Some Nonlinear Seasonal Models

Chapter 7 from Ghysels and Osborn: The Econometric Analysis of Seasonal Time Series

by András Malasics

Introduction

- Nonlinear models:
 - Provide tools to model nonlinear relationship between variables (e.g. seasons)
 - Examples of nonlinear dynamics: time-changing (seasonal) variance, asymmetric cycles, higher-moment structures
- (Seasonal) Nonlinearity can be primarily found in high-frequency data like intradaily seasonal patterns
 - S&P's composite stock-price index
 - Exchange rates
- Different seasonal models with different types of nonlinearity:
 - Stochastic seasonal unit roots varying impact of seasonal shocks
 - Seasonal (G)ARCH models structure of seasonal variance
 - Periodic GARCH models time-varying seasonal coefficients
 - Periodic Markov switching models seasonal mean shifts

Stochastic Seasonal Unit Root

- Motivation: <u>not</u> all macroeconomic shocks may have the <u>same</u> impact
- Generalization of linear processes by allowing for random parameters
- First-order seasonal random coefficient autoregressive process:

- $0 \le \rho \le 1$, ε and ξ are i.i.d. and normally distributed with σ^2 , ω^2
- The randomized seasonal autoregressive process is then:

$$\Delta_{S} \widetilde{y}_{s\tau} = \widetilde{\alpha}_{s\tau} \widetilde{y}_{s,\tau-1} + \varepsilon_{s\tau}$$

It is also called a heteroskedastic seasonally integrated process

- Conditional on its own normally distributed past $N(\rho \tilde{\alpha}_{s,\tau-1} \tilde{y}_{s,\tau-1}, \sigma^2 + \omega^2 \tilde{y}_{s,\tau-1}^2)$

- If $\omega^2 = 0$, the process is a regular seasonal random walk with homoskedastic innovations
- Hence, the test hypotheses are $H_0: \omega^2 = 0$

 $H_A:\omega^2\rangle 0$

heteroskedasticity

 Taylor-Smith test is used for determination of heteroskedastic seasonal integration

$$S_{\rho} = \frac{1}{\sigma^{4}} \sum_{s=1}^{S} \sum_{j}^{T_{r}} \rho^{-2j} \left[\left(\sum_{\tau=j}^{T_{r}} \rho^{\tau} y_{s,\tau-1} \Delta_{S} y_{s\tau} \right)^{2} - \sigma^{2} \sum_{\tau=j}^{T_{r}} \rho^{2\tau} y_{s,\tau-1} \right]$$

 $y_{s\tau} = \phi(L) \Big[\widetilde{y}_{s\tau} - \mu_s^* - \beta_s^* \big(S\tau + s \big) \Big]$

- $-~\rho$ is unidentified under the null hypothesis, hence, the two polar cases S_0 and S_1 are computed
- the limiting distributions for S_0 and S_1 are nonstandard
- However, this process is <u>not a covariance stationary process</u>

Seasonal (G)ARCH Models

- Application: financial time series
 - stock-market dividend yields
 - Foreign-exchange volatility
 - Lead-lag relations between two or more simultaneously traded markets
 - volatility of few macroeconomic time series
- The GARCH(p,q) process:

$$X_{t} = \sigma_{t}\varepsilon_{t}$$

$$\sigma_{t}^{2} = \omega + \phi(L)\varepsilon_{t-1}^{2} + \theta(L)\sigma_{t-1}^{2}$$

- if we define $v_t = \varepsilon_t^2 - \sigma_t^2$, one obtains:

ARMA[max(p,q),q] model

$$\Leftrightarrow \varepsilon_t^2 = \omega + [\phi(L) + \theta(L)]\varepsilon_{t-1}^2 - \theta(L)v_{t-1} + v_t$$

• Analogously, the seasonal GARCH(p,q) process: $\varepsilon_t^2 = \omega + [\phi(L) + \theta(L)]\varepsilon_{t-s}^2 - \theta(L)v_{t-s} + v_t$

- where: $\phi(L) = \sum_{j=1}^{p} b_j L^j$ and $\theta(L) = \sum_{j=1}^{q} a_j L^j$
- If $\sum_{j=1}^{p} b_j + \sum_{j=1}^{q} a_j \langle 1 \rangle$ then this GARCH(p,q) process has a unique strictly and covariance stationary solution
 - For a GARCH(1,1) process being strictly stationary it is enough to fulfill the following condition: $a_1 + b_1 = 1$
- Maximum-Likelihood-based estimation of coefficients
- The effects of Filtering on ARCH models
 - Seasonal filtering may lead to bias in the autocorrelation function
 - In order to present these biases one may define the weak GARCH(p,q) process, linear filters, and derive the (filtered) autocovariance and autocorrelation functions
 - Then, one can derive conditions to have unbiased autocorrelation function

