7 Evaluating predictive accuracy

The question “How good is a forecast?” comprises two separate aspects:
firstly, measuring predictive accuracy per se; secondly, comparing various
forecasting models. For example, if a variable is almost unpredictable, all
forecasts are likely to be poor. Yet, a forecaster may still look for the best
forecast among the poor ones.

The most commonly reported measures of predictive accuracy are

1. mean squared prediction errors or a variant of them:;

2. mean absolute prediction errors;

3. percentage measures, such as the mean absolute percentage error (MAPE);
4. Theil coefficients;

5. significance measures, such as the DIEBOLD-MARIANO test statistic.

Additionally, some researchers, particularly in applied economics, use or
suggest qualitative accuracy measures. CHATFIELD focuses on such a mea-
sure under the name of ‘Percent Better’. We should scrutinize each of these
suggestions in turn.

7.1 Mean squared prediction errors

In the notation of CHATFIELD’s textbook, the prediction mean square error
PMSE is defined as

N
PMSE=m™" Y (z,— a1 (1),
N—m+1

t=

In this form, PMSE evaluates out-of-sample one-step errors. N observa-
tions are available, and the last m observations are used for evaluation. The
forecast ;1 (1) is meant to be calculated on the basis of the observations
Z1,...,x;_1 only, including parameter estimates. The formula is easily mod-
ified for h—step errors with h > 1.

The PMSE formula does not specify m. A general recommendation is
to keep m/N small. For large m/N, the forecasts with small ¢ are based
on very short samples and thus fail to be reliable indicators of absolute or
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relative accuracy. An obvious modification would be to replace PMSE by a
weighted MSE, with the weights increasing in ¢. Like the original PMSE,
this suggestion emphasizes the possibility that the true model may change
over time. Then, the approximation by the prediction model toward the end
of the sample is potentially more important for forecasts beyond N than the
approximation in the earlier portion.

As m — oo, the PMSE should converge to a variance. Depending on
the properties of the DGP, if such a one is assumed to exist, that variance
should be close to—though slightly larger than—the variance of the theoret-
ical prediction error E (2, — B (2;/Z;_1))?, where Z,_; is an information set
that contains the history of the series . That theoretical variance serves as
the benchmark for the construction of many statistical procedures, including
least-squares estimation and AIC, which justifies the widespread usage of the
PMSE.

The most common critiques of the PMSE are:

1. quadratic loss may not correspond to the forecaster’s loss function;

2. the PMSE depends on scales;
3. the PMSE is vulnerable to outliers.

The idea of a forecaster’s loss function is that forecast errors entail costs,
in the sense that costs depend on

Eg(x; — &1 (1))

for some function g. Some authors even consider generalizations of the ex-
pectation measure, as the costs may depend on time or on a nonlinear trans-
formation of the vector of prediction errors, or on a more qualitative evalua-
tion. The function should obey g (0) = 0 and g (z) > ¢ (y) for z > y > 0 and
x <y < 0. Otherwise, g may be asymmetric and it may converge to a finite
constant as its argument approaches infinity. The main problem with the
loss-function approach is that the true loss or cost function is rarely known
in practice. In some applications, even the existence of a cost function is
uncertain, as the forecast may satisfy curiosity rather than serve as a basis
for actual immediate decisions. Therefore, only simple loss function are con-
sidered usually, such as g (x) = 22 and g (z) = |z|. The first choice yields the
PMSE, the second one yields the mean absolute error, which is occasionally
preferred due to its robustness toward outliers.
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The scale dependence of PMSE is not a problem, as long as a specific
variable x is in focus. If several variables are predicted using various proce-
dures in each case, individual PMSEs should be weighted. A suggestion for
weighting would be the sample variance of each series.

Often, instead of the PMSE, its square root is reported. While the PMSE
corresponds to a measure of variance, the root MSE is a measure of standard
deviation, which makes it somehow easier to interpret. The transformation
does not change the ranking of models and predictions according to their

accuracy, and it also does not remove any of the inherent problems of the
PMSE.

7.2 Mean absolute prediction errors
In the same notation as above, the mean absolute error is defined as

N
MAE=m™" Y |z — &1 (1)].

t=N-—-m+1

As m — oo, the MAE should converge to E|z; — E (x|Z;—1)| or a slightly
larger value, assuming this value exists. For a Gaussian world, this moment
is proportional to the standard deviation, with a fixed proportionality factor.
Also for other distributions, the absolute moment will measure the dispersion
of the forecast errors.

