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Introduction

Introduction

Basic Assumptions:

o yr = (yit,- .-, yke) € RK

@ available time series y1, ..., y7, which is known to be generated by

stationary, stable VAR(p) process

Ye=v+Ayra+...+Aptpt+ Ut

where

o v=(11,...,vk) is K x 1 vector of intercept terms
o A; are K x K coefficient matrices

e u; is white noise with nonsingular covariance matrix ¥,

@ moreover p presample values for each variable, y_p1,..., 0 are

assumed to be available
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Multivariate Least Squares Estimation

Notation
Y= () (K% T)
B:=(v,A1,...,Ap) (K x (Kp+1))
Ze = (Lye,Ye-1,- -, Ye—p1) (Kp+1)x1)
Z:=(Z,...,2Z1-1) (Kp+1)xT)
U:=(u1,...,ur) (KxT)
y .= vec(Y) (KT x 1)
B = vec(B) (K?p+ K) x 1)
b := vec(B') (K*p+ K) x 1)
u := vec(U) (KT x 1)
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Estimation (1)

@ using this notation, the VAR(p) model (1) can be written as
Y=BZ+U,
@ after application of vec operator and Kronecker product we obtain
vec(Y) = vec(BZ) + vec(U) = (Z' ® Ix)vec(B) + vec(U),
which is equivalent to
y=(Z'®Ik)B+u
@ note that covariance matrix of u is

Yu=1T®%,

Yordan Mahmudiev, Pavol Majher () Estimation of VAR Processes December 13th, 2011 5/32



Estimation (2)

e multivariate LS estimation (or GLS estimation) of 5 minimizes
SB)=u(lr ®%,) tu=
=y (Z @B (Ilr @ 2.1y = (2 © I) ]
@ note that
S(B) =y (Ir T,y +8(2Z @5, )3 - 28(Z 9%, )y

@ the first order conditions
95(8) _
B

after simple algebraic exercise yield the LS estimator

2027 9L Hp-2Z20 L y=0

b=(2Z") "z Ik)y
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Estimation (3)

@ the Hessian of S(f3)
s
0pop!

is positive definite = Bis minimizing vector

=222’ @Y

@ the LS estimator can be written in differen ways
B=B+((ZZ)'Z® Ix)u=
= vec(YZ'(2Z")7Y)
@ another possible representation is
b = (Ix ®(2Z")*Z)vec(Y"),
where we can see that multivariate LS estimation is equivalent to

OLS estimation of each of the K equations of (1)
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£ SYOpETE PRopeiis af tie Lols
Asymptotic Properties (1)

Definition

A white noise process uy = (uit,...,ukt) is called standard white noise
if the uy are continuous random vectors satisfying E(us) =0,

Y, = E(uue) is nonsingular, uy and us are independent for s # t and

E|uje ujt uke ume| < ¢ fori,j,k,m=1,...,K, and all t

for some finite constant c.

@ we need this property as a sufficient condition for the following results:

!
M= p/imT exists and is nonsingular

1 , 1 J
\/_? ; VeC(UtZt_l) = F(Z ® IK)U m N(O, r® Zu)
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£ SYOpETE PRopeiis af tie Lols
Asymptotic Properties (2)

@ the above conditions provide for consistency and asymptotic normality

of the LS estimator

Proposition

Asymptotic Properties of the LS Estimator

Let y: be a stable, K-dimensional VAR(p) process with standard white
noise residuals, B is the LS estimator of the VAR coefficients B. Then

and
VT (B -8) =T vec(B - B) # N(@O, T 1oy,

v
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£ SYOpETE PRopeiis af tie Lols
Asymptotic Properties (3)

Proposition

Asymptotic Properties of the White Noise Covariance Matrix
Estimators

Let y; be a stable, K-dimensional VAR(p) process with standard white
noise residuals and let B be an estimator of the VAR coefficients B so that
VT vec(B — B) converges in distribution. Furthermore suppose that

g =
T—c ’

s _(Y-Bz)(y-B2z)y

where ¢ is a fixed constant. Then

VT (L, - UU'/T) "0,
—00
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Multivariate Least Squares Estimation Example

Example (1)

o three-dimensional system, data for Western Germany (1960-1978)

o fixed investment y;

o disposable income y»

@ consumption expenditures y3

S}

3000

2000

1000

— — — income

- ----- consumption

investment /

L n . .
1960.1 1965.1 1970.1 19751 1980.1
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et
Example (2)

@ assumption: data generated by VAR(2) process

@ LS estimates are the following

B = (0,A,4)=YZ'(22")"

—.017 —.320 146 961 —.161 .115  .934
016 044 —.153 .289 050 .019 —.010
013 —.002 225 —264 .034 355 —.022

