Applied Time Series Analysis

ANALYSIS OF EUROPEAN, AMERICAN AND JAPANESE GOVERNMENT BOND YIELDS

Stationarity, cointegration, Granger causality

Aleksandra Falkowska and Piotr Lewicki

TABLE OF CONTENTS

1.	INT	RODUCTION	3
2.	НҮР	OTHESES	3
3.	HYP	OTHESIS I: INTERNATIONAL MARKETS ANALYSIS	4
	3.1	Data description	4
	3.2	Augmented Dickey-Fuller test	5
	3.3	Johansen procedure	5
	3.4	Results	6
4.	НҮР	OTHESIS II: TERM STRUCTURE ANALYSIS	6
	4.1	Data description	6
	4.2	Augmented Dickey-Fuller test	7
	4.3	Johansen procedure	7
	4.4	Granger Causality test	8
	4.5	Results	8
5.	CON	ICLUSION	8
6.	REF	ERENCES	9
7.	APP	ENDICES	10
	7.1	Appendix A	10
	7.2	Appendix B	11
	7.3	Appendix C	12
	7.4	Appendix D	13
	7.5	Appendix E	15
	7.6	Appendix F	16
	7.7	Appendix G	17

1. INTRODUCTION

Investors frequently differentiate their portfolios in order to benefit from risk pooling. Various economists have argued that holding a portfolio of diversified assets results in less risk and smaller losses incurred by the portfolio owner. This also applies to the international bond markets. Often, investors hold bonds from more than one national market with the aim of reducing the risk of their portfolio. If international bond markets are strongly correlated in the long run, reducing the risk through diversification will not be as effective as in the case if the bond markets were uncorrelated and thus operated independently of each other.

Similarly, in their portfolios investors often hold bonds with dissimilar maturities. This is also a way of diversifying the risk. Again, if strong correlation occurs between bonds from the same national market with different maturities, diversification will not be effective.

An important indication of the degree to which long-run diversification is an option for international bond markets' investors is given by testing whether these markets are cointegrated.

Numerous papers have studied and analysed these relationships. A paper by Mills and Mills (1991) provides a conclusion that bond yields are not cointegrated and in the long run they are determined by their own domestic fundamentals. What is more, Clare, Maras and Thomas (1995) also find that there is no cointegration between any pair of bond indices from their sample of UK, US, German and Japanese bond returns. These two papers, however, come from the 1990s and their results may no longer be applicable to today's world. Over the last years globalization has become one of the major forces influencing the global financial markets. The surge of liberalization, combined with political, technological, and financial developments, has brought about an increased interdependence between the world's most prominent financial markets. In today's world any information reaching the news has a global rather than local impact. Therefore, we believe that the cointegration of international government bond markets may no longer be in place.

Less attention in the literature has been given to the interdependence of government bonds with respect to their maturities. One study addressing this issue was performed by Driessen, Melenberg and Nijman (2003), who found that positive correlations between bonds were driven by their term-structure. With the increasing integration of the European financial and capital markets, and especially the introduction of a common currency and common monetary policy monitored by the European Central Bank, we believe that cointegration in the European government bonds with dissimilar term structures is in place.

2. HYPOTHESES

This report has two major hypotheses:

Hypothesis I: Firstly, we believe that there is more evidence of cointegration over the recent years between international government bond markets. This hypothesis will be tested on the data obtained for government bond yields in the Euro area, USA and Japan over the period from 1 January 2005 to 31 December 2011.

Hypothesis II: Secondly, we believe that there will be evidence of cointegration within the Euro-area for government bonds with different terms to maturity. This hypothesis will be tested on the data obtained for government bond yields in the Euro area over the period from 1 January 2005 to 31 December 2011 with maturities of 1 year, 5 years, 10 years and 15 years.

The main conclusion from these two hypotheses, if they prove correct, is that investors incorrectly believe that risk reduction is possible with portfolio diversification in the case of portfolios consisting of government bonds from different national markets and with dissimilar term structures.

3. HYPOTHESIS I: INTERNATIONAL MARKETS ANALYSIS

3.1 Data description

The data set for testing Hypothesis I consists of daily 10-year maturity government bond yields from the Euro area (changing composition of government bonds with AAA rating), USA and Japan. All data were subject to logarithmic transformations. The data for the Euro area was obtained from the European Central Bank website. The data for USA and Japan was obtained from Datastream. Data was collected for the period from 1 January 2005 to 31 December 2011. For each country there is 1825 data points (although in some cases data was non-obtainable, for example when the Japanese capital markets closed after the 2010 earthquake). Graphs below represent the logarithmised data plots:

3.2 Augmented Dickey-Fuller test

In order to test for stationarity of the data sets we performed the Augmented Dickey-Fuller (ADF) tests with trend. First, the ADF test was applied to the level series. The ADF tests for unit root in levels for all three series were that the series are nonstationary, i.e. the null hypothesis of unit root existence cannot be rejected. In the next step, we tested for unit root existence in first order differences. The result was that all three series are difference stationary, i.e. they all are I(1).

The EViews outputs for both level and first-order differences are presented in Appendix A.

3.3 Johansen procedures

The Johansen procedure is the most common and efficient procedure for estimating and testing for cointegration. The steps of the procedure are:

- (1) First, ensure that all variables Xj, j = 1, ..., n are either I(1) or I(0);
- (2) Determine the VAR lag order p using the multivariate information criteria;
- (3) Find the cointegrating rank r by sequences of hypothesis tests and estimate β ;
- (4) Finally, estimate the full EC-VAR model given p and r to estimate α and all ψj .

In the previous section, using ADF test it has already been established that all three data series are I(1). The next step is to determine the VAR lag order. The output from EViews is:

Date: 01/2 Sample: 1 Included o	29/12 Time: 22 //03/2005 12/30 bbservations: 34	2:47)/2011 48 	FPF	AIC	SC	НО
Lug	Logi	2.1		,		
0	698.7215	NA	3.68e-06	-3.998399	-3.965191	-3.985178
1	2865.087	4282.929	1.52e-11	-16.39705	-16.26422	-16.34417
2	2897.029	62.59927	1.33e-11*	-16.52890*	-16.29644*	-16.43635*
3	2906.005	17.43615	1.33e-11	-16.52876	-16.19668	-16.39655
4	2914.371	16.10778	1.34e-11	-16.52512	-16.09341	-16.35325
5	2921.919	14.40152	1.35e-11	-16.51678	-15.98544	-16.30524
6	2925.067	5.952265	1.39e-11	-16.48314	-15.85218	-16.23195
7	2929.739	8.752679	1.43e-11	-16.45827	-15.72768	-16.16741
8	2938.034	15.39826	1.44e-11	-16.45422	-15.62400	-16.12369
9	2941.585	6.531713	1.48e-11	-16.42290	-15.49306	-16.05272
10	2946.021	8.080368	1.52e-11	-16.39667	-15.36720	-15.98682
11	2950.515	8.109530	1.56e-11	-16.37077	-15.24168	-15.92126
12	2957.682	12.81006	1.58e-11	-16.36024	-15.13152	-15.87106
13	2964.726	12.46952	1.60e-11	-16.34900	-15.02065	-15.82016
14	2976.210	20.12962*	1.58e-11	-16.36327	-14.93530	-15.79477
15	2981.882	9.844954	1.61e-11	-16.34415	-14.81655	-15.73598
* indicates lag order selected by the criterion LR: sequential modified LR test statistic (each test at 5% level) FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion						

Using the Akaike information criteria (AIC) the lag order was determined to be 2.

