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Introduction 

 
Periodic processes are processes in which the coefficients change 
with the seasons of the year. A deterministic seasonal process, in 
which the intercept changes seasonally, can be viewed as a 
special case of a periodic process. 
 
 
Gersovitz and MacKinnon (1978) and Osborn (1988) argue that a 
process of this type arises when modeling the seasonal decisions 
of consumers, while Hansen and Sargent (1993) suggest that it 
could also arise from seasonal technology. 
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Some Periodic Processes 

 
A periodic ARMA (p,q) process has the general form 
 

∅𝑠 𝐿 𝑦𝑠𝜏 = 𝑐𝑠 + 𝜃𝑠(𝐿)𝜀𝑠𝜏  ,       𝑠 = 1, … , 𝑆,   𝜏 = 1, … , 𝑇𝜏  
 
where  
  

∅𝑠 𝐿 = 1 − ∅𝑠1𝐿 − ⋯− ∅𝑠𝑝𝐿𝑃  

 
𝜃𝑠 𝐿 = 1 − 𝜃𝑠1𝐿 − ⋯− 𝜃𝑠𝑞𝐿𝑞  

 
are polynomials in the conventional lag operator L. The 
polynomial orders (p,q) are defined by maximum AR and MA lags 
and 𝜀𝑠𝜏  is i.i.d process over both season and year. 
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 Heteroskedasticity over seasons is typically permitted, so that 
𝐸 𝜀𝑠𝜏

2  = 𝜎𝑠
2. 

 

 𝐿 operates on the season, so one-period lagged observation is 
𝐿𝑦𝑠𝜏 = 𝑦𝑠−1,𝜏   

 

 Periodic ARMA processes have distinctive stationarity and 
invertibility properties compared with a conventional ARMA 
processes. 
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Periodic Heteroskedasticity 
   
Considering a Periodic seasonal heteroskedastic AR(1) process as  
   

𝑦𝑠𝜏 = ∅𝑦𝑠−1,𝜏 + 𝜀𝑠𝜏  
   

assuming 𝑦𝑠𝜏  corresponds to 𝑠 = 𝑆, repeated substitution yields 
   
        𝑦𝑆𝜏 = ∅2𝑦𝑆−2,𝜏 + 𝜀𝑆𝜏 + ∅𝜀𝑆−1,𝜏 , 

 

               = ∅𝑆𝑦𝑆,𝜏−1 + 𝜀𝑆𝜏 + ∅𝜀𝑆−1,𝜏 +  … + ∅𝑆−1𝜀1𝜏 , 

 

               = ∅𝜏𝑆𝑦𝑆0 +  ∅𝑆𝑗𝜏−1
𝑗 =0 (𝜀𝑆,𝜏−𝑗 + ∅𝜀𝑆−1,𝜏−𝑗 + ⋯ + ∅𝑆−1𝜀1,𝜏−𝑗 ) 

 
 
If 𝑦𝑆0has the same variance as each sample period𝑦𝑆𝜏 , then for 𝑠 = 𝑆: 
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𝑉𝑎𝑟 𝑦𝑠𝜏 = 𝛾𝑠 0 =
𝜎𝑠

2 + ∅2𝜎𝑠−1
2 + ⋯ + ∅2 (𝑆−1)𝜎𝑠−(𝑆−1)

2

1 − ∅2𝑆
 

 

𝑉𝑎𝑟 𝑦𝑠𝜏 is periodically varying since the weighting of each 𝜎𝑠
2 𝑠 =

1, … , 𝑆 depends on the season (s) in which 𝑦𝑠𝜏 is observed. 
  
 
The process autocovariances at lag k, 𝛾𝑠 𝑘 = 𝐸 𝑦𝑠𝜏 − 𝜇 (𝑦𝑠−𝑘 ,𝜏 − 𝜇) are 

also seasonally varying.  
 
 
Solution: the effect of periodic heteroskedasticity can be removed by 
standardizing by division by the appropriate standard deviation. The 
standardized process has a zero mean, unit variance, and 
autocovariances that are independent of s. 
 