@ stability of estimated process is satisfied, since all roots of the
polynomial det(/5 — Az — AAgzz) have modulus greater than 1
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et
Example (3)

@ we can calculate the matrix of t-ratios

—0.97 =255 027 145 —1.29 021 141
3.60 138 —-1.10 1.71 1.58 0.14 —-0.06
3.6 —-0.09 201 -194 133 324 —-0.16

@ these quantities can be compared with critical values from
a t-distribution

o df. =KT —K’p—K=198ordf. =T - Kp—1=66
e for a two-tailed test with significance level 5% we get critical values of
approximately +2 in both cases
@ apparently several coefficients are not significant = model contains
unnecessarily many free parameters
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Multivariate Least Squares Estimation Small Sample Properties of the LSE

Small Sample Properties

o difficult do analytically derive small sample properties of LS estimation
@ numerical experiments are used, such as Monte Carlo method

@ example process
_ (002, (05 01 (00 L
*= o003 04 05)71  \oas o) 72T

zu:<g O) x 1074
0 4

@ 1000 time series generated of length T = 30 (plus 2 presample values)
@ Uy ~ N(O, ):u)
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Multivariate Least Squares Estimation Small Sample Properties of the LSE

Empirical Results

empirical empirical percentiles of t-ratios
parameter mean variance MSE 1. . 10. 50.  90. 95, 99.
vy = .02 .041 .0011 0015 —1.91 —1.04 —0.64 0.62 1.92 2.29 3.12
v = .03 .038 .0005 0006 —2.30 —1.40 —1.02  0.25 1.65 2.11 2.83
arr =5 A1 .041 049 =278 —2.18 —1.74 —-0.43 0.92 1.28 2.01
a1 = .4 40 018 018 —261 —1.74 —1.28 0.04 1.28 1.71 2.65
e =.1 100078 078 =227 —1.67 —1.35 —0.03 1.29 1.67 2.38
g = .5 44 .030 034 =269 —1.97 —1.59 —0.35 0.89 1.30 2.06
a0 =0 —.05 .056 058 —2.75 —1.93 —1.50 —0.24 1.02 1.38 2.09
g2 =.25 29 .023 024 —1.99 —1.32 —0.99 0.20 1.45 1.81 2.48
agge =0 —.07 .053 058 =248 —1.91 —1.61 —0.28 0.97 1.39 2.03
22 =0 —.01 .023 024 =271 —1.72 —1.36 —0.03 1.18 1.53 2.18
degrees of percentiles of ¢-distributions
freedom(d.f.) 1. 5. 10.  50. 90. 95. 99.
T-Kp—1=25 —2.49 —1.71 —1.32 0 1.32 1.71 2.49
KT —-Kp—1)=50 —241 —-1.68 —1.30 0 1.30 1.68 2.41
00 —2.33 —1.65 —1.28 0 1.28 1.65 2.33

(normal distribution)
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is known

Process with Known Mean (1)

@ The process mean p is known

@ The mean-adjusted VAR(p) is given by
(e =) =Ar(ye-1—p) + .+ Ap (Vep — 1) + e

@ One can use LS estimation by defining:

(yt H7~~,}/T_N) AE(Ala"'7Ap)
Ye — p

&

Y0 X= (¥, Y% ,)

Yt—p+1 — 1
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is known

Process with Known Mean (2)

y? = vec(Y?) a = vec(A)
@ Then the mean-adjusted VAR(p) can be rewritten as:

YO=AX+U o y°=(X'®Ik)a+uwhere u is defined as before.
@ The LS estimator is:

a= (X)) X@I)y®  or A= YOX (XX')!
o If y;is stable and u; is white noise, it follows that

VT (6 —a)3 N (0,Z4) where & = 'y (0) ! ® T, with

My (0)=E (Y2 (¥?)).
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is unknown

Process with Unknown Mean (1)

@ Usually the process mean is not known and we have to estimated it:
y = T 2 Yt

@ Plugging in for each y; expressed from

(ve — ) = A1 (Ye—1 — ) + ... + Ap (Ve—p — 1) + u¢ and rewriting
gives:
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is unknown

Process with Unknown Mean (2)

y=nt+ A7+ (o —yr) —p| + .t
.
Ap [)74— % (Yopt1t ot Y0 = YTopt1 — o —YT) — ,U] + %t;w

@ The exact meaning of elements such as y_,ifor p>1 is unclear
(presample observations).

o Equivalently:

_ 1 1<
(k= AL — e = Ap) (7 — ) = w27 + =) ur
T T4
P i—1
where z7 = > Ai | X (Yo = y7))

i=1 j

Yordan Mahmudiev, Pavol Majher () Estimation of VAR Processes December 13th, 2011 19 / 32



Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is unknown

Process with Unknown Mean (3)

@ Obviously E (z-,-/ﬁ) = \/LTE(ZT) =0

@ Moreover, as y; is stable var (zr/\/?> =1Var(zr) _— 0
T—o0

o z7/v/Tconverges to zero in mean square and

(Ixk — A1 — ... — Ap) (¥ — ) has the same asymptotic distribution
T
as T

.
o By the CLT 2 3> ue 5 NV (0, %)
t=1
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is unknown

Process with Unknown Mean (4)

@ therefore, if y; is stable and u; is white noise:
VT (7 — 1) 5 N (0,%5)
with Ty = (Ix — Ay — . — Ap) 1T, (I — Ay — ... — Ap)™!

@ another way of estimating the mean is obtained from the LS

estimator:

@ these two ways are asymptotically equivalent
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Least Squares Estimation with Mean-Adjusted Data Estimation when the process mean is unknown

Process with Unknown Mean (5)

@ Replacing p with ¥ in the vectors and matrices from before, e.g.
Yo = (yt — ¥,.,yT — ¥) gives the corresponding LS estimator:

d=((%%) X2 17

@ This estimator is asymptotically equivalent to LS estimator for a

process with known mean &
VT (A=) SN (0.Ty (0) & x,)

with Ty (0) = £ (Y2 (¥9))
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The Yule-Walker Estimator (1)

@ Recall from the lecture slides that for VAR(1) it holds:
A1 =T,(0), (1)~ and in general T, (h) = AT (h — 1) = AT, (0)

ry(h—1)
e Extending to VAR(p): Iy (h) = [A1, ..., Ap] : or:
y(h—p)
ry) ... Ny(p—1)
[My(1), s Ty(p)] = [A1, .., Ap] :
My(=p+1) ry(0)
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The Yule-Walker Estimator (2)

My (1), ., Ty(p)] = ATy (0)

e Hence, A=1[I,(1),...T,(p)]Ty (0)_1

@ If p presample observations are available, the mean p can be
estimated by:

Z Yt
T+pt_ P

. T
@ Then I, (h) = %”_hﬁ—ghﬂ (ve =) (ve-n = 7*)’
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The Yule-Walker Estimator (3)

@ The Yule-Walker Estimator has the same asymptotic properties as the
LS estimator for stable VAR processes.

@ However, it could be less attractive for small samples. The following
example shows that asymptotically equivalent estimators can give

different results for small samples (here T=73)

0.018 0.017
v =1 0.020 = (/3 — A — Az) p = 0020
0.020 0.020
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The Yule-Walker Estimator (4)

~

o —319 .143 960 -—.160 .112 .933
2\:(2\1,2\2 —| 044 —.153 288 .050 .019 —.010
—.002 224 —264 .034 354 —.023

—319 .147 959 —.160 .115 .932

Ayw = | .044 —.152 286 .050 .020 —.012

—.002 225 —.264 .034 .355 —.022
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Maximum Likelihood Estimation The Likelihood Function

Maximum Likelihood Estimation

@ Assume that the VAR(p) is Gaussian, i.e.

i
u=vec(U)=1| : | ~N(0,/lT ®L,)

ur

@ The probability density of u is

fulw) = ez [ © ol P exp [~ Ju (17 © 257 ) u]
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The Log-Likelihood Function

@ From the probability density of u, a probability density for
y = vec(Y), fy (y), can be derived

o After some modification the log-likelihood function is given by:
In1 (M? a, Zu) =
—KLin2m — Tin |32, | — Ser [(Y0 = AX)' £51 (YO — AX)]

@ From %ﬁl),%o(j), and g%(:lj we get the system of normal equations,

which can be solved for the estimators
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Ul L S5 e
The ML Estimators

@ The three ML Estimators:
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Maximum Likelihood Estimation Properties of the ML Estimator

Properties of the ML Estimator (1)

@ The estimators are asymptotically consistent and asymptotically

normal distributed:

fi—p X; 0 0
VT | a—a | SN0 | 0 Tz 0
G—0o 0 0 ¥
N p .\t p .\t
where & = vech (z) and ¥ = (/K - EA,-) S, (/K - ZAj-)
i=1 i=1
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Maximum Likelihood Estimation Properties of the ML Estimator

Properties of the ML Estimator (2)

0 Y;=Ty(0) 'z,
o T5 = 2D} (T4 ® %) (D;)'

where D is given by vec (£,)=Dkvech(X,) and D is the
Moore-Penrose generalized inverse.

o011
021
011 012 013 o
31
o=vech(X,)=vech | op1 02 023 | =
022
031 032 033
032
L 0-33 -
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Maximum Likelihood Estimation

Thank you for your attention!
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