The following step was to run the Johansen cointegration procedure. The EViews output is presented in Appendix B and Appendix C.

3.4 Results

The EViews output shows no evidence of cointegration between the three national government bond markets in question. Hence, our hypothesis that there will be evidence of cointegration between national government bond markets could not be proven correct. This is a surprising result considering the developments in worldwide information systems, integration of financial markets and globalisation. Nonetheless, it is also good news for investors who may benefit from portfolio diversification.

4. HYPOTHESIS II: TERM STRUCTURE ANALYSIS

4.1 Data description

The data set for testing Hypothesis II consists of government bond yields from the Euro area (changing composition of government bonds with AAA rating) with maturities of 1 year, 5 years, 10 years and 15 years. All data were subject to logarithmic transformations. The data was obtained from the European Central Bank website. Data was collected for the period from 1 January 2005 to 31 December 2011. For each term structure there is 1825 data points.

4.2 Augmented Dickey-Fuller test

In order to test for stationarity of the data sets we performed the Augmented Dickey-Fuller (ADF) tests with trend. First, the ADF test was applied to the level series. The ADF tests for unit root in levels for all four series were that the series are nonstationary, i.e. the null hypothesis of unit root existence cannot be rejected. In the next step, we tested for unit root existence in first order differences. The result was that all four series are difference stationary, i.e. they all are I(1).

The EViews outputs for both level and first-order differences are presented in Appendix D.

4.3 Johansen procedure

The steps of the Johansen procedure were the same as those described in section 3.3. Having determined that all four series are I(1), we determined the VAR lag order. The EViews output is:

VAR Lag Order Selection Criteria Endogenous variables: L_10Y L_15Y L_1Y L_5Y Exogenous variables: C Date: 01/30/12 Time: 00:04 Sample: 1/03/2005 1/31/2011 Included observations: 1313						
Lag	LogL	LR	FPE	AIC	SC	HQ
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	5808.439 16170.18 16239.05 16250.99 16268.09 16286.51 16306.78 16326.45 16336.20 16367.13 16376.23 16385.76 16402.97 16417.52 16438.05 16462.13	NA 20644.56 136.8035 23.63755 33.76861 36.25071 39.76619 38.45663 19.02583 60.11450 17.62454 18.40904 33.12494 27.94099 39.26722 45.91911*	1.70e-09 2.43e-16 2.25e-16 2.26e-16 2.23e-16 2.22e-16 2.22e-16 2.24e-16 2.24e-16 2.24e-16 2.24e-16 2.24e-16 2.24e-16 2.24e-16 2.24e-16 2.22e-16 2.22e-16	-8.841491 -24.60042 -24.68096 -24.67646 -24.68014 -24.68665 -24.68023 -24.68272 -24.70546* -24.68494 -24.68509 -24.68473 -24.68473 -24.69162 -24.70392	-8 825710 -24.52152 -24.53893* -24.46962 -24.40818 -24.34875 -24.29213 -24.23458 -24.16195 -24.12157 -24.04793 -23.97495 -23.91366 -23.84834 -23.79211 -23.74129	-8.835573 -24.57083 -24.62770* -24.59784 -24.57585 -24.5586 -24.52060 -24.48742 -24.48649 -24.48649 -24.45230 -24.41877 -24.39694 -24.37107 -24.35429 -24.34292
* indicates lag order selected by the criterion LR: sequential modified LR test statistic (each test at 5% level) FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion						

Using the Akaike information criteria (AIC) the lag order was determined to be 9.

The following step was to run the Johansen cointegration procedure. The EViews output is presented in Appendix E and Appendix F.

From the EViews output it can be concluded that the null hypothesis of no cointegration has been rejected. The bond yields with dissimilar maturity structures seem to be cointegrated, usually with one cointegrating vector. Thus we can proceed with the Granger Causality test.

4.4 Granger Causality test

Finally, as a VAR may include many lags of variables, it is often difficult to observe which sets of variables do and which do not have significant effects on each dependent variable. The Granger Causality test aims to address this issue. The method is used to find out whether changes in x_1 cause changes in x_2 . The logic behind it is that if x_1 causes x_2 , lags of x_1 should be significant in the equation for x_2 . If such a relationship exists then it may be assumed that x_1 'Granger causes' x_2 or that there is an unidirectional causality from x_1 to x_2 . The same applies if these variables were reversed. If both sets of lags are significant, the relationship is described as a 'bi-directional causality'.

The EViews output for the Granger Causality test is presented in Appendix G.

The results show significant evidence of lead-lag interactions between the series. The yields on 1-year government bonds 'Granger cause' each of the remaining maturities at a 5% significance level, but there is no causality in the opposite direction. This is consistent with the general intuition that yields on short-term bonds might influence those with longer-term maturities.

4.5 Results

The EViews output showed that the null hypothesis of no cointegration has been rejected. Hence, our hypothesis that there will be evidence of cointegration between government bond markets with dissimilar maturities proved correct. This is not a surprising result considering the introduction of a single currency and the fact that the Euro area countries share a common monetary policy. However, it is also bad news for investors who probably will not benefit from portfolio diversification in terms of maturity structure. What is more, we have found evidence that the yields on short term (1-year) government bonds influence the yields on longer term (5-, 10-, and 15-years) bonds.

5. CONCLUSION

The results of our study are in line with the literature we have reviewed in section 1 of this report. For Hypothesis I, both approaches described in the papers by Mills and Mills (1991) and Clare, Maras and Thomas (1995), as well as our research have suggested that international bond markets are not cointegrated. This implies that investors can gain substantial diversification benefits. Clare, Maras and Thomas (1995) report that the lack of long-term integration between the markets may be due to things like heterogeneous maturity and taxation structures, as well as dissimilar investment cultures, issuance patterns and macroeconomic policies between the countries in question. This would infer that the markets operate mainly independently of one another.

For Hypothesis II, we have found that the null hypothesis of no cointegration has been rejected. Therefore, our hypothesis that there will be evidence of cointegration between

government bond markets with dissimilar maturity structures was correct. This conclusion is supported by the intuition behind the functioning of financial and capital markets in the Euro area. Since the Euro area countries share a common monetary policy, the interest rates are set by the ECB for all countries which are part of the Euro area. The government bond yields are largely influenced by the interest rates and thus a common change in interest rates for these countries will have the same or similar effect on all government bond yields in the Euro area. What is more, we found that long-term bond yields may be influenced by those with short term maturity structure.

Overall, investors may benefit from diversifying their government bonds portfolio in terms of nationality, but there no evidence supporting their eagerness of benefiting from terms structure diversification.

