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1 Introduction

In many applications, the driving forces behind the evolution of economic
variables are (at least partially) not observable or measurable. For example,
on an individual level a person’s income may depend on its intelligence, spe-
cial abilities, social skills, and so on. Obviously, these variables cannot be
measured directly. Similarly, on an aggregate level, economic theory suggests
that macroeconomic variables such as economic growth are driven by unob-
servable factors, e.g. technological change or human capital accumulation.
When explanatory variables are not observable, standard VAR models
can no longer be applied to study the evolution of the endogenous variables.
However, it is easy to extend the VAR framework to analyze scenarios with
unobservable explanatory variables by using state space models.

2 State Space models

State space models allow the researcher to model an observed (multiple) time
series, {y:}_,, as being explained by a vector of (possibly unobserved) state
variables, {2;}L_,, which are driven by a stochastic process. A basic linear
state space model takes the following form:

ye = Hz + vy, vy ~ N(0,%,) measurement equation (1)

2z = Bz +w, wg~ N(0,%,) transition equation (2)

The first equation, called measurement equation, describes the relation be-
tween the observed time series, y;, and the (possibly unobserved) state z.
In general, it is assumed that the data iy, are measured with error, which is
reflected in the measurement error v; that enters . The standard approach
is to model v; as a Gaussian error term, v; ~ N(0,%,). The second equation,
the transition equation, describes the evolution of the state variables as being
driven by the stochastic process of innovations w;. Typically one assumes
normal innovations, such that w; ~ N (0, X,,).
State space models can be formulated much more general than the specifi-
cation (1))/(2). For example, the system matrices H and B could depend
explicitly on time, or one could introduce policy variables and constants in
the specification. However, mostly for notational simplicity we will discuss
state space models using the basic specification (|1))/ .

Let us briefly present two simple examples. First, consider a linear Real



Business Cycle model. In state space form, this model could be written as

Vi

C, = H< Kt ) +v, v~ N(0,%,) measurement equ. (3)
Z
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K = B Kiea +wy, wy~ N(0,%,) transition equ. (4)

Z Zi

where ); denotes aggregate output, C; denotes private consumption, Z; de-
notes investment, KC; denotes the capital stock, and Z; denotes an (exoge-
nously evolving) technology level. The idea is thus to model output, con-
sumption and investment as being driven by the capital stock and by the
technology level. Naturally, we would assume that the technology level can-
not be directly observed. This is not obvious for the capital stock. Although
data on the capital stock are available for many countries, these data are
known to have only a low quality, such that a researcher may want to con-
sider capital an unobservable variable.

Finally, consider the following VAR(p) model:

Y, = AY, .+ U, (5)
It can be written in state space form by using the following specification:
Y = Hzp + vy, 2 = Bzy 1 +wy

with y, . =Y, H =1,z =Y, v =0, B := A and w;, = U;. Similarly,
many econometric models (in particular time series models) can be written
in state space form. This obvious flexibility of the state space approach has
contributed much to its popularity in recent years.

3 Estimation of State Space models

In practical applications, the system matrices H and B together with the
variances >, and X, are unknown and have to be estimated. Obviously,
whenever the explanatory variables are not observable, Least Squares esti-
mation is not a way to go. However, even in this case, one can apply like-
lihood based inference, since the so-called Kalman filter allows to construct
the likelihood function associated with a state space model.

3.1 Kalman filtering

Assume that we observe data {y;}L_,, that are to be described by the model
/(). Assume that reasonable (but not necessarily the true) values for the
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model’s parameters are available, and equal to H*, B*,¥,*, ¥¥ . Summarize
these values by § = { Hx*, Bx, %%, %% }. Let the sample density (or likelihood)
function associated with a state space model for given parameters § be de-
noted by f(y1,¥2,...,yr;d). By Bayes theorem, we can factor the likelihood

as

fiy2, sy 6) = flyr, 0)f(W2lyr, 0) f(ysly2, y1, 0). - f(yrlyr—1, s 91, 6)

= [/wly".9) (6)

where y° = 0 and y"!' = (y1,92,...,9¢1), for t > 2. The log-likelihood
function is thus given by

T
I L(y",6) =Y In flyly'™",0)
t=1

Obviously, to construct the likelihood function, we need to derive the densi-
ties

f(ytlyt_175)7t = ]" 27 "'7T

We can achieve this by using filtering techniques, in particular - when the
system is linear and errors are Gaussian - by using the Kalman (1960) filter.
The Kalman filter is a recursive procedure that involves the following steps:

1. Initialization
2. Prediction
3. Correction

4. Likelihood construction

In the following, we will discuss each of these steps in greater detail. Before,
let us introduce some notation: in the remainder of this paper, we will use
Xys to denote the prediction of the variable X at time ¢, conditional upon
information available at time s.

