Structural VARs and VECs Lutkepohl Chapter 9

Florian Kaulich
Nora Prean
Catherine Prettner

Seminar on VARs, January 2012

Motivation

- Different sets of impulse responses can be computed from same underlying VAR or VECM (impulse responses not unique)
- use non-sample information to decide on the "proper" set of impulses for a given model
\longrightarrow impose "structural" restrictions (based on economic theory) to identify the relevant innovations and, thus, impulse responses

Outline

- Structural VARs

2. The A-Model
3. The B-Model
4. The AB-Model
5. Blanchard-Quah

- Structural VECs

1. Structural Vector Error Correction Model
2. Beveridge Nelson MA representation

- Empirical Illustration

1. Examples

(Structural) Vector Autoregressions

- K-dimensional stationary, stable VAR(p).

$$
\begin{equation*}
y_{t}=A_{1} y_{t-1}+\ldots+A_{p} y_{t-p}+u_{t} \tag{1}
\end{equation*}
$$

- We know that (1) has a Wold MA representation

$$
\begin{equation*}
y_{t}=u_{t}+\Phi_{1} u_{t-1}+\Phi_{2} u_{t-2}+\ldots \tag{2}
\end{equation*}
$$

where

$$
\Phi_{s}=\sum_{j=1}^{s} \Phi_{s-j} A_{j} \quad s=1,2, \ldots \text { with } \quad \Phi_{0}=I_{K}
$$

- Choleski decomposition to orthogonalize innovations ($\Sigma_{u}=P P^{\prime}$ with P lower-triangular matrix - Wold causal ordering). Unless there are "structural" reasons for the ordering of the variables (derived from economic theory) this approach is arbitrary.
- \longrightarrow Use nonsample information to specify unique innovations

The A-Model

- Find a model with instantaneously uncorrelated residuals; i.e. find matrix A such that

$$
\begin{equation*}
\mathrm{A} y_{t}=A_{1}^{*} y_{t-1}+\ldots+A_{p}^{*} y_{t-p}+\epsilon_{t} \tag{3}
\end{equation*}
$$

- is a structural model, where

$$
A_{j}^{*}:=\mathrm{A} A_{j} \quad \text { and } \quad \epsilon_{t}:=\mathrm{A} u_{t} \sim\left(0, \Sigma_{\epsilon}=\mathrm{A} \Sigma_{u} \mathrm{~A}^{\prime}\right)
$$

For a proper choice of A, ϵ_{t} will have a diagonal covariance matrix.

- MA representation based on ϵ_{t}

$$
y_{t}=\Theta_{0} \epsilon_{t}+\Theta_{1} \epsilon_{t-1}+\Theta_{2} \epsilon_{t-2}+\ldots,
$$

where $\Theta_{j}=\Phi_{j} \mathrm{~A}^{-1}$ and the Θ are impulse responses to ϵ_{t} shocks.

A-Model - Restrictions

- From $\Sigma_{\epsilon}=\mathrm{A} \Sigma_{u} \mathrm{~A}^{\prime}$ and the assumption of a diagonal Σ_{ϵ} we get $K(K-1) / 2$ independent equations (i.e., all $K(K-1) / 2$) off-diagonal elements of $A \Sigma_{u} \mathrm{~A}^{\prime}$ are zero)
- To solve uniquely for K^{2} elements of A , we need another set of $K(K+1) / 2$ restrictions
- Normalize diagonal elements of A to unity \longrightarrow additional $K(K-1) / 2$ restrictions from nonsample information

Restrictions, cont.

- If, for example, Wold causal ordering is possible, then

$$
\mathrm{A}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
a_{21} & 1 & & 0 \\
\vdots & & & \vdots \\
a_{K 1} & a_{K 2} & \ldots & 1
\end{array}\right)
$$

- With A having a unit main diagonal, $K(K-1) / 2$ restrictions for the off-diagonal elements of A ensure just-identified shocks ϵ_{t} and, hence, just-identified impulse responses

A-Model - Rewrite restrictions

- Restrictions must not be arbitrary; write them in the form

$$
C_{\mathrm{A}} \operatorname{vec}(\mathrm{~A})=c_{\mathrm{A}}
$$

with selection matrix $C_{\mathrm{A}}=\left(\frac{1}{2} K(K+1) \times K^{2}\right)$ and
a suitable fixed vector $c_{\mathrm{A}}=\left(\frac{1}{2} K(K+1) \times 1\right)$