6. REFERENCES

Clare, A., Maras, M., Thomas, S., 1995. The integration and efficiency of international bond markets. *Journal of Business Finance and Accounting* (22), 313-322

Driessen, J., Melenberg, D., Nijman, T., 2003. Common factors in international bond returns. *Journal of International Money and Finance* (22), 629-656.

Mills, T., Mills, A., 1991. The international transmission of bond market movements. *Bulletin of Economic Research* (43), 273-282

7. APPENDICES

7.1 Appendix A

Null Hypotheorie: LOGE	Null Livesthesis: LOCELLikes a unit rest					
Null Hypothesis. LOGE	J has a unit ro	JOL				
Exogenous: Constant, I	inear Trend					
Lag Length: 12 (Automa	atic based on	AIC, MAXLAG	5=30)			
			t-Statistic	Prob.*		
Augmented Dickey-Full	er test statisti	C	-1.833412	0.6881		
Test critical values:	1% level		-3.963937			
	5% level		-3.412693			
	10% level		-3.128317			
*MacKinnon (1996) one	-sided n-value	20				
Macramion (1999) one	-Sidea p-value					
Augmented Dickey-Full	er rest Equat	ion				
Dependent Variable: D(LUGEU)					
Method: Least Squares						
Date: 01/29/12 Time: 2	21:15					
Sample (adjusted): 1/20	/2005 12/23/2	2011				
Included observations:	1560 after adi	ustments				
Variable	Coefficient	Std Error	t-Statistic	Proh		
Variable	ovemeleni	ota. Entor	t otatiotic	1105.		
LOGEU(-1)	-0.005598	0.003053	-1 833412	0.0669		
	0.0003300	0.025490	2 545607	0.0003		
D(LOOCEU(-1))	0.030344	0.025400	1.026020	0.0004		
D(LOGEU(-2))	-0.020206	0.020092	-1.020020	0.3050		
D(LOGE0(-3))	0.006545	0.025035	0.200310	0.7985		
D(LOGEU(-4))	-0.059661	0.025602	-2.330352	0.0199		
D(LOGEU(-5))	0.061335	0.025550	2.400554	0.0165		
D(LOGEU(-6))	-0.041070	0.025584	-1.605304	0.1086		
D(LOGEU(-7))	-0.013044	0.025614	-0.509237	0.6107		
DÌLOGEUÌ-8)	-0.048199	0.025808	-1.867621	0.0620		
D(LOGEU(-9))	0.025147	0.025656	0.980170	0 3272		
D(LOGEU(-10))	0.010834	0.025658	0 422247	0.6729		
D(LOGEU(11))	0.009706	0.025560	0 370720	0.7042		
D(LOGEU(12))	0.003700	0.025524	2.046076	0.0024		
D(LOGE0(-12))	-0.077601	0.020004	-3.040970	0.0024		
C C	0.008239	0.004487	1.836060	0.0665		
@TREND(1/03/2005)	-1.86E-08	5.58E-07	-0.033266	0.9735		
R-squared	0.027001	Mean deper	ndent var	-0.000214		
Adjusted R-squared	0.018184	S.D. depen	dent var	0.011309		
S.E. of regression	0.011205	Akaike info	criterion	-6.135299		
Sum squared resid	0.193987	Schwarz cr	iterion	-6.083833		
Log likelihood	4800 533	Hannan-Qu	inn criter	-6 116164		
E-statistic	3 062414	Durbin-Wat	son stat	1 991245		
Prob(E statistic)	0.000105	Darbit-Wat	Son Stat	1.001240		
rob(F-statistic)	0.000105					

ADF - Euro area bond yields (10Y maturity)

Null Hypothesis: D(LOGEU) has a unit root Exogenous: Constant, Linear Trend Lag Length: 11 (Automatic based on AIC, MAXLAG=30)					
			t-Statistic	Prob.*	
Augmented Dickey-Full	er test statisti	с	-12.58279	0.0000	
Test critical values.	5% level 10% level		-3.412693 -3.128317		
*MacKinnon (1996) one	-sided p-value	es.			
Dependent Variable: D(LOGEU,2) Method: Least Squares Date: 01/29/12 Time: 21:13 Sample (adjusted): 1/20/2005 12/23/2011 Included observations: 1560 after adjustments					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
D(LOGEU(-1)) D(LOGEU(-1),2) D(LOGEU(-2),2) D(LOGEU(-3),2) D(LOGEU(-4),2) D(LOGEU(-5),2) D(LOGEU(-5),2) D(LOGEU(-6),2) D(LOGEU(-8),2) D(LOGEU(-8),2) D(LOGEU(-9),2) D(LOGEU(-11),2) C @TREND(1/03/2005)	-1.101588 0.188761 0.158968 0.162132 0.098822 0.156828 0.112189 0.095741 0.044255 0.066505 0.074304 0.081052 7.86E-05 -3.30E-07	0.087547 0.083606 0.079569 0.075203 0.070226 0.065365 0.060514 0.055662 0.049126 0.042422 0.034608 0.025492 0.000571 5.32E-07	-12.58279 2.257751 1.997864 2.155911 1.407212 2.399273 1.853952 1.720043 0.900856 1.567717 2.147025 3.179541 0.137704 -0.620712	0.0000 0.024 0.0456 0.0312 0.1596 0.0166 0.0656 0.3676 0.1172 0.0319 0.0016 0.0016 0.0319 0.0016 0.5349	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.467086 0.462604 0.011214 0.194409 4798.838 104.2329 0.000000	Mean deper S.D. depen Akaike info Schwarz cr Hannan-Qu Durbin-Wat	ndent var dent var criterion iterion inn criter. Ison stat	-3.54E-06 0.015297 -6.134408 -6.086373 -6.116548 1.991561	

ADF - US bond yields (10Y maturity)

Null Hypothesis: LOGUS has a unit root Exogenous: Constant, Linear Trend Lag Length: 16 (Automatic based on AIC, MAXLAG=30)							
			t-Statistic	Prob.*			
Augmented Dickey-Full Test critical values:	-1.885924 -3.971586 -3.416430 -3.130531	0.6607					
*MacKinnon (1996) one	*MacKinnon (1996) one-sided p-values.						
Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOGUS) Method: Least Squares Date: 01/29/12 Time: 21.16 Sample (adjusted): 2/10/2005 12/23/2011 Included observations: 681 after adjustments							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
LOGUS(-1) D(LOGUS(-2)) D(LOGUS(-2)) D(LOGUS(-3)) D(LOGUS(-3)) D(LOGUS(-5)) D(LOGUS(-6)) D(LOGUS(-6)) D(LOGUS(-7)) D(LOGUS(-10)) D(LOGUS(-10)) D(LOGUS(-12)) D(LOGUS(-12)) D(LOGUS(-14)) D(LOGUS(-15))	-0.011172 -0.071255 -0.090119 -0.056369 -0.047371 -0.03304 0.022603 0.085009 0.063145 0.010931 -0.035975 0.044306 0.015870 0.004744 0.030122 -0.050299 0.019107 -5.83E-06	0 005924 0 040001 0 039983 0 039883 0 038835 0 038845 0 038869 0 038989 0 038989 0 038989 0 038989 0 038989 0 038989 0 038989 0 04085 0 040615 0 040615 0 040615 0 040615 0 04062 0 04062 0 04092 0 039349 0 009802 2 43E-06	-1.885924 -1.781318 -2.253928 -1.376440 -1.1376440 -1.1376440 -1.137647 -1.376783 -0.579366 -0.273994 -1.036634 -0.912938 -1.090877 -0.387317 -0.117530 -0.387317 -1.278271 -1.278271 -2.401690	0.0597 0.0753 0.0245 0.2865 0.3914 0.5625 0.0283 0.1115 0.7842 0.3003 0.3616 0.2757 0.6986 0.9065 0.4531 0.2016 0.0517 0.0166			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.041534 0.015473 0.019866 0.261264 1712.003 1.593720 0.055943	Mean deper S.D. depend Akaike info Schwarz cr Hannan-Qu Durbin-Wat	ident var dent var criterion iterion inn criter. son stat	-0.000705 0.020022 -4.972109 -4.845901 -4.923260 1.963874			

