ⇒ β̂ is minimizing vector
the LS estimator can be written in differen ways

β̂ = β + ((ZZ ′)−1Z ⊗ IK )u =

= vec(YZ ′(ZZ ′)−1)

another possible representation is

b̂ = (IK ⊗ (ZZ ′)−1Z )vec(Y ′),

where we can see that multivariate LS estimation is equivalent to
OLS estimation of each of the K equations of (1)

Yordan Mahmudiev, Pavol Majher () Estimation of VAR Processes December 13th, 2011 7 / 32



Multivariate Least Squares Estimation Asymptotic Properties of the LSE

Asymptotic Properties (1)

Definition
A white noise process ut = (u1t, . . . , uK t)′ is called standard white noise
if the ut are continuous random vectors satisfying E (ut) = 0,
Σu = E (utut) is nonsingular, ut and us are independent for s 6= t and

E
∣∣uit ujt ukt umt

∣∣ ≤ c for i , j , k,m = 1, . . . ,K , and all t

for some finite constant c.

we need this property as a sufficient condition for the following results:

Γ := plimZZ ′
T exists and is nonsingular

1√
T

T∑
t=1

vec(utZ ′t−1) =
1√
T

(Z ⊗ IK )u d−−−−→
T→∞

N (0, Γ⊗ Σu)
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Multivariate Least Squares Estimation Asymptotic Properties of the LSE

Asymptotic Properties (2)

the above conditions provide for consistency and asymptotic normality
of the LS estimator

Proposition
Asymptotic Properties of the LS Estimator
Let yt be a stable, K-dimensional VAR(p) process with standard white
noise residuals, B̂ is the LS estimator of the VAR coefficients B. Then

B̂ p−−−−→
T→∞

B

and √
T (β̂ − β) =

√
T vec(B̂ − B)

d−−−−→
T→∞

N (0, Γ−1 ⊗ Σu)

.
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Multivariate Least Squares Estimation Asymptotic Properties of the LSE

Asymptotic Properties (3)

Proposition
Asymptotic Properties of the White Noise Covariance Matrix
Estimators
Let yt be a stable, K-dimensional VAR(p) process with standard white
noise residuals and let B̄ be an estimator of the VAR coefficients B so that√
T vec(B̄ − B) converges in distribution. Furthermore suppose that

Σ̄u =
(Y − B̄Z )(Y − B̄Z )′

T − c ,

where c is a fixed constant. Then
√
T (Σ̄u − UU ′/T )

p−−−−→
T→∞

0.
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Multivariate Least Squares Estimation Example

Example (1)

three-dimensional system, data for Western Germany (1960-1978)
fixed investment y1

disposable income y2

consumption expenditures y3
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Multivariate Least Squares Estimation Example

Example (2)

assumption: data generated by VAR(2) process

LS estimates are the following

stability of estimated process is satisfied, since all roots of the
polynomial det(I3 − Â1z − Â2z2) have modulus greater than 1
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Multivariate Least Squares Estimation Example

Example (3)

we can calculate the matrix of t-ratios

these quantities can be compared with critical values from
a t-distribution

d.f. = KT − K 2p − K = 198 or d.f. = T − Kp − 1 = 66

for a two-tailed test with significance level 5% we get critical values of
approximately ±2 in both cases
apparently several coefficients are not significant ⇒ model contains
unnecessarily many free parameters

Yordan Mahmudiev, Pavol Majher () Estimation of VAR Processes December 13th, 2011 13 / 32



Multivariate Least Squares Estimation Small Sample Properties of the LSE

Small Sample Properties

difficult do analytically derive small sample properties of LS estimation
numerical experiments are used, such as Monte Carlo method
example process

yt =

(
0.02
0.03

)
+

(
0.5 0.1
0.4 0.5

)
yt−1 +

(
0 0

0.25 0

)
yt−2 + ut

Σu =

(
9 0
0 4

)
× 10−4

1000 time series generated of length T = 30 (plus 2 presample values)
ut ∼ N (0,Σu)
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Multivariate Least Squares Estimation Small Sample Properties of the LSE

Empirical Results
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is known

Process with Known Mean (1)