- The restrictions have to be such that the system of equations

$$
\mathrm{A}^{-1} \Sigma_{\epsilon} \mathrm{A}^{\prime-1}=\Sigma_{u} \quad \text { and } \quad C_{\mathrm{A}} \operatorname{vec}(\mathrm{~A})=c_{\mathrm{A}}
$$

has a unique solution, at least locally (remember: $\epsilon_{t}:=\mathrm{A} u_{t} \sim(0, \Sigma \epsilon=\mathrm{A})$

The B-Model

- Idea: think of the forecast errors $\left(u_{t}\right)$ as linear functions of the structural errors $\left(\epsilon_{t}\right)$
\longrightarrow Identify structural innovations ϵ_{t} directly from reduced form residuals u_{t}

$$
u_{t}=\mathrm{B} \epsilon_{t} \quad \text { and } \quad \Sigma_{u}=\mathrm{B} \Sigma_{\epsilon} \mathrm{B}^{\prime}
$$

- Normalizing the variances of the structural innovations to one; i.e. assuming $\epsilon_{t} \sim\left(0, I_{K}\right)$, gives

$$
\Sigma_{u}=\mathrm{BB}^{\prime}
$$

- Choose B again by a Choleski decomposition
- Assumed symmetry of the covariance matrix specifies $K(K+1) / 2$ restrictions; we need another $K(K-1) / 2$ restrictions to identify all K^{2} elements of B

B-Model - Restrictions

- Empirically most relevant: choose B to be lower triangular (in principle, other zero restrictions on B possible)
- Structural because now recursive structure is only chosen if it has theoretical justification
- If only zero restrictions

$$
\mathrm{C}_{B} \operatorname{vec}(\mathrm{~B})=0
$$

- B can be uniquely identified, at least locally

The AB Model

- Combine both types of restrictions \longrightarrow the AB-model
- Idea: formulate relations (restrictions) for the innovations

$$
\mathrm{A} u_{t}=\mathrm{B} \epsilon_{t} \text { with } \epsilon_{t} \sim\left(0, I_{K}\right)
$$

- From $\epsilon_{t} \sim\left(0, I_{K}\right)$ we get $u_{t}=\mathrm{A}^{-1} \mathrm{~B} \epsilon_{t}$ and, hence
- $\Sigma_{u}=\mathrm{A}^{-1} \mathrm{BB}^{\prime} \mathrm{A}^{-1^{\prime}}$ with K^{2} elements for each, A and B .
- Restrictions typically normalizations or zero restrictions; written in the form of linear equations:
$v e c(\mathrm{~A})=R_{\mathrm{A}} \gamma_{\mathrm{A}}+r_{\mathrm{A}}$ and $\operatorname{vec}(\mathrm{B})=R_{\mathrm{B}} \gamma_{\mathrm{B}}+r_{\mathrm{B}}$
where R_{A} and R_{B} are suitable matrices of zeros and ones, γ_{A} and γ_{B} are vectors of free parameters, and r_{A} and r_{B} vectors of fixed parameters

Blanchard-Quah (1989)

- Alternative approach: consider accumulated ("long-run") effects of shocks to a system as in Blanchard \& Quah (1989)
- Remember structural impulses of the form

$$
y_{t}=\Theta_{0} \epsilon_{t}+\Theta_{1} \epsilon_{t-1}+\Theta_{2} \epsilon_{t-2}+\ldots
$$

Blanchard \& Quah (1989) derive a total impact matrix

$$
\begin{equation*}
\Xi_{\infty}=\sum_{i=0}^{\infty} \Theta_{i}=\left(I_{K}-A_{1}-\ldots-A_{p}\right)^{-1} \mathrm{~A}^{-1} \mathrm{~B} \tag{4}
\end{equation*}
$$

- Identify structural innovations by placing zero restrictions on this Ξ matrix; i.e. assume that some innovations do not have any total long-run effects

Blanchard-Quah, cont.

- Example: bivariate system $y_{t}=\left(q_{t}, u r_{t}\right)^{\prime}$
- structural innovations represent supply and demand shocks; assume that demand shocks have only transitory effects on q_{t} (accumulated long-run effect of such shocks on q_{t} is zero)
- Place supply shocks first, demand shocks second $\left(\epsilon_{t}=\left(\epsilon_{t}^{s}, \epsilon_{t}^{d}\right)^{\prime}\right)$, then the upper right-hand corner element of equation (4); i.e. the Ξ matrix, is restricted to zero (no restrictions placed on the instantaneous effects of the observable variables)
- This corresponds to AB -model with $\mathrm{A}=I_{K}$ (that is, the B -model) with restriction

$$
(0,0,1,0) \operatorname{vec}\left[\left(I_{K}-A 1-\ldots-A p\right)^{-1} \mathrm{~B}\right]=0
$$