Null Hypothesis: D(LOGUS) has a unit root Exogenous: Constant, Linear Trend Lag Length: 15 (Automatic based on AIC, MAXLAG=30)					
			t-Statistic	Prob.*	
Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level			-6.883988 -3.971586 -3.416430 -3.130531	0.0000	
*MacKinnon (1996) one	-sided p-value	es.			
Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOGUS,2) Method: Least Squares Date: 01/29/12 Time: 21:11 Sample (adjusted). 2/10/2005 12/23/2011 Included observations: 681 after adjustments					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
D(LOGUS(-1)) D(LOGUS(-1),2) D(LOGUS(-2),2) D(LOGUS(-3),2) D(LOGUS(-3),2) D(LOGUS(-3),2) D(LOGUS(-5),2) D(LOGUS(-5),2) D(LOGUS(-10),2) D(LOGUS(-10),2) D(LOGUS(-11),2) D(LOGUS(-11),2) D(LOGUS(-13),2) D(LOGUS(-14),2) D(LOGUS(-14),2) D(LOGUS(-15),2) C @TREND(1/03/2005)	-1.222825 0.143173 0.043269 -0.025401 -0.085314 -0.085314 -0.122181 -0.049334 -0.00737 -0.002852 0.027209 -0.018669 0.017451 0.025315 0.024845 0.051589 0.000852 -2.27E-06	0.177633 0.171033 0.163029 0.156116 0.149866 0.143588 0.138132 0.132257 0.124575 0.116318 0.108176 0.100007 0.088565 0.075202 0.058782 0.039419 0.001548 1.53E-06	6.883988 0.837111 0.265406 -0.162703 -0.569267 -0.917687 -0.373016 -0.0024523 -0.251522 -0.185681 0.336642 0.336642 0.416537 1.308741 .308741	0.0000 0.4028 0.7908 0.5694 0.3591 0.3767 0.7093 0.9953 0.9804 0.8015 0.8528 0.8439 0.7365 0.6772 0.1382	
R-squared 0.533411 Mean dependent var Adjusted R-squared 0.00057(0.02877) S.E. of regression 0.521447 S.D. dependent var 0.019904 0.02877 S.E. of regression 0.019904 Akaike info criterion 0.262668 -4.96968 Sum squared resid 0.262668 Schwarz criterion 14nnan-Quinn criter. -4.85012 Log likelihood 1710.179 Hannan-Quinn criter. -4.92341 F-statistic 44.58537 Durbin-Watson stat 1.958672 Prob(F-statistic) 0.000000					

ADF - Japanese bond yields (10Y maturity)

Exogenous: Constant, Linear Trend Lag Length: 12 (Automatic based on AIC, MAXLAG=30)				
			t-Statistic	Pro
Augmented Dickey-Ful	ler test statisti	с	-7.629128	0.00
Test critical values:	1% level		-3.969549	
	5% level		-3.415436	
	10% level		-3.129943	
*MacKinnon (1996) one	e-sided p-valu	es.		
Dependent Variable: D(LOGJP,2) Method: Least Squares Date: 01/29/12 Time: 21:12 Sample (adjusted): 1/31/2005 12/22/2011 Included observations: 801 after adjustments				
Variable	Coefficient	Std. Error	t-Statistic	Pr
D(LOGJP(-1))	-0.998994	0.130945	-7.629128	0.0
D(LOGJP(-1),2)	-0.053707	0.126098	-0.425915	0.6
D(LOGJP(-2),2)	-0.075377	0.119687	-0.629784	0.5
D(LOGJP(-3),2)	-0.014070	0.113659	-0.123796	0.
D(LOGJP(-4),2)	0.031847	0.107816	0.295381	0.1
D(LOGJP(-5),2)	0.064665	0.101857	0.634862	0.(
D(LOGJP(-6),2)	0.072623	0.096326	0.753928	0.4
D(LOGJP(-7),2)	0.043239	0.090287	0.478914	0.6
D(LOGJP(-8),2)	-0.036586	0.083486	-0.438225	0.0
D(LOGJP(-9),2)	-0.121302	0.075830	-1.599529	0.1
D(LOGJF(-10),2)	-0.120300	0.0000004	-1.911922	0.0
	-0.040360	0.031313	-0.763673	0.4
D(LOGJP(-11),2)	1111151205		-0.434110	0.0
D(LOGJP(-11),2) D(LOGJP(-12),2)	-0.015186 4.81E-05	0.001198	0.040122	- 09
D(LOGJP(-11),2) D(LOGJP(-12),2) C @TREND(1/03/2005)	-0.015186 4.81E-05 -1.46E-06	0.001198 1.17E-06	0.040122 -1.252734	0.9 0.2
D(LOGJP(-11),2) D(LOGJP(-12),2) C @TREND(1/03/2005) R-squared	-0.015186 4.81E-05 -1.46E-06 0.533538	0.001198 1.17E-06 Mean deper	0.040122 -1.252734	0.9 0.2 -0.000
D(LOGJP(-11),2) D(LOGJP(-12),2) C @TREND(1/03/2005) R-squared Adjusted R-squared	-0.015186 4.81E-05 -1.46E-06 0.533538 0.525229	0.001198 1.17E-06 Mean depen	0.040122 -1.252734 Indent var dent var	0.9 0.2 -0.000 0.025
D(LOGJP(-11),2) D(LOGJP(-12),2) C @TREND(1/03/2005) R-squared Adjusted R-squared S.E. of regression	-0.015186 4.81E-05 -1.46E-06 0.533538 0.525229 0.017278	0.001198 1.17E-06 Mean depen S.D. depen Akaike info	0.040122 -1.252734 Indent var dent var criterion	0.9 0.2 -0.000 0.025 -5.260
D(LOGJP(-11),2) D(LOGJP(-12),2) @TREND(1/03/2005) R-squared Adjusted R-squared S.E. of regression Sum squared resid	-0.015186 4.81E-05 -1.46E-06 0.533538 0.525229 0.017278 0.234647	0.001198 1.17E-06 Mean depen S.D. depen Akaike info Schwarz cr	0.040122 -1.252734 Indent var dent var criterion iterion	0.9 0.2 -0.000 0.025 -5.260 -5.172
D(LOGJP(-11),2) D(LOGJP(-12),2) C @TREND(1/03/2005) R-squared Adjusted R-squared S E. of regression Sum squared resid Log likelihood	-0.015186 4.81E-05 -1.46E-06 0.533538 0.525229 0.017278 0.234647 2121.712	0.001198 1.17E-06 Mean deper S.D. depen Akaike info Schwarz cr Hannan-Qu	0.040122 -1.252734 Indent var dent var criterion iterion inn criter.	0.9 0.2 -0.000 0.025 -5.260 -5.172 -5.226
D(LOGJP(-11),2) D(LOGJP(-12),2) C @TREND(1/03/2005) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	-0.015186 4.81E-05 -1.46E-06 0.533538 0.525229 0.017278 0.234647 2121.712 64.21592	0.001198 1.17E-06 Mean deper S.D. depen Akaike info Schwarz cr Hannan-Qu Durbin-Wat	0.040122 -1.252734 Indent var dent var criterion iterion inn criter. son stat	-0.000 0.025 -5.260 -5.172 -5.226 2.041