3.1.1 Initialization

The Kalman filter is initialized by deriving the best predictor of the initial
state, 2|0, and an estimate of its covariance matrix, 23‘0 = F{(20 — 20)0)(20 —
zo0)']. If the process is stationary, this is straightforward, since we can build

on the steady state of the system. More precisely, we can set zp9 = 2z* and

28\0 = >* such that



i) 2*= DBz
ii) ¥*=BY*B' +3%,=[I - B® B] 'vec(Z,).
Before moving to the next step, we set ¢ = 1 such that, consequently,

J— 4 _ z
Zi—1jt—1 = Zojo and i -1 = Zopo-

3.1.2 Prediction

At time ¢, we can use z;_1;—1 and Ef_l‘t_l together with the transition equa-
tion to compute

Rtlt—-1 = BZt71|t71 (7)
tZ|t—1 = Bzf—l\t—1B,+Ew (8)

We can then use zy,_; to construct the forecast w1 = Hzy—1. Having
observed 1;, we can construct the forecast error

Ut = Yt — Ytjt—1 = Yt — HZt|t—1 = v+ H(Zt - 2’t|t—1) (9)

Because of Gaussian errors, it follows that u; ~ N(0,%, + HX3, |H'). Fur-
thermore, since y; = w; + Y1, it follows that f(y.|y"™";0) = f(u;9).
Let us briefly summarize our main results so far. In order to construct

the likelihood we need f(y|y*~',0) for all t = 1,2,...,T ; given z_y;;—; and

X 141, We can compute f (y¢]y'™', 8) from the normal density function,
_ 1 Ut,(zv + Hth_lH’)_lut
Fluly'™,0) = exp | - a (10)
\/(QW)”y|ZU +HS;,  H|

Consequently, to compute f(y;41|y*, ) we need 2y, and i - In other words,

we need to correct our state predictions using the new information at time
t, y;. We can do this in the way described in the next step.

3.1.3 Correction

Having observed the data y;, we can update (correct) the predictions z;;—
and X7, ;| according to the Kalman (1960) formulae:

ze = -1 T KoY — ype—1) = 201 + Kie(ye — Hzge—), (11)
f|t = §|t71 - Kt(zv + HEf“le/)Kt', (12)

where

Ky =5, H'(HSy o H' +%,)7". (13)
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The intuition behind these formulae is quite straightforward. The corrected
prediction is a linear combination between the old prediction, z;—1, and the
current prediction error, (y; — yu—1). Given the linear form, K; is chosen
such that it minimizes the prediction error variance. We do not provide a
formal proof of these formulae, since they can be found in many econometrics
textbooks.

Unless t = T, we increase t and return to the prediction step. Otherwise,
we continue and construct the likelihood as described in the following step.

3.1.4 Likelihood construction

The two previous steps recursively compute f(y:|y'~t,d) for t = 1,2,...,T.
Obviously, these densities can be used to construct the likelihood according
to

T

L(y",8) = [ fwly'™",0) (14)

t=1

3.2 Maximizing the Likelihood Function

The previous subsection has demonstrated how to compute the likelihood of
a data sample conditional on parameters §. This likelihood will in general be
a complex nonlinear function of the parameters, such that often, maximizing
the likelihood function will be conducted numerically. Several methods are
available to conduct this numerical maximization. If the likelihood function
is smooth and continuous, Gradient-based methods (e.g. Newton’s method)
will allow to derive the Maximum Likelihood methods in a straightforward
way.

4 Forecasting with State Space models

Having obtained the maximum likelihood estimates, 5,7, one can use the
state space model to forecast the observables. In particular, one can use the
final state predictor zpr implied by the Maximum likelihood estimates d/p,
together with the measurement and transition equation to construct yr 1
for h = 1,2, ... according to

yrenr = HB"zpr (15)



5 Conclusion

This short seminar paper has provided a brief introduction to state space
models. In particular, we have illustrated how to estimate the parameters
of such models using the Kalman filter. The outlined methods allow to
model the evolution of observable variables that are driven by (partially)
unobservable forces.
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