Cointegration and Vector Error Correction form

- Definition of a cointegrated process $y_{t} \sim C I(d, b)$ with all its K variables being $\mathrm{I}(\mathrm{d})$
> but there exist linear combinations between the variables $z_{t}=\beta y_{t}$ which are $\mathrm{I}(\mathrm{d}-\mathrm{b})$. Most often $\mathrm{Cl}(1,1)$.
- Such a process can be written in Error Correction form:

$$
\begin{equation*}
\Delta y_{t}=\underbrace{\alpha \beta^{\prime} y_{t-1}}+\underbrace{\Gamma_{1} \Delta y_{t-1}+\ldots+\Gamma_{p-1} \Delta y_{t-p+1}}+u_{t} \tag{5}
\end{equation*}
$$

- So far, the VEC model does not explicitly include assumptions from theory.
- We can interpret (5) as the reduced form of a structural VEC model, which incorporates results from theory.

Structural Vector Error Correction model

- A structural VEC without deterministic terms and exogenous variables has the form:

$$
\begin{equation*}
\mathrm{A} \Delta y_{t}=\Pi^{*} y_{t-1}+\Gamma_{1}^{*} \Delta y_{t-1}+\ldots+\Gamma_{p-1}^{*} \Delta y_{t-p+1}+B \epsilon_{t} \tag{6}
\end{equation*}
$$

- The $(K \times K)$ matrix \mathbf{A} allows incorporating a structure reflecting a theoretical model.
- The structural equation in (6) has the reduced form representation:

$$
\begin{equation*}
\Delta y_{t}=\Pi y_{t-1}+\Gamma_{1} \Delta y_{t-1}+\ldots+\Gamma_{p-1} \Delta y_{t-p+1}+u_{t} \tag{7}
\end{equation*}
$$

where $\Pi=\mathrm{A}^{-1} \Pi^{*}, \Gamma_{j}=\mathrm{A}^{-1} \Gamma_{j}^{*}$, and $A_{j}=\mathrm{A}^{-1} \mathrm{~A}_{j}^{*}$ and the reduced form disturbances u_{t} are related to the underlying structural shocks ϵ_{t} by $u_{t}=\mathrm{A}^{-1} B \epsilon_{t}$.

- In order to identify the structural form parameters, we must impose restrictions on the parameter matrices.

Beveridge Nelson MA representation

- The process given in (7) has the Beveridge Nelson MA representation:

$$
\begin{equation*}
y_{t}=\underbrace{\Xi \sum_{i=1}^{t} u_{i}}_{I(1)}+\underbrace{\sum_{j=0}^{\infty} \Xi^{*} u_{t-j}}_{I(0)}+y_{0}^{*} \tag{8}
\end{equation*}
$$

- I(0) part The Ξ^{*} are absolutely summable so that the infinite sum is well defined. (converges $\rightarrow 0$ for $j \rightarrow \infty$.)
- I(1) part The long run effects of shocks are captured by the common trend term $\Xi \sum_{i=1}^{t} u_{i}$.
- The matrix $\Xi=\beta \perp\left[\alpha_{\perp}^{\prime}\left(I_{K}-\sum \Gamma_{i}\right) \beta_{\perp}\right]^{-1} \alpha_{\perp}^{\prime}$ has rank K-r.
- There are $(K-r)$ common trends, at most r can have transitory effects.

B-model setup for sVEC

- Focus of interest on the residuals - the B-model setup is typically used.
- Connection of reduced form and structural form errors:

$$
\begin{equation*}
u_{t}=B \epsilon_{t} \quad \epsilon_{t}\left(0, I_{K}\right) \tag{9}
\end{equation*}
$$

- Substituting this equation in the Beveridge Nelson MA representation gives

$$
\begin{equation*}
\Xi B \sum_{i=1}^{t} \epsilon_{i} \text { for the I(1) part. } \tag{10}
\end{equation*}
$$

- Hence, the long-run effects of the structural innovations are given by ΞB.

B-model setup for sVEC

- Because $\Sigma_{u}=B B^{\prime}, r k(\Xi B)=K-r$ there can be at most r zero columns in this matrix.
- This means that, r of the structural innovations can have transitory effects and $K-r$ of them must have permanent effects.
- The matrix ΞB has reduced rank $r k(\Xi B)=K-r$, \rightarrow therefore each column of zeros stands for $K-r$ independent restrictions.
- \rightarrow The r transitory shocks represent $r(K-r)$ independent restrictions.

