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Introduction

Null hypothesis of stationary seasonality is tested against the
alternative of seasonal nonstationarity

Generalization of the Leybourne and McCabe (1994) test adapted to
seasonality

Differences between Caner test and Canova–Hansen test:

Caner CH
autocorrelation in a para-
metric way

non–parametric correction

test statistic consistent at a
rate Op(N)

test statistic consistent at a
rate Op(N/z)
poor finite–sample perfor-
mance with large AR com-
ponent
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The Model

Φ(L)yt = µ+ St + et

where t = 1, 2, . . . ,N – a linear model with stationary seasonality

Φ(L) = 1− φ1L− φ2L
2 − · · · − φpL

p is a p-th order AR polynomial
in the lag operator with roots outside the unit circle

St is a real–valued deterministic seasonal process of period s

et iid (0, σ2
e )

yt does not have unit roots at zero frequency
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Trigonometric representation

St =
∑q

j=1 f ′jtγj , q = s
2 and

1 for j < q f ′jt =
[
cos
(

j
q
πt
)
, sin

(
j
q
πt
)]

2 for j = q fqt = cos(πt)

Vector representation:

St = f ′t γ, γ =

γ1

...
γq

 and ft =

f1t

...
fqt


Φ(L)yt = µ+ f ′t γ + et , t = 1, 2, . . . ,N

Seasonality as a cyclical process
At the seasonal frequency jπ

q
, the cyclical processes are elements of ft

ft is a zero–mean process whenever N is a multiple of s
Coefficients γj represent the effect of each cycle on the seasonal
component St
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Structural and Reduced Form Model I

A form of alternative hypothesis is to allow a unit root in γt

The structural model:

Φ(L)yt = µ+ f ′t γt + et , t = 1, 2, . . . ,N

and
γt = γt−1 + ut

ut is iid mean 0, independent of et and ft and with covariance matrix

Eutu
′
t =

[
σ2

uG
]
(s−1)×(s−1)

Whenever σ2
u 6= 0 there will be seasonal unit roots
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Structural and Reduced Form Model II

Reduced–form model:

Φ(L)S(L)yt = µ′ + Θ(L)ζt

where
ζt ∼ (0, σ2

ζ),

S(L) =
s−1∑
j=0

Lj

is a seasonal filter, and
µ′ = sµ.

Θ(L) is an MA(s − 1) polynomial
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Test Statistic I

Testing hypothesis of a stationary AR(p) process against
nonstationary seasonality

H0 : ρ = 0 against H1 : ρ > 0 where ρ =
σ2

u

σ2
e

The locally best invariant test statistic for H0 is

D = σ̂−2
e N−2

N∑
t=1

F̂ ′t GF̂t

where F̂t =
∑t

i=1 fi êi and

σ̂2
e = ê′ ê

N is a consistent estimator of σ2
e
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Test Statistic II

Residuals êt are obtained via:

1 ML estimates of (φ) from the model

y∗t = µ′ +

p∑
l=1

φly
∗
t−l + Θ(L)ζt where y∗t = S(L)yt

2 Construct the series

ȳt = yt −
p∑

l=1

φ∗l yt−l

3 Regress ȳt on an intercept and seasonal dummies to obtain êt . (et

assumed normal)

Turyna & Al Hajeb

Optimal Seasonal Unit–Root Test



Introduction The Model The Test Monte Carlo Study Conclusions

Test Statistic III

Use of MLE rather than OLS to obtain consistent estimates under
both H0 and H1

Properties of G :

1 When H1 is unit roots at all seasonal frequencies, then G must be
nonsingular and γt must be time–varying

2 When H1 is unit roots at specific seasonal frequencies, G must be
block diagonal with nonzero element in only selected blocks and a
subset of γt must be time–varying
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The Asymptotic Distribution I

Ω̂f = σ̂2
e


1 0 0 0 0
0 1

2 0 0 0
0 0 1

2 0 0

0 0 0
. . . 0

0 0 0 0
. . .


When, G

σ2
e

= (Ω2)−1, then the asymptotic distribution is easy to

evaluate [Hansen (1992)]

Ωf is the long–run convariance matrix of fiei [Canova and Hansen
(1995)]

Some notation:

Wm – a vector standard Brownian bridge of dimension m
VM(m) =

∫ 1

0
Wm(r)′Wm(r)dr – generalized von Mises distribution

with m df.
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The Asymptotic Distribution II

Theorem 1 [Proof in Caner(1998)]
If Φ(L) is a finite AR polynomial in L with roots outside the unit circle
and if et is iid, Eet = 0 and Ee2

t = σ2
e <∞, then, under H0

D
d→ VM(s − 1)
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The Asymptotic Distribution III

Individual Test Statistics:

1 Djπ/q = 2
σ̂2

eN
2

∑N
t=1 F̂ ′jt F̂jt , j < q

2 Dπ = 2
σ̂2

eN
2

∑N
t=1 F̂ 2

qt , j = q

Theorem 2 [Proof in Caner(1998)]
Under the conditions in Theorem 1 for

1 j < q, Djπ/q
d→ VM(2)

2 j = q, Dπ
d→ VM(1)
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Introduction

”A technique which obtains a probabilistic approximation to the
solution of a problem by using statistical sampling techniques”

An asymptotic distribution theory is derived and the finite-sample
properties of the test are examined in a Monte Carlo simulation

The test is compared with the Canova and Hansen test, but is
superior in terms of both size and power

A Monte Carlo exercise is conducted to examine and compare the
finite-sample properties of the proposed test with those of the CH
test
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Monte Carlo Study I

Two quarterly models are considered:

1 Φ(L)yt = µ+
∑2

j=1 f ′jtγjt + et et ∼ N(0, 1)

γt = δγt−1 + ut ut ∼ N(0, σ2
uG),

where:
γ0 = [1, 1, 1],
γt = (γ1t , γ2t)

′,
0 < δ < 1.
Φ(L)yt is an AR(p) process.