 

 𝑦𝑠𝜏 − 𝜇 /  𝑉𝑎𝑟 (𝑦𝑠𝜏 ) 
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Periodic MA(1)Process 
 

The Periodic MA(1) process is  
 

𝑦𝑠𝜏 = 𝜀𝑠𝜏 − 𝜃𝑠  𝜀𝑠−1,𝜏 ,        𝑠 = 1, … , 𝑆, 
 

𝑉𝑎𝑟 𝑦𝑠𝜏  = 𝛾𝑠 0 = 𝐸 𝜀𝑠𝜏 − 𝜃𝑠  𝜀𝑠−1,𝜏 
2
 

 
                                   = (1 + 𝜃𝑠

2)𝜎2 
 
and the autocovariance at lag 1: 
  
                          𝛾𝑠 1 = 𝐸 𝑦𝑠𝜏  𝑦𝑠−1,𝜏  
 
                                     = 𝐸 𝜀𝑠𝜏 − 𝜃𝑠  𝜀𝑠−1,𝜏  𝜀𝑠−1,𝜏 − 𝜃𝑠−1 𝜀𝑠−2,𝜏  
 
                                     = −𝜃𝑠𝜎

2   
 For 𝑘 > 1, all 𝛾𝑠 𝑘 = 0 
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Thus, although the periodic MA(1) exhibits periodic variances and 
autocovariances, observations 1 year apart, 𝑦𝑠𝜏and 𝑦𝑠,𝜏−1, are not 

correlated. This implies that the characteristic of seasonality in 
economic variables that the patterns in the observations tend to 
repeat each year, and hence that 𝑦𝑠,𝜏−1 provides relevant 

information for the prediction of 𝑦𝑠𝜏 , cannot be delivered by a 
periodic MA(1) process. This remains true for any periodic MA 
process of order 𝑆 − 1 or less, and indicates why low order 
periodic MA processes have been of little interest in economics. 
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Periodic AR(1)Process 
  
The Periodic AR(1) process is  
  

𝑦𝑠𝜏 = ∅𝑠𝑦𝑠−1,𝜏 + 𝜀𝑠𝜏 ,        𝑠 = 1, … , 𝑆, 
  
With substitution for lagged 𝑦, 
 
                      𝑦𝑠𝜏 = ∅𝑠∅𝑠−1𝑦𝑠−2,𝜏 + 𝜀𝑠𝜏 + ∅𝑠𝜀𝑠−1,𝜏 , 
 
                             = ∅𝑆𝑦𝑆−1 …∅1𝑦𝑠,𝜏−1 + 𝜀𝑠𝜏 + ∅𝑠𝜀𝑠−1,𝜏 + ∅𝑠∅𝑠−1𝜀𝑠−2,𝜏              

 
  + ⋯ + ∅𝑠∅𝑠−1 …  ∅𝑠−(𝑆−1)𝜀𝑠−(𝑆−1),𝜏         (*) 

  
The coefficient of ys,τ−1is the product of all S periodic AR(1) coefficients, 

namely ψ = ∅1∅2 …∅S. 
 
The presence of the periodic MA process implies that Var ysτ  and its 
autocovariances vary over s.  
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𝑉𝑎𝑟 𝑦1𝜏 = 𝛾1 0 = (1 1 − 𝜓2) 𝜎1
2 + ∅1

2𝜎4
2 + ∅1

2∅4
2𝜎3

2 + ∅1
2∅4

2∅3
2𝜎2

2  

 

Even with homoskedasticity in the disturbances, the periodic 

AR(1) process 𝑦𝑠𝜏  exhibits periodic heteroskedasticity.  
 
the autocovariance at lag 1 for PAR(1) satisfy 
   

𝛾𝑠 1 = 𝐸 𝑦𝑠𝜏 , 𝑦𝑠−1,𝜏 = ∅𝑠𝛾𝑠−1(0) 
  
and in the annual lag S 
   

𝛾𝑠 𝑆 = 𝐸 𝑦𝑠𝜏  𝑦𝑠,𝜏−1 = 𝜓𝛾𝑠(0) 

 

Notice that while 𝛾𝑠 1  is periodic through both ∅𝑠  and 𝛾𝑠−1(0), 

𝛾𝑠 𝑆  is periodic only through the variance 𝛾𝑠(0).  
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Consequently, the autocorrelation of 𝑦𝑠𝜏  at lag 𝑆, namely 

𝜌𝑠 𝑆 =
𝛾𝑠 𝑆 

𝛾𝑠 0 
= 𝜓, is constant over 𝑠 = 1, … , 𝑆.  