The process mean µ is known

The mean-adjusted VAR(p) is given by

(yt − µ) = A1 (yt−1 − µ) + ...+ Ap (yt−p − µ) + ut

One can use LS estimation by defining:

Y 0 ≡ (yt − µ, ..., yT − µ) A ≡ (A1, ...,Ap)

Y 0
t ≡


yt − µ

...
yt−p+1 − µ

 X ≡
(
Y 0

0 , ...,Y 0
T−1

)
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is known

Process with Known Mean (2)

y0 ≡ vec(Y 0) α ≡ vec(A)

Then the mean-adjusted VAR(p) can be rewritten as:

Y 0 = AX +U or y0 = (X ′ ⊗ IK )α+ u where u is defined as before.

The LS estimator is:

α̂ =
(

(XX ′)−1 X ⊗ IK
)

y0 or Â = Y 0X ′ (XX ′)−1

If yt is stable and ut is white noise, it follows that
√
T (α̂− α)

d→ N (0,Σα̂) where α̂ = ΓY (0)−1 ⊗ Σu with
ΓY (0) ≡ E

(
Y 0

t
(
Y 0

t
)′).
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is unknown

Process with Unknown Mean (1)

Usually the process mean is not known and we have to estimated it:

ȳ =
1
T

T∑
t=1

yt

Plugging in for each yt expressed from
(yt − µ) = A1 (yt−1 − µ) + ...+ Ap (yt−p − µ) + ut and rewriting
gives:
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is unknown

Process with Unknown Mean (2)

ȳ = µ+ A1
[
ȳ + 1

T (y0 − yT )− µ
]

+ ...+

Ap
[
ȳ + 1

T (y−p+1 + ...+ y0 − yT−p+1 − ...− yT )− µ
]

+ 1
T

T∑
t=1

ut

The exact meaning of elements such as y−p+1for p>1 is unclear
(presample observations).

Equivalently:

(IK − A1 − ...− Ap) (ȳ − µ) =
1
T zT +

1
T

T∑
t=1

ut

where zT =
p∑

i=1
Ai

[
i−1∑
j=1

(y0−j − yT−j)

]
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is unknown

Process with Unknown Mean (3)

Obviously E
(
zT/
√
T
)

= 1√
T E (zT ) = 0

Moreover, as yt is stable var
(
zT/
√
T
)

= 1
T Var (zT ) →

T→∞
0

zT/
√
T converges to zero in mean square and

(IK − A1 − ...− Ap) (ȳ − µ) has the same asymptotic distribution

as 1√
T

T∑
t=1

ut

By the CLT 1√
T

T∑
t=1

ut
d→ N (0,Σu)
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is unknown

Process with Unknown Mean (4)

therefore, if yt is stable and ut is white noise:
√
T (ȳ − µ)

d→ N (0,Σȳ )

with Σȳ = (IK − A1 − ...− Ap)−1 Σu (IK − A1 − ...− Ap)′-1

another way of estimating the mean is obtained from the LS
estimator:

µ̂ =
(
IK − Â1 − ...− Âp

)−1
ν̂

these two ways are asymptotically equivalent
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is unknown

Process with Unknown Mean (5)

Replacing µ with ȳ in the vectors and matrices from before, e.g.
Ŷ 0 ≡ (yt − ȳ , ..., yT − ȳ) gives the corresponding LS estimator:

ˆ̂α =

((
X̂ X̂ ′

)−1
X̂ ⊗ IK

)
ŷ0

This estimator is asymptotically equivalent to LS estimator for a
process with known mean α̂

√
T
(

ˆ̂α− α
) d→ N

(
0, ΓY (0)−1 ⊗ Σu

)
with ΓY (0) ≡ E

(
Y 0

t
(
Y 0

t
)′)
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The Yule-Walker Estimator

The Yule-Walker Estimator (1)

Recall from the lecture slides that for VAR(1) it holds:
A1 = Γy (0)Γy (1)−1 and in general Γy (h) = A1Γy (h − 1) = Ah

1Γy (0)

Extending to VAR(p): Γy (h) = [A1, ...,Ap]


Γy (h − 1)

...
Γy (h − p)

 or:

[Γy (1), ..., Γy (p)] = [A1, ...,Ap]


Γy (0) . . . Γy (p − 1)