7.2 Appendix B

Null Hypothesis: LOGJP has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic based on AIC, MAXLAG=30)

10% level

Coefficient

-0.011004

0.006380 -3.46E-06

0.007244 0.006025 0.018318 0.546280 4210.993 5.939904 0.002690 Std. Error

0.003385

0.002050 1.15E-06

Mean dependent var S.D. dependent var Akaike info criterion

Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat

Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level

*MacKinnon (1996) one-sided p-values.

Variable

LOGJP(-1) C @TREND(1/03/2005)

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOGJP) Method: Least Squares Date: 01/29/12 Time: 21:16 Sample (adjusted): 1/05/2005 12/30/2011 Included observations: 1631 after adjustments t-Statistic

-3.251035 -3.963680 -3.412567 -3.128243

t-Statistic

-3.251035 3.112137 -3.009436 Prob *

0.0750

Prob.

0.0012 0.0019 0.0027

-0.000497 0.018374 -5.160016 -5.150089 -5.156333 2.023774

Johansen procedure – summary

Sample: 1/03	3/2005 12/30/2	011					
Included observations: 1252							
Series: LOG	EU LOGUS LO	OGJP					
Lags interval: 1 to 2							
Selected (U.	05 level*) Num	iber of Cointe	grating Relation	ons by Model			
Data Trend:	None	None	Linear	Linear	Quadratic		
Test Type	No Intercept	Intercept	Intercept	Intercept	Intercept		
	No Trend	No Trend	No Trend	Trend	Trend		
Trace	0	0	0	0	0		
Max-Eig	0	0	0	0	0		
*Critical valu	ies based on N	lacKinnon-Ha	ug-Michelis ('	1999)			
Information (Critoria by Par	k and Model					
Information	Chilena by Ital	ik and model					
Data Trend:	None	None	Linear	Linear	Quadratic		
Rank or	No Intercept	Intercept	Intercept	Intercept	Intercept		
No. of CEs	No Trend	No Trend	No Trend	Trend	Trend		
	Log Likelihoo	d by Rank (ro	ws) and Mode	el (columns)			
0	10470.00	10470.00	10472.26	10472.26	10473.41		
1	10474.14	10478.86	10480.39	10480.60	10481.67		
2	10477.04	10482.78	10483.22	10484.22	10484.70		
3	10477.11	10483.23	10483.23	10485.85	10485.85		
	AL 3 L 4				()		
0	Akaike Inform	ation Criteria	by Rank (row	s) and Model	(columns)		
0	-10.09049	-10.09049	-10.09530	-10.09530	-10.09234		
1	-16.69352	-16.69946*	-16.69870	-16.69744	-16.69596		
2	-10.08850	-16.69453	-16.69364	-16.69205	-16.69121		
3	-16.67909	-16.68407	-16.68407	-16.68346	-16.68346		
	Schwarz Crit	teria by Rank	(rows) and M	odel (columns)		
0	-16.62270*	-16.62270*	-16.60921	-16.60921	-16.59396		
1	-16.59514	-16.59697	-16.58802	-16.58265	-16.57298		
2	-16.56558	-16.56335	-16.55836	-16.54857	-16.54364		
3	-16.53151	-16.52419	-16.52419	-16.51128	-16.51128		

7.3 Appendix C

Johansen procedure – final output

Sample (adjusted): 1/06/2005 12/30/2011 Included observations: 1373 after adjustments Trend assumption: Linear deterministic trend Series: LOGEU LOGUS LOGJP Lags interval (in first differences): 1 to 1 Unrestricted Cointegration Rank Test (Trace)							
Hypothesized Trace 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.**							
None At most 1 At most 2	0.008245 0.003902 2.99E-06	16.73867 5.371990 0.004103	29.79707 15.49471 3.841466	0.6593 0.7681 0.9476			
Trace test indicates no cointegration at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Figenvalue)							
Hypothesized No. of CE(s)	Hypothesized Max-Eigen 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.**						
None At most 1 At most 2	0.008245 0.003902 2.99E-06	11.36668 5.367887 0.004103	21.13162 14.26460 3.841466	0.6107 0.6949 0.9476			
Max-eigenvalue test indicates no cointegration at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values							