 

Equation (*) also implies that the PAR(1) process gives rise to an 

annual pattern in the conditional expectations, with  
 

𝐸 𝑦𝑠𝜏    𝑦𝑠,𝜏−1  = 𝜓  𝑦𝑠,𝜏−1  
 

which applies for all 𝑠. Thus, in contrast to the periodic MA(1) 

process, the PAR(1) process gives rise to a type of seasonal habit 

persistence whereby an annual pattern in the observations will 

tend to be repeated when 𝜓 is positive. 
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The VAR Representation 
 

This representation is especially useful in the periodic case. The 
representation of the periodic process as a VAR effectively treats 
the observation 𝑦𝑠𝜏  for the seasons as separate series. Example: 
 

 

𝟏 𝟎 𝟎 𝟎
−∅𝟐 𝟏 𝟎 𝟎
𝟎 −∅𝟑 𝟏 𝟎
𝟎 𝟎 −∅𝟒 𝟏

  

𝒚𝟏𝝉

𝒚𝟐𝝉

𝒚𝟑𝝉

𝒚𝟒𝝉

 =  

𝟎 𝟎 𝟎 ∅𝟏

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

  

𝒚𝟏,𝝉−𝟏

𝒚𝟐,𝝉−𝟏

𝒚𝟑,𝝉−𝟏

𝒚𝟒,𝝉−𝟏

 +  

𝒄𝟏

𝒄𝟐

𝒄𝟑

𝒄𝟒

 +  

𝜺𝟏𝝉

𝜺𝟐𝝉

𝜺𝟑𝝉

𝜺𝟒𝝉

  

 
Or more compactly ɸ0𝑌𝜏 = ɸ1𝑌𝜏−1 + 𝐶 + 𝑈𝜏  

 
The one to one mapping between the polynomial coefficients of 
the PAR process and the elements of the VAR coefficient matrics 
is discussed in a number of the papers. 
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So the general vector representation for a PAR(p) process is the 
VAR(P):   
                       ɸ0𝑌𝜏 = ɸ1𝑌𝜏−1 + ⋯ + ɸ𝑃𝑌𝜏−𝑃 + 𝐶 + 𝑈𝜏  

 
The more usual VAR(P) representation can be obtained by 
inverting  ɸ0, so that 
 

Yτ = ɸ0
−1ɸ1Yτ−1 + ⋯ + ɸ0

−1ɸP Yτ−P + ɸ0
−1C + ɸ0

−1Uτ  , 
 

              = A1Yτ−1 + ⋯ + AP Yτ−P + C + Vτ  
 

where Ai = ɸ0
−1ɸi(i = 1, … , P), C = ɸ0

−1C and Vτ = ɸ0
−1Uτ   
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Integration in PAR 
 

Stationary condition for the PAR process is that the roots of 

determinantal polynomial lie outside the unit circle. In PAR 

context, 3 types of integrated processes exist for first order unit 

root nonstationarity. 

 

 𝑦𝑡~𝐼 1 .This arises when each PAR operator ∅𝑠(𝐿) contains 

the common factor∆1= (1 − 𝐿), but the matrix 

representation for ∆1𝑦𝑠𝜏  is a stationary VAR process. 
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 𝑦𝑡~𝑆𝐼 1 . This arises when each PAR operator ∅𝑠(𝐿)contains 

the common factor∆𝑆= (1 − 𝐿𝑆), with the matrix 

representation for ∆𝑆𝑦𝑠𝜏  being a stationary VAR process.  

 

 𝑦𝑡~𝑃𝐼 1 . This arises when  ɸ(𝐿) contains the factor (1 −

𝐿𝑆), but ∆𝑆 is not common to each polynomial ∅𝑠 𝐿  𝑠 =

1, … , 𝑆 , with the VAR for ∆𝑆𝑦𝑠𝜏  being stationary. 
 

The first 2 case imply stationary PAR processes in the 

appropriately differenced variable, namely ∆1𝑦𝑡  or∆𝑆𝑦𝑡 , while the 

third is a specific type of integration that can arise only in the 

periodic context. 
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Monte Carlo Analysis 

 
Studies find that periodic models produce less accurate forecasts 

than nonperiodic models. As periodic processes have some 

attractive features, great strides have been made in establishing 

an appropriate toolkit for the statistical analysis of such 

processes. Empirical applications regarding this process are 

relatively few to date. While evidence of periodicity have been 

found, it would be foolhardy to conclude at the present time that 

the majority of important real macroeconomic variables are of 

this type. 
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It’s also true that the empirical analyses have generally been 

confined to quarterly series. The data requirements of periodic 

approaches with monthly data (notably those based on a VAR 

representation) are large. 

 

It may be that methods based on restricting periodic processes, 

perhaps leading to specifications with relatively few additional 

parameters compared with nonperiodic models, will prove fruitful 

in the future. In this way, periodic features that are important 

may be taken into account without the sacrifice of too many 

degrees of freedom in relation to nonperiodic models.  
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Thank you for attention 
 

 

 

 

 

 

 

 

 

 

 