• The weak GARCH(p,q) process:

$$\varepsilon_t^2 = \omega + \sum_{j=1}^{\max(p,q)} (\phi_j + \theta_j) \varepsilon_{t-j}^2 - \sum_{j=-1}^q \theta_j v_{t-j} + v_t$$

- where $\sigma_t^2 = E_{Lt}(\varepsilon_{t+1}^2)$ is the conditional variance with $\varepsilon_{t+1}^2 = \sigma_t^2 + v_{t+1}$ and $E_{Lt}(.)$ is the linear projection on the space spanned by $1, (\varepsilon_{t-j}, \varepsilon_{t-j}^2): j \ge 0$
- $v_{t\!+\!1}$ is a Martingale difference sequence with respect to the linear span filtration
- Suppose the following **linear filter** that filters the nonseasonal (ns) components in the data: $z^{ns} - z^{F} - v(I)z - \sum_{k=1}^{+\infty} v_{k}I^{k}z$

$$z_t^{ns} = z_t^F = v(L)z_t = \sum_{k=-\infty}^{\infty} v_k L^k z_t$$

- z is a variable with seasonal (s) and nonseasonal components: $z = z^{S} + z^{NS}$
- L is the lag operator
- Autocovariance function:
 - $\gamma_2(j) = E_L(\varepsilon_t^2 \varepsilon_{t-j}^2)$
 - Applying the linear filter to the residuals one obtains the filtered autocovariance function:

$$\gamma_2^F(j) = E_L(\varepsilon_t^F)^2(\varepsilon_{t-j}^F)^2 = E_L(v(L)\varepsilon_t)^2(v(L)\varepsilon_{t-j})^2$$

 In case of weak GARCH(1,1) one can derive the following autocovariance (γ) and autocorrelation (ρ) functions:

$$\gamma_{2}(0) = \frac{\left[1 + \theta^{2} - 2(\phi + \theta)\theta\right]}{\left[1 - (\phi + \theta)^{2}\right]}\sigma_{\nu}^{2}$$
$$\gamma_{2}(j) = \frac{\phi\left[1 - (\phi + \theta)\theta\right]}{\left[1 - (\phi + \theta)^{2}\right]}(\phi + \theta)^{j-1}\sigma_{\nu}^{2}$$

$$\rho_2(j) = \frac{\phi \left[1 - \phi \theta - \theta^2\right]}{\left[1 - 2\phi \theta - \theta^2\right]} (\phi + \theta)^{j-1}$$

• Let define $\lambda \equiv \phi + \theta$ and apply the linear filter v(L) \equiv (1-L^S) to this process, then one obtains the **filtered autocorrelation function**:

$$\rho_2^F(j) \equiv \frac{2 + \lambda + \lambda^S}{2 + 6\lambda\rho_2(S)}\rho_2(j)$$

• As a final step the condition on parameters ϕ and θ is obtained to have an unbiased autocorrelation function

• If the parameters ϕ and θ solve the following equation:

 $2\lambda^{S}\theta - (1 + \theta^{2} - 6\phi\theta)\lambda^{S-1} + 6\phi\lambda^{S-2} + 2\lambda\theta - (1 + \theta^{2}) = 0$

the autocorrelation function is **unbiased**

• If the following inequality holds:

 $2\lambda^{s}\theta - (1 + \theta^{2} - 6\phi\theta)\lambda^{s-1} + 6\phi\lambda^{s-2} + 2\lambda\theta - (1 + \theta^{2}) > 0$

- the autocorrelation function is **upward biased**;

 $2\lambda^{s}\theta - (1 + \theta^{2} - 6\phi\theta)\lambda^{s-1} + 6\phi\lambda^{s-2} + 2\lambda\theta - (1 + \theta^{2}) < 0$

- the autocorrelation function is downward biased

Periodic GARCH Models

- Time-varying coefficient model for conditional heteroskedasticity instead of fixed parameter structure
- Motivation: intraday pattern in market activity with regular opening and closure of financial markets (DEM/USD and DEM/GBP)
- Consider a modified Borel σ -field filtration in which the usual Ω_{t-1} is augmented by a process defining the stage of the periodic cycle at each point in time, say Ω_{t-1}^{S}
- Then the P-GARCH process is:

$$E\left[\widetilde{\varepsilon}_{t} \mid \Omega_{t-1}^{s}\right] = 0$$

$$E\left[\widetilde{\varepsilon}_{t}^{2} \mid \Omega_{t-1}^{s}\right] \equiv \widetilde{\sigma}_{t}^{2} = \omega_{s(t)} + \sum_{j=1}^{p} \phi_{is(t)} \widetilde{\varepsilon}_{t-i}^{2} + \sum_{j=1}^{q} \theta_{js(t)} \widetilde{\sigma}_{t-j}^{2}$$