7.4 Appendix D

Null Hypothesis: L_1Y has a unit root					
Exogenous: Constant, Linear Trend					
Lag Length: 14 (Automa	tic based on	AIC, MAXLAG	i=15)		
				-	
			t-Statistic	Prob.*	
Augmented Diskov Full	or toot statisti	<u>_</u>	1 700200	0 7002	
Augmented Dickey-Full	10/ loval	L	2 065050	0.7092	
rest critical values.	5% lovel		-3.903030		
	10% lovel		2 120640		
	10% level		-3.120040		
*Macklinnon (1006) ono	cided p value				
Macromoti (1990) one	-sided p-value				
Augmented Dickey Full	ar Toot Equat	ion			
Dependent Variable: D(1011			
Method: Least Squares	L_11)				
Date: 01/20/12 Time: 1	02.52				
Sample (adjusted): 1/2/	10.02	011			
Sample (adjusted). 1/24	1210 offer edi	Untranto			
included observations.	is is aller auj	usiments			
Variable	Coefficient	Std Error	t-Statistic	Prob	
Van de la	obemeient	ota: Entit	t-otatistic	1100.	
L 1Y(-1)	-0.004088	0.002284	-1.790299	0.0736	
$D(\overline{L} 1 Y(-1))$	0.076781	0.027588	2.783094	0.0055	
D(L 1Y(-2))	-0.041513	0.027632	-1.502352	0.1332	
D(L 1Y(-3))	-0.027701	0.027613	-1.003200	0.3160	
D(L 1Y(-4))	-0.068330	0.027564	-2.478982	0.0133	
D(L 1Y(-5))	0.028245	0.027638	1.021969	0.3070	
D(L 1Y(-6))	0.036448	0.027811	1.310558	0.1902	
D(1 - 1Y(-7))	-0.013942	0 027813	-0 501257	0.6163	
D(1 - 1Y(-8))	-0.047066	0.027851	-1 689940	0.0913	
D(1 - 1Y(-9))	-0.026789	0.027889	-0.960537	0.3370	
D(1 - 1Y(-10))	0.050936	0.027947	1 822559	0.0686	
D(1 - 1Y(-11))	-0.091491	0.027866	-3 283258	0.0011	
D(1 - 1Y(-12))	0.002973	0.027975	0 106271	0.9154	
D(1 - 1Y(-13))	0.042685	0.028097	1 519199	0 1290	
$D(L_1Y(-14))$	-0.076281	0.028190	-2 706018	0.0069	
	0.006985	0.003935	1 775405	0.0761	
@TREND(1/03/2005)	4 75E 06	2.895.06	1 642776	0 1007	
@TREND(1/03/2003)	-4.73L-00	2.092-00	-1.042110	0.1007	
R-squared	0.038155	Mean deper	ndent var	9 25E-06	
Adjusted R-squared	0.026281	S.D. depen	dent var	0.036719	
S F of regression	0.036233	Akaike info	riterion	-3 784812	
Sum squared resid	1 701459	Schwarz cr	iterion	-3 717743	
Log likelihood	2501 729	Hannan-Ou	inn criter	-3 759660	
E etatietic	2 212106	Durbin Wat	eon etat	2 013/35	
Prob(E statistic)	0.000019	Durbin-wat	Son side	2.013433	
	0.000010				

ADF - Euro area bond with maturity of 1 year

Null Hypothesis: D(L_1Y) has a unit root							
Lag Length: 13 (Automa	Exogenous. Constant, Linear Trend Lag Length: 13 (Automatic based on AIC, MAXLAG=15)						
Eug Eongan. To (Automa		10, 11 012 10	,				
			t-Statistic	Prob.*			
Augmented Dickey-Full	Augmented Dickey-Fuller test statistic						
Test critical values:	1% level		-3.965050				
	5% level		-3.413237				
	10% level		-3.128640				
*MacKinnon (1996) one	e-sided p-value	es.					
Augmented Dickey-Full	er Test Equat	ion					
Dependent Variable: D(L 1Y.2)						
Method: Least Squares							
Date: 01/29/12 Time: 2	23:53						
Sample (adjusted): 1/24	4/2005 1/31/20	011					
included observations:	1313 after adj	ustments					
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
D(L 1Y(-1))	-1.173590	0.108948	-10.77206	0.0000			
D(L_1Y(-1),2)	0.248828	0.104888	2.372316	0.0178			
D(L_1Y(-2),2)	0.205560	0.100194	2.051618	0.0404			
D(L_1Y(-3),2)	0.176286	0.095295	1.849907	0.0646			
$D(L_1Y(-4),2)$	0.106531	0.090746	1.173942	0.2406			
$D(L_1T(-5),2)$ $D(L_1Y(-6),2)$	0.133310	0.065419	2 106023	0.1103			
$D(L_1Y(-7),2)$	0.153051	0.074849	2 044803	0.0334			
$D(L_1Y(-8),2)$	0.104543	0.069321	1.508086	0.1318			
D(L 1Y(-9),2)	0.076424	0.062898	1.215037	0.2246			
D(L_1Y(-10),2)	0.126131	0.055279	2.281709	0.0227			
D(L_1Y(-11),2)	0.033316	0.047861	0.696102	0.4865			
D(L_1Y(-12),2)	0.035279	0.038906	0.906784	0.3647			
D(L_1Y(-13),2)	0.077137	0.028209	2.734448	0.0063			
C	0.000918	0.002000	0.458901	0.6464			
@TREND(1/03/2005)	-1.29E-06	2.15E-06	-0.598961	0.5493			
R-squared	0.485004	Mean deper	ident var	4.86E-05			
Adjusted R-squared	0.479048	S.D. depend	dent var	0.050243			
S.E. of regression	0.036264	Akaike info o	criterion	-3.783865			
Sum squared resid	1.705667	Schwarz cri	iterion	-3.720742			
Log likelihood	2500.107	Hannan-Qui	inn criter.	-3.760193			
F-statistic	81.43122	Durbin-Wat	son stat	2.013603			
Prod(F-statistic)	0.000000						

ADF - Euro area bond with maturity of 5 years

Null Hypothesis: L_5Y has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic based on AIC, MAXLAG=15)						
			t-Statistic	Prob.*		
Augmented Dickey-Full Test critical values:	-2.213322 -3.964101 -3.412773 -3.128365	0.4812				
*MacKinnon (1996) one	-sided p-value	es.				
Augmented Dickey-Fuller Test Equation Dependent Variable: D(L_5Y) Method: Least Squares Date: 01/29/12 Time: 23:54 Sample (adjusted): 1/05/2005 1/31/2011 Included observations: 1518 after adjustments						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
L_5Y(-1) D(L_5Y(-1)) C @TREND(1/03/2005)	-0.006151 0.023556 0.008315 1.61E-07	0.002779 0.025708 0.003768 6.41E-07	-2.213322 0.916300 2.206621 0.250811	0.0270 0.3597 0.0275 0.8020		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.003659 0.001685 0.011326 0.194228 4649.631 1.853498 0.135553	Mean dependent var 7.67E-0.000 S.D. dependent var 0.01133 Akaike info criterion -6.12073 Schwarz criterion -6.10663 Hannan-Quinn criter. -6.11555 Durbin-Watson stat 2.01287				

Null Hypothesis: D(L_5Y) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic based on AIC, MAXLAG=15)					
			t-Statistic	Prob.*	
Augmented Dickey-Full Test critical values:	-38.10015 -3.964101 -3.412773 -3.128365	0.0000			
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(L_5Y,2) Method: Least Squares Date: 01/29/12 Time: 23:55 Sample (adjusted): 1/05/2005 1/31/2011 Isoluded adjusted): 1/05/2005 1/31/2011					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
D(L_5Y(-1)) C @TREND(1/03/2005)	-0.979406 7.40E-05 -8.31E-08	0.025706 0.000580 6.32E-07	-38.10015 0.127538 -0.131429	0.0000 0.8985 0.8955	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.489318 0.488644 0.011341 0.194856 4647.179 725.8115 0.000000	3 Mean dependent var 2.50E-0. 4 S.D. dependent var 0.01585: 1 Akaike info criterion -6.11881: 3 Schwarz criterion -6.11881: 9 Hannan-Quinn criter. -6.11489: 5 Durbin-Watson stat 2.01275:			