... . . . ...
Γy (−p + 1) . . . Γy (0)
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The Yule-Walker Estimator

The Yule-Walker Estimator (2)

[Γy (1), ..., Γy (p)] = AΓY (0)

Hence, A = [Γy (1), ..., Γy (p)] ΓY (0)−1

If p presample observations are available, the mean µ can be
estimated by:

ȳ∗ =
1

T + p

T∑
t=−p+1

yt

Then Γ̂y (h) = 1
T +p−h

T∑
t=−p+h+1

(yt − ȳ∗) (yt−h − ȳ∗)′
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The Yule-Walker Estimator

The Yule-Walker Estimator (3)

The Yule-Walker Estimator has the same asymptotic properties as the
LS estimator for stable VAR processes.

However, it could be less attractive for small samples. The following
example shows that asymptotically equivalent estimators can give
different results for small samples (here T=73)

ȳ =


0.018
0.020
0.020

 µ̂ =
(
I3 − Â1 − Â2

)−1
ν̂ =


0.017
0.020
0.020
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The Yule-Walker Estimator

The Yule-Walker Estimator (4)

̂̂A =

(̂̂A1,
̂̂A2

)
=


−.319 .143 .960 −.160 .112 .933
.044 −.153 .288 .050 .019 −.010
−.002 .224 −.264 .034 .354 −.023


ÂYW =


−.319 .147 .959 −.160 .115 .932
.044 −.152 .286 .050 .020 −.012
−.002 .225 −.264 .034 .355 −.022
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Maximum Likelihood Estimation The Likelihood Function

Maximum Likelihood Estimation

Assume that the VAR(p) is Gaussian, i.e.

u =vec (U) =


u1
...
uT

 ∼ N (0, IT ⊗ Σu)

The probability density of u is

fu(u) = 1
(2π)KT/2 |IT ⊗

∑
u|
−1/2 exp

[
−1

2u′
(
IT ⊗

∑−1
u

)
u
]
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Maximum Likelihood Estimation The Likelihood Function

The Log-Likelihood Function

From the probability density of u, a probability density for
y ≡ vec (Y ), fy (y), can be derived

After some modification the log-likelihood function is given by:

ln l (µ, α,
∑

u) =

−KT
2 ln2π − T

2 ln |
∑

u| − 1
2 tr

[(
Y 0 − AX

)′∑−1
u
(
Y 0 − AX

)]
From ∂ln(l)

∂µ ,∂ln(l)
∂α , and ∂ln(l)

∂
∑

u
we get the system of normal equations,

which can be solved for the estimators
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Maximum Likelihood Estimation The ML Estimators

The ML Estimators

The three ML Estimators:

µ̃ =
1
T

(
IK −

p∑
i=1

Ãi

)−1 T∑
t=1

(
yt −

p∑
i=1

Ãiyt−i

)

α̃ =

((
X̃ X̃ ′

)−1
X̃ ⊗ IK

)
(y − µ̃∗)

Σ̃u =
1
T
(
Ỹ 0 − ÃX̃

) (
Ỹ 0 − ÃX̃

)′
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Maximum Likelihood Estimation Properties of the ML Estimator

Properties of the ML Estimator (1)

The estimators are asymptotically consistent and asymptotically
normal distributed:

√
T


µ̃− µ
α̃− α
σ̃ − σ

 d→ N

0,


Σµ̃ 0 0
0 Σα̃ 0
0 0 Σσ̃




where σ̃ = vech
(

Σ̃u
)
and Σµ̃ =

(
IK −

p∑
i=1

Ãi

)−1∑
u

(
IK −

p∑
i=1

Ã′i
)−1
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Maximum Likelihood Estimation Properties of the ML Estimator

Properties of the ML Estimator (2)

Σα̃ = ΓY (0)−1 ⊗ Σu

Σσ̃ = 2D+
K (Σu ⊗ Σu)

(
D+

K

)′
where DK is given by vec (Σu)=DKvech (Σu) and D+

K is the
Moore-Penrose generalized inverse.

σ = vech (Σu) = vech


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =



σ11

σ21

σ31

σ22

σ32

σ33
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Maximum Likelihood Estimation Properties of the ML Estimator

Thank you for your attention!
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