Local just-identification

- For local just-identification of the structural innovations in the B-model, a total of $K(K-1) / 2$ restrictions are required.
- We have already $r(K-r)$ restrictions from the cointegration structure of the model.
- We need $\frac{1}{2} K(K-1)-r(K-r)$ further restrictions for just-identification of the structural innovations.
- In fact, $r(r-1) / 2$ additional contemporaneous restrictions are needed to disentangle the transitory shocks
- and $r(K-r)((K-r-1)$ restrictions to identify the permanent shocks. (King et al. (1991), Gonzalo \& Ng (2001)).

Restrictions

- The restrictions take the form

$$
C_{\Xi B} \operatorname{vec}(\Xi B)=c_{l} \text { or } C_{l} \operatorname{vec}(\Xi B)=c_{l} \quad \text { and } \quad C_{s} \operatorname{vec}(B)=c_{s}
$$

- $C_{l}:=C_{\Xi B}\left(I_{K} \otimes \Xi\right)$ is a matrix of long-run restrictions, that is, $C_{\Xi B}$ is a suitable selection matrix such that $C_{\Xi B} v e c(\Xi B)=c_{l}$.
- c_{s} specifies short-run or instantaneous contraints by restriction elements of B directly.
- c_{l} and c_{s} are vectors of suitable dimensions. In applied work, typically zero vectors.

Examples for SVAR and SVEC in JMulTi

- JMulTi is an open-source interactive software for univariate and multivariate time series analysis
- The course textbook Lütkepohl (2006) as well as Lütkepohl \& Krätzig (2004) refer to JMulTi
- Downloadable for free at www.jmulti.com
- Datasets from the Lütkepohl's textbooks can be downloaded here: www.jmulti.com/datasets.html

Example 1: SVAR

- Breitung, Brüggemann, Lütkepohl (2004), used in Lütkepohl (2006)
- Stylized IS-LM model
- Quarterly US data on
- Real GDP
- Three-month interbank interest rate
- Real monetary base
- IS curve: $u_{t} q=-a_{12} u_{t}{ }^{i}+b_{11} \varepsilon_{t}{ }^{\text {IS }}$
- Inverse LM curve $u_{t}{ }^{i}=-a_{21} u_{t}{ }^{q}-a_{23} u_{t}^{m}+b_{22} \varepsilon_{t}{ }^{L M}$
- Money supply rule: $u_{t}{ }^{m}=b_{33} \varepsilon_{t}{ }^{m}$

VAR settings

Settings for reduced-form VAR with 4 lags, constant and trend q: Output
i: interest rate m : real monetary base

VAR estimation

Estimated coefficients of the reduced-form VAR

SVAR restrictions

Set structural restrictions for the A and the B matrix

SVAR results

Estimation results for A and B

SVAR IRA

-Impulse Response Analysis with 95\% Hall bootstrap confidence intervals (2000 bootstrap replications)
-Responses of q (upper row), i (middle row), m (bottom row) to three structural shocks
-IS or spending shock in left column
-LM shock in middle column

- Money supply shock in right column
- IS shock increases output immediately, increases interest rate (with maximum after 8 quarters), decreases real money holdings
-LM shock increases interest rate and decreases output
- Money supply shock decreases output (contrary to economic theory), decreases interest rate and increases real money holding

Example 2: SVEC

- Lütkepohl (2006)
- US quarterly data
- Output, consumption, investment
- All variables I(1), cointegrating rank=2,
- two transitory shocks, one permanent shock

VEC settings

Settings for reduced-form VEC with 1 lags, constant and 2 cointegration relations

VEC results

Estimated coefficients of reduced-form VEC

SVEC restrictions

-Restrictions on B (short-run) and ミB (long-run)

- One permanent shock that can have effects on all three variables
-Two transitory shocks, with the first one allowed to have effects on all three variables, and the second one not to be allowed to affect the second variable (0 restriction in B). By that, the two transitory shocks are disentagled

SVEC results

Estimated B and $\equiv \mathrm{B}$ matrices

SVEC IRA

-IRA with 95% Hall bootstrap confidence intervals (2000 bootstrap replications)
-Responses of output (upper row), consumption (middle row), investment (bottom row) to three structural shocks
-Permanend shock in left column
-Transitory shocks in middle and right column
-Effects of the long-run shock are all negative in the long run. (To see the effect of an impulse which leads to positive long-run effects, just reverse the sign of the impulse responses)
-The transitory shocks indeed fade out quickly. -The single 0 restriction in B can be seen in the right column, second row.

SVEC FEVD

-Forecast error variance decomposition
-Permanent shock (light blue part) has increasing importance with higher forecast horizon
-The importance of the transitory shocks (green and dark blue) are decresasing with higher forecast horizon