ADF - Euro area bond with maturity of 10 years

Null Hypothesis: L_10Y has a unit root Exogenous: Constant, Linear Trend Lag Length: 8 (Automatic based on AIC, MAXLAG=15)					
			t-Statistic	Prob.*	
Augmented Dickey-Full Test critical values: *MacKinnon (1996) one	er test statisti 1% level 5% level 10% level -sided p-value	c es.	-2.327837 -3.964608 -3.413021 -3.128512	0.4179	
Augmented Dickey-Fuller Test Equation Dependent Variable: D(L_10Y) Method: Least Squares Date: 01/29/12 Time: 23:58 Sample (adjusted): 1/14/2005 1/31/2011 Included observations: 1401 after adjustments					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
L_10Y(-1) D(L_10Y(-2)) D(L_10Y(-2)) D(L_10Y(-3)) D(L_10Y(-3)) D(L_10Y(-4)) D(L_10Y(-6)) D(L_10Y(-6)) D(L_10Y(-7)) D(L_10Y(-7)) C @TREND(1/03/2005)	-0.007450 0.124520 -0.039335 0.032348 -0.026413 0.066960 -0.004747 -0.059505 0.010444 8.86E-07	0.003200 0.026829 0.027062 0.026972 0.026967 0.026756 0.026756 0.026742 0.026609 0.004588 6.97E-07	-2.327837 4.641215 -1.453533 1.199355 -0.979466 1.825901 -2.502585 -0.177504 -2.236278 2.276449 1.271549	0.0201 0.0000 0.1463 0.2306 0.3275 0.0681 0.0124 0.8591 0.0255 0.0230 0.2037	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.029308 0.022325 0.010194 0.144459 4442.450 4.196847 0.000009	Mean dependent var -0.000158 S.D. dependent var 0.010311 Akaike info criterion -6.326122 Schwarz criterion -6.284942 Hannan-Quinn criter. -8.310733 Durbin-Watson stat 1.988924			

Vull Hypothesis: D(L_10Y) has a unit root Exogenous: Constant, Linear Trend Lag Length: 7 (Automatic based on AIC, MAXLAG=15)					
			t-Statistic	Prob.*	
Augmented Dickey-Full	er test statisti	с	-14.58721	0.0000	
Test critical values:	1% level		-3.964608		
	5% level		-3.413021		
	10% level		-3.128512		
*MacKinnon (1996) one	-sided p-valu	es.			
Dependent Variable: D(Method: Least Squares Date: 01/29/12 Time: 2 Sample (adjusted): 1/14 ncluded observations:	'L_10Y,2) 23:58 4/2005 1/31/2 1401 after adj	011 ustments			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
D(L_10Y(-1))	-1.021207	0.070007	-14.58721	0.000	
D(L_10Y(-1),2)	0.142274	0.065041	2.187460	0.028	
D(L_10Y(-2),2)	0.098810	0.059968	1.647706	0.099	
D(L_10Y(-3),2)	0.127331	0.055208	2.306376	0.021	
D(L_10Y(-4),2)	0.096881	0.049297	1.965258	0.049	
D(L_10Y(-5),2)	0.142426	0.043043	3.308904	0.001	
D(L_10Y(-6),2)	0.071697	0.035274	2.032590	0.042	
D(L_101(-7),2)	0.003509	0.020590	2.38/930	0.017	
@TREND(1/03/2005)	1.55E-08	5.89E-07	0.026273	0.979	
R-squared	0.447964	Mean deper	ident var	-6.70E-0	
Adjusted R-squared	0.444392	S.D. dependent var 0.01369			
S.E. of regression	0.010211	Akaike info criterion -6.32366			
Sum squared resid	0.145022	Schwarz cri	iterion	-6.28622	
		Hannan-Quinn criter6.30966			
Log likelihood	4439.724	Hannan-Qu	inn chiter.	-0.30900	
Log likelihood F-statistic	4439.724 125.4182	Hannan-Qu Durbin-Wat	son stat	1.98897	

ADF - Euro area bond with maturity of 15 years

Exogenous: Constant, Linear Trend Lag Length: 14 (Automatic based on AIC, MAXLAG=15)					
			t-Statistic	Prob.*	
Augmented Dickey-Full	er test statisti	с	-1.983983	0.6090	
Test critical values:	1% level		-3.965050		
	5% level		-3.413237		
-	10% level		-3.128640		
*MacKinnon (1996) one	-sided p-value	es.			
Augmented Dickey-Full	er Test Fouat	ion			
Dependent Variable: D(1 15Y)				
Method: Least Squares					
Date: 01/29/12 Time: 2	23:59				
Sample (adjusted): 1/24	4/2005 1/31/20	011			
Included observations:	1313 after adj	ustments			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
L 15Y(-1)	-0.006521	0.003287	-1.983983	0.0475	
D(L_15Y(-1))	0.161107	0.027812	5.792731	0.0000	
D(L_15Y(-2))	-0.017867	0.028171	-0.634230	0.5260	
D(L_15Y(-3))	-0.014818	0.028103	-0.527255	0.5981	
D(L_15Y(-4))	-0.091055	0.028071	-3.243710	0.0012	
D(L_15Y(-5))	0.058805	0.028192	2.085903	0.0372	
D(L_15Y(-6))	-0.052692	0.028164	-1.870899	0.0616	
D(L_15Y(-7))	0.008882	0.028192	0.315069	0.7528	
D(L_15Y(-8))	-0.074247	0.028273	-2.626040	0.0087	
D(L_15Y(-9))	0.016063	0.028130	0.571028	0.5681	
D(L_15Y(-10))	0.031238	0.028183	1.108393	0.2679	
D(L_15Y(-11))	-0.066917	0.028045	-2.386079	0.0172	
D(L_15Y(-12))	-0.042144	0.027987	-1.505807	0.1324	
D(L_15Y(-13))	0.031345	0.027839	1.120908	0.2604	
D(L_151(-14))	-0.000347	0.027904	-2.377000	0.0176	
@TREND(1/03/2005)	2.85E-08	7.16E-07	0.039795	0.9683	
R cauared	0.054530	Mean dener	dent var	0.000257	
Adjusted R squared	0.034330	S D dependent var 0.0120			
S E of regression	0.011822	Akaike info criterion 6.0240			
Sum squared resid	0 181114	Schwarz criterion 5.05705			
l og likelihood	3972 365	Hannan-Ouinn criter 5 0007			
E-statistic	4 671680) Durbin-Watson stat 1 98353			
Prob(F-statistic)	0.000000	Carbin Wat	oon otur		

