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Introduction

• Nonlinear models:
– Provide tools to model nonlinear relationship between variables (e.g. 

seasons)

– Examples of nonlinear dynamics: time-changing (seasonal) variance, 
asymmetric cycles, higher-moment structures

• (Seasonal) Nonlinearity can be primarily found in high-frequency 
data like intradaily seasonal patterns
– S&P’s composite stock-price index

– Exchange rates 

• Different seasonal models with different types of nonlinearity:
– Stochastic seasonal unit roots – varying impact of seasonal shocks

– Seasonal (G)ARCH models – structure of seasonal variance

– Periodic GARCH models – time-varying seasonal coefficients

– Periodic Markov switching models – seasonal mean shifts



Stochastic Seasonal Unit Root

• Motivation: not all macroeconomic shocks may have the same
impact

• Generalization of linear processes by allowing for random 
parameters

• First-order seasonal random coefficient autoregressive process:

where and

• 0≤ρ≤1, ε and ξ are i.i.d. and normally distributed with σ2, ω2

• The randomized seasonal autoregressive process is then:
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• It is also called a heteroskedastic seasonally integrated process 

– Conditional on its own normally distributed past

• If ω2 = 0, the process is a regular seasonal random walk with 
homoskedastic innovations 

• Hence, the test hypotheses are 

• Taylor-Smith test is used for determination of heteroskedastic 
seasonal integration

–

– ρ is unidentified under the null hypothesis, hence, the two polar cases 
S0 and S1 are computed 

– the limiting distributions for S0 and S1 are nonstandard

• However, this process is not a covariance stationary process
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Seasonal (G)ARCH Models

• Application: - financial time series 

• stock-market dividend yields

• Foreign-exchange volatility

• Lead-lag relations between two or more simultaneously traded markets

- volatility of few macroeconomic time series 

• The GARCH(p,q) process:

– if we define                       , one obtains:

• Analogously, the seasonal GARCH(p,q) process:
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• where:                         and 

• If then this GARCH(p,q) process has a unique 

strictly and covariance stationary solution

– For a GARCH(1,1) process being strictly stationary it is enough to fulfill 

the following condition:

• Maximum-Likelihood-based estimation of coefficients

• The effects of Filtering on ARCH models

– Seasonal filtering may lead to bias in the autocorrelation function

– In order to present these biases one may define the weak GARCH(p,q) 

process, linear filters, and derive the (filtered) autocovariance and 

autocorrelation functions

– Then, one can derive conditions to have unbiased autocorrelation 

function 
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• The weak GARCH(p,q) process:

– where is the conditional variance with and 

ELt(.) is the linear projection on the space spanned by 1,

– vt+1 is a Martingale difference sequence with respect to the linear span 

filtration

• Suppose the following linear filter that filters the nonseasonal (ns) 

components in the data:

– z is a variable with seasonal (s) and nonseasonal components: 

z = zS + zNS

– L is the lag operator

• Autocovariance function:

–

– Applying the linear filter to the residuals one obtains the filtered 

autocovariance function:
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• In case of weak GARCH(1,1) one can derive the following 

autocovariance (γ) and autocorrelation (ρ) functions: 

• Let define     and apply the linear filter v(L) ≡ (1-LS) to this 

process, then one obtains the filtered autocorrelation function:

• As a final step the condition on parameters ϕ and θ is obtained to 

have an unbiased autocorrelation function
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• If the parameters ϕ and θ solve the following equation:

the autocorrelation function is unbiased 

• If the following inequality holds:

– the autocorrelation function is upward biased;

– the autocorrelation function is downward biased
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Periodic GARCH Models

• Time-varying coefficient model for conditional heteroskedasticity 

instead of fixed parameter structure

• Motivation: intraday pattern in market activity with regular opening 

and closure of financial markets (DEM/USD and DEM/GBP)

• Consider a modified Borel σ-field filtration in which the usual Ωt-1 is 

augmented by a process defining the stage of the periodic cycle at 

each point in time, say ΩS
t-1

• Then the P-GARCH process is:

• s(t) refers to the stage of the periodic cycle at time t

• ωs(t) may capture the nontrading-day effects
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• ϕis(t) – measure of the immediate, or direct, impact of any new 

arrivals

• θjs(t) – smooth long-term evolution in the volatility process

• But, in many empirical applications the long-term effect θjs(t)= θj is 

constant across all stages of the cycle

• A straightforward P-GARCH model: 

– s(t) = 1+[(t-1)mod S]

– S is the length of the cycle (e.g. S = 5 if stock markets)

• Periodic ARMA representation of this process with time-varying but 

periodic correlation structure:

with 

• ML- and quasi-ML-estimation of coefficients 
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Periodic Markov Switching Models

• Modeling seasonal mean shifts caused by changes in the regime

• Application: 

– Aggregate macroeconomic time series 

– historical wheat prices

• Consider a univariate time series process with the following 
stochastic structure:

where the intercept shift function is:

• (it, st) denotes the state of world which is a binary stochastic 
switching regime process {it} and the seasonal indicator process {st} 

• st = t mod(S) where S is the frequency of sampling throughout the 
year 
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• Transition matrix determines the probability of being in state k = 0,1 

in period t conditional on being in state k = 0,1 in period t-1:

0 1

0 q(st)                    1- q(st)

1  1-p(st)                    p(st)

– If p and q are constant we obtain the standard homogeneous Markov 

chain model

• Let {it} be an AR(1) process:

– where

for it-1=1

for it-1=0

– this is a periodic AR(1) model with seasonally varying parameter values
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• Let define the process {yt} as follows: 

where εt is Gaussian and independent and the left-hand-side of the 

equation is the sum of two independent unobserved processes, {it} and 

(1-ϕL)-1εt

• The left-hand-side of this equation have the following linear time 

series representation:

which has hidden periodic properties and inherits the nonlinear 

predictable features of {it}
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Thank you for your attention!