2 yt = µ+
∑2

j=1 f ′jtγjt + τ(L)et et ∼ N(0, 1)

γt = δγt−1 + ut ut ∼ N(0, σ2
uG),

where τ(L) = 1 + τ1L + τ2L
2 + · · ·+ τlL

l

This model ensures a fair comparison between the D test and the
CH test because the test captures an AR(p) type of autocorrelation
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Monte Carlo Study II

For both models, three different data–generating processes (DGP’s)
are used under the alternative hypothesis:

1 DGP1 : G =

1 0 0
0 0 0
0 0 0


2 DGP2 : G =

0 0 0
0 1 0
0 0 1


3 DGP3 : G =

1 0 0
0 1 0
0 0 1
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Monte Carlo Study III

Under DGP1, there is a unit root at the π frequency as σ2
u 6= 0

Under DGP2, there is a pair of complex conjugate roots at the π/2
frequency when σ2

u 6= 0

Under DGP3, there are no unit roots when σ2
u = 0 but there are unit

roots at all seasonal frequencies if σ2
u 6= 0

In the simulations, the order of the AR polynomial p and of the MA
polynomial l are 1 and 2.

Both the AR parameters of the first model and the MA parameters
of the second model are chosen to understand the effect of
autocorrelation
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Monte Carlo Study IV

The test statistics are calculated for unit roots at all, π
(Semi-annual), and π/2 (Annual) seasonal frequencies

The finite-sample properties are compared to those of the CH tests
(with and without one lag of the dependent variable included)

The underlying model of the CH test is the same as the first model
and the second one, but they assume p = 0 or p = 1

In this study the Bartlett kernel is used and, following Andrews
(1991), the lag truncation number z = 3, 4, 6 is selected for N =
50,100, 200, respectively

The results of the exercise are presented in Tables 1 and 2. The
percentage of rejection of the null is given at the 5% significance
level

Because the size of the D and CH tests that are calculated vary
considerably, the size-adjusted power is calculated
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Size and Power of the Test: AR(p) Process I

The size and power properties of the D test are compared with the
CH test under the first model

In Table 1, when analyzing the size δ is selected to be 0.8 because
this value corresponds to a ”near” seasonal unit root

In calculating the power of the tests in Tables 1 and 2, δ is set equal
to 1

Turyna & Al Hajeb

Optimal Seasonal Unit–Root Test



Introduction The Model The Test Monte Carlo Study Conclusions

Size and Power of the Test: AR(p) Process II
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Size and Power of the Test: AR(p) Process III

In Table 1, the size of the tests is slightly above the nominal size of
5% in most of the cases.

The CH tests have large size distortions for AR(2) parameterization

However, for example, for N = 200 in an AR(2) framework, the size
of the joint D test is 17%, whereas the joint CH tests reject the true
null in 41-50% of the trials

The D tests have good power under different alternatives:

For N = 100, the power of the joint test is 84% when there are
seasonal unit roots present at the π/2 frequency (DGP2)

For N = 200, in an AR(2) process, the power of the joint test is 85%
when there is a seasonal unit root at the π frequency (DGP1)
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Size and Power of the Test: AR(p) Process IV

The CH tests have mixed results under an AR structure:

For N = 100, in an AR(1) process the joint test has 64- 79% power
against DGP2. CH1 in Tables 1-2 perform quite poorly in an AR(1)
structure. The power is near the nominal size of the tests

Both CH tests also have trouble in an AR(2) structure when only a
seasonal unit root at the π frequency is present (DGP1) For
N = 200, the joint tests have 56% power under DGP1.

Overall, the CH tests do not perform well near seasonal unit roots
because they suffer from size distortion

While the proposed tests have good size and power
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Size and Power of the Test: MA(1) Process I
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Size and Power of the Test: MA(1) Process II

Table 2 shows that the proposed D tests have good size. The test at
the π/2 frequency performs well even in the small samples. For
example, for N = 50 in an MA(1) process, the size is 7%.

Even though the test at the π frequency performs well in an MA(1)
model, the size rises above the nominal level and is around 18% in
an MA(2) setup.

The CH tests also have good size properties

For example, the size of the joint CH test with no lags of the
dependent variable (CH0) is 2-11%

The sizes of both tests do not seem to be affected by the sample size

Both the D and CH tests have good power under different
alternatives

However, the asymptotic rejection frequency of the D tests is better
than that of the CH tests
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The Robustness Experiments

The size and the power of the test were not affected by the changes
in σ2

u. Smaller δ and AR coefficients resulted in better size
properties for the test

Monte Carlo designs with longer AR polynomials such as 3 and 4
were tried, generating results that were very similar to the case of
AR(2) design in Table 1
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Conclusions

1 The paper proposes a locally best test for detecting the seasonal
unit roots in time series models

2 The null hypothesis of the proposed test is seasonal stationarity,
whereas the seasonal unit root hypothesis forms the alternative

3 The derived asymptotic distribution is non standard and covers
serially correlated processes

4 The main difference between the proposed test and the CH test is
the handling of autocorrelation under the respective null and
alternative hypotheses

5 The proposed test has better size and power properties than the CH
test in an AR type of autocorrelation

6 The CH test suffers from size distortion in an AR model, whereas
the proposed test has good size and power
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