7.5 Appendix E

Johansen procedure - summary

Sample: 1/03/2005 1/31/2011 Included observations: 1386 Series: L_10Y L_15Y L_1Y L_5Y Lags interval: 1 to 9						
Selected (0.	05 level*) Num	ber of Cointe	grating Relation	ons by Model		
Data Trend:	None	None	Linear	Linear	Quadratic	
Test Type	No Intercept No Trend	Intercept No Trend	Intercept No Trend	Intercept Trend	Intercept Trend	
Trace	2	1	2	2	2	
Max-Eig	2	2	2	2	2	
*Critical valu	ies based on N	lacKinnon-Ha	ug-Michelis (1999)		
Information	Criteria by Ran	k and Model				
Data Trend:	None	None	Linear	Linear	Quadratic	
Rank or	No Intercept	Intercept	Intercept	Intercept	Intercept	
No. of CEs	No Trend	No Trend	No Trend	Trend	Trend	
	Log Likelihoo	d by Rank (ro	ws) and Mode	el (columns)		
0	17315.76	17315.76	17316.42	17316.42	17316.66	
1	17330.52	17331.19	17331.84	17334.02	17334.07	
2	1/341.50	1/342.45	17342.60	17349.41	17349.42	
3	1/342.79	1/346./1	1/346./1	17354.58	1/354.58	
4	17342.79	17347.50	17347.50	17357.74	17357.74	
	Akaike Inform	nation Criteria	by Rank (row	s) and Model	(columns)	
0	-24.77887	-24.77887	-24.77405	-24.77405	-24.76862	
1	-24.78864	-24.78815	-24.78476	-24.78647	-24.78221	
2	-24.79293	-24.79142	-24.78874	-24.79569*	-24.79282	
3	-24.78325	-24.78457	-24.78313	-24.79015	-24.78872	
4	-24.77171	-24.77273	-24.77273	-24.78173	-24.78173	
	Schwarz Criteria by Rank (rows) and Model (columns)					
0	-24.23506*	-24.23506*	-24.21514	-24.21514	-24.19460	
1	-24.21461	-24.21036	-24.19563	-24.19356	-24.17797	
2	-24.18870	-24.17963	-24.16940	-24.16879	-24.15837	
3	-24.14880	-24.13880	-24.13358	-24.12927	-24.12406	
4	-24.10705	-24.09297	-24.09297	-24.08686	-24.08686	

7.6 Appendix F

Johansen procedure – final output

		1 Cointegrating E	quation(s):	Log likelihood	18621.68
		Normalized cointe L_1Y 1.000000	egrating coeffi L_5Y -6.184998 (0.59847)	cients (standard e L_10Y 11.91442 (0.82863)	rror in parentheses) L_15Y -6.278680 (0.98518)
Date: 01/30/12 Time: 01:10 Sample (adjusted): 1/06/2005 1/31/2011 Included observations: 1498 after adjustments Trend assumption: Linear deterministic trend Series: L_1Y L_5Y L_10Y L_15Y Lags interval (in first differences): 1 to 2 Unrestricted Cointegration Rank Test (Trace)	0.05	Adjustment coeffi D(L_1Y) D(L_5Y) D(L_10Y) D(L_15Y)	cients (standa -0.003032 (0.00492) 0.002755 (0.00159) -0.002298 (0.00142) -0.000929 (0.00162)	ard error in parenth	ieses)
No. of CE(s) Eigenvalue Statistic Critic	al Value Prob.**	2 Cointegrating E	quation(s):	Log likelihood	18635.25
None * 0.021367 69.34365 47 At most 1 * 0.017943 36.98920 29 At most 2 0.005558 9.865758 15 At most 3 0.001012 1.517202 3.6	.85613 0.0002 .79707 0.0062 .49471 0.2912 341466 0.2180	Normalized cointe L_1Y 1.000000	egrating coeffi L_5Y 0.000000	cients (standard e L_10Y 15.68151 (1.83032)	rror in parentheses) L_15Y -16.98906 (1 81279)
Trace test indicates 2 cointegrating eqn(s) at the 0.05 * denotes rejection of the hypothesis at the 0.05 level	level	0.000000	1.000000	0.609068 (0.31691)	-1.731671 (0.31388)
Unrestricted Cointegration Rank Test (Maximum Eiger	ivalue)	Adjustment coeffi D(L_1Y)	cients (standa 0.001866	ard error in parenth 0.023754	neses)
Hypothesized Max-Eigen (No. of CE(s) Eigenvalue Statistic Critic	0.05 al Value Prob.**	D(L_5Y)	(0.00534) 0.003437 (0.00172)	(0.03046) -0.016343 (0.00984)	
None * 0.021367 32.35445 27 At most 1 * 0.017943 27.12344 21 At most 2 0.005558 8.348556 14 At most 3 0.001012 1.517202 38	.58434 0.0113 .13162 0.0063 .26460 0.3444 .41466 0.2180	D(L_10Y)	-0.000358 (0.00154) 0.002386 (0.00175)	0.016191 (0.00879) 0.009133 (0.00998)	
Max-eigenvalue test indicates 2 cointegrating eqn(s) a	t the 0.05 level	3 Cointegrating E	quation(s):	Log likelihood	18639.42
**MacKinnon-Haug-Michelis (1999) p-values	(b)*C11*b=1);	Normalized cointe	egrating coeffi L_5Y	cients (standard e	rror in parentheses) L_15Y
	_15Y	0.000000	1.000000	0.000000	-99.12780 (31.2755) -4.921931
-5.421626 33.53275 -64.59555 34 2.307438 2.356576 37.61943 -43 -1.158170 -1.193407 -20.67035 12 0.773794 4.036806 -13.38889 8.4	.04066 .28202 .41073 129569	0.000000	0.000000	1.000000	(1.24306) 5.237935 (1.98200)
LInrestricted Adjustment Coefficients (alpha):		Adjustment coeffi D(L_1Y)	cients (standa -0.000132	ard error in parenth 0.021695	neses) 0.008065 (0.07010)
D(L_1Y) 0.000559 0.002123 0.0	001725 -0.000656	D(L_5Y)	(0.00543) 0.002665 (0.00175)	-0.017139 (0.00983)	0.030162 (0.02266)
D(L_5Y) -0.000508 0.000296 0.0 D(L_10Y) 0.000424 0.000841 0.0 D(L_15Y) 0.000171 0.001437 0.0	000667 0.000177 000364 0.000177 000197 9.91E-05	D(L_10Y) D(L_15Y)	-0.000779 (0.00157) 0.002157	0.015757 (0.00879) 0.008897	-0.003272 (0.02027) 0.038897 (0.02301)

7.7 Appendix G

Granger causality - results

VAR Granger Causality/Block Exogeneity Wald Tests Date: 01/30/12 Time: 02:33 Sample: 1/03/2005 1/31/2011 Included observations: 1518						
Dependent var	iable: L_10Y					
Excluded	Chi-sq	df	Prob.			
L_15Y L_1Y L_5Y	3.242882 12.18306 3.499220	2 2 2	0.1976 0.0023 0.1738			
All	22.18631	6	0.0011			
Dependent var	iable: L_15Y					
Excluded	Chi-sq	df	Prob.			
L_10Y L_1Y L_5Y	25.05469 7.548990 3.613910	2 2 2	0.0000 0.0229 0.1642			
All	54.82395	6	0.0000			
Dependent var	iable: L_1Y					
Excluded	Chi-sq	df	Prob.			
L_10Y L_15Y L_5Y	0.066374 0.971378 1.001297	2 2 2	0.9674 0.6153 0.6061			
All	9.951341	6	0.1267			
Dependent variable: L_5Y						
Excluded	Chi-sq	df	Prob.			
L_10Y L_15Y L_1Y	1.637658 5.914305 8.209471	2 2 2	0.4409 0.0520 0.0165			
All	All 14.72832 6 0.0225					