- s(t) refers to the stage of the periodic cycle at time t
- $\omega_{s(t)}$ may capture the nontrading-day effects

- $\varphi_{is(t)}-$ measure of the immediate, or direct, impact of any new arrivals
- $\theta_{js(t)}$ smooth long-term evolution in the volatility process
- But, in many empirical applications the long-term effect $\theta_{js(t)} = \theta_j$ is constant across all stages of the cycle
- A straightforward P-GARCH model:
 - s(t) = 1+[(t-1)mod S]
 - S is the length of the cycle (e.g. S = 5 if stock markets)
- Periodic ARMA representation of this process with time-varying but periodic correlation structure:

$$\widetilde{\varepsilon}_{t}^{2} = \omega_{s(t)} + \sum_{i=1}^{\max(p,q)} (\phi_{is(t)} + \theta_{is(t)}) \widetilde{\varepsilon}_{t-i}^{2} - \sum_{j=-1}^{q} \theta_{js(t)} \widetilde{v}_{t-j} + \widetilde{v}_{t}$$

with $\widetilde{v}_{t} \equiv \widetilde{\varepsilon}_{t} - E[\widetilde{\varepsilon}_{t}^{2} | \Omega_{t-1}^{s}] \equiv \widetilde{\varepsilon}_{t}^{2} - \widetilde{\sigma}_{t}^{2}$

• ML- and quasi-ML-estimation of coefficients

Periodic Markov Switching Models

- Modeling seasonal mean shifts caused by changes in the regime
- Application:
 - Aggregate macroeconomic time series
 - historical wheat prices
- Consider a univariate time series process with the following stochastic structure:

$$\{y_t - \mu[(i_t, s_t)]\} = \phi\{y_{t-1} - \mu[(i_{t-1}, s_{t-1})]\} + \varepsilon_t$$

where the intercept shift function is:

$$\mu[(i_t,s_t)] = \alpha_0 + \alpha_1 i_t + \sum_{s=1}^{S-1} \delta_{st} \alpha_s$$

- (i_t, s_t) denotes the state of world which is a binary stochastic switching regime process {i_t} and the seasonal indicator process {s_t}
- s_t = t mod(S) where S is the frequency of sampling throughout the year

 Transition matrix determines the probability of being in state k = 0,1 in period t conditional on being in state k = 0,1 in period t-1:

0
$$q(s_t)$$
 1 $q(s_t)$

Ω

- 1 $1-p(s_t)$ $p(s_t)$
- If p and q are constant we obtain the standard homogeneous Markov chain model
- Let {i_t} be an AR(1) process: $i_t = [1 q(s_s)] + \lambda(s_t)i_{t-1} + v_t(s_t)$

- where $\lambda(s_t) \equiv -1 + p(s_t) + q(s_t) = \lambda^s$ for $s_t = s$

1

for
$$i_{t-1}=1$$
 $v_t(s_t) = \begin{cases} [1-p(s_t)] & \text{with probability } p(s_t) \\ -p(s_t) & \text{with probability } 1-p(s_t) \end{cases}$

for
$$i_{t-1}=0$$
 $v_t(s_t) = \begin{cases} -[1-q(s_t)] & \text{with probability } q(s_t) \\ q(s_t) & \text{with probability } 1-q(s_t) \end{cases}$

- this is a periodic AR(1) model with seasonally varying parameter values

• Let define the process {y_t} as follows:

$$y_t = \alpha_0 + \alpha_1 i_t + \sum_{s=1}^{S-1} \delta_{st} \alpha_s + (1 - \phi L)^{-1} \varepsilon_t$$
$$\Leftrightarrow y_t - \sum_{s=1}^{S-1} \delta_{st} \alpha_s = \alpha_0 + \alpha_1 i_t + (1 - \phi L)^{-1} \varepsilon_t$$

where ϵ_t is Gaussian and independent and the left-hand-side of the equation is the sum of two independent unobserved processes, $\{i_t\}$ and $(1-\varphi L)^{-1}\epsilon_t$

• The left-hand-side of this equation have the following linear time series representation:

$$s_{y}(z) = \alpha_{1}^{2} s_{i}(z) + \frac{1}{(1 - \phi z)(1 - \frac{\phi}{z})} \frac{\sigma^{2}}{2\pi}$$

which has hidden periodic properties and inherits the nonlinear predictable features of $\{i_t\}$

Thank you for your attention!