The MAE is based on the loss function g (z) = ||, which is more sensitive
to small deviations from 0 and much less sensitive to large deviations than the
usual squared loss. Therefore, the MAE can be viewed as a ‘robust’ measure
of predictive accuracy. The MAE tends to prefer forecasting procedures that
produce occasional large forecast failures, while they are reasonably good on
average. By contrast, the MSE tends to prefer forecasting procedures that
avoid large forecast failures, even though they produce a less satisfactory fit
otherwise.

Because the estimation procedures are usually based on least-squares cri-
teria, an emphasis on the MAE may involve a slight logical inconsistency.
The best class of models is then selected according to a criterion that is dif-
ferent from the one that selects among the different members of an individual
model class.
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7.3 Mean absolute percentage error

In the above notation, the mean absolute percentage error (MAPE) is defined
by

MAPE — m1 i w‘
t=N—m+1 L

This definitions answers complaints by some researchers that traditional cri-
teria, such as PMSE and MAE, depend on the scaling of the variable z, which
may be inconvenient if the criteria are used for comparing predictive accu-
racy across different variables or different time ranges. Unfortunately, the
MAPE achieves scale independence by a simple division by x;. This entails
a serious drawback.

Many economic variables, such as stock returns and most growth rates,
vary around zero. Whenever x; = 0, the contribution at time point ¢ and
therefore the MAPE are undefined. Even if x; is only approximately zero,
the relative contribution of time point ¢ will be enormous. Usually, there is
no justification for preferring a high precision for small values of z;.

It is obvious that the MAPE is tuned to variables that live in an area that
is separated from zero by common sense. Economic examples would be the
main aggregates of national accounts, such as fixed investment and private
consumption.

Under the name of ‘rmse percent error’, PINDYCK AND RUBINFELD con-
sider the direct squared-loss counterpart to the MAPE
N @ = (1)

1
m Z 7,2

t=N-—-m+1

This measure has properties that are similar to those of the MAPE, with
whom it shares most of its problems. While PMSE is more often reported
than MAE, MAPE appears to be more popular than the above suggestion.

In order to obtain a scale-free precision measure, it would be more ap-
pealing to consider measures such as

. 2
Zi\LN—m—l—l (we — 21 (1))
N )
YeN—ms1 (T — T)
In this formula, the denominator measures the ‘total’ variation of x, while
the numerator measures that part of the variation that has been accounted

for by the prediction procedure. Thus, the measure is reminiscent of the
regression R?. THEIL’s accuracy measures follow a similar idea.
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7.4 Thell coefficients

The idea of Theil’s coefficients was to evaluate a forecast against the back-
ground of a simple or primitive forecast. If a forecasting procedure is to be
taken seriously, it should at least ‘beat’ the simple benchmark. Unfortu-
nately, it is not always clear which benchmark to use. THEIL used mainly
random-walk or no-change forecasts, while other researchers use autoregres-
sive prediction or exponential smoothers instead.

The version of Theil’s coefficient that has been implemented into the
EViews software is defined as

VS (@ =g (D)
\/Zi\LN—m—i—l ':Et2 + \/Zi\LN—m—l—l :%t—l (1)2

For a ‘good’ predictor, the numerator will be small compared to the denom-
inator. For a ‘bad’ predictor, both will be of similar magnitude. Theil’s
measures have often been criticized in the literature. They tend to yield im-
plausible results in the sense that a predictor that optimizes them may have
undesirable properties and wvice versa, at least under lab conditions. It is not
so certain whether this is also true in practical applications.

U

7.5 Decomposing the mean squared error

According to the EViews manual and to PINDYCK&RUBINFELD, the mean
squared forecast error can be decomposed as

m~! Z (2 — 41 (1))2 = (Z i1 (1) — E)Q + (s — 81)2 +2(1 — 743) S35z

Here, s; and s, are sample standard deviations of & and z, respectively, while
res 1S the sample correlation. Dividing the three parts by the total yields the
bias proportion, the variance proportion, and the covariance proportion. The
non-negative ‘proportions’ sum up to 1. According to the sources mentioned
above, the bias proportion tells us how far the mean of the forecast is from
the mean of the actual series. The variance proportion tells us how far the
variation of the forecast is from the variation of the actual series. Finally,
the covariance proportion measures the remaining unsystematic forecasting
€rrors.

The idea is that, if the forecast is “good”, the bias and variance propor-
tions should be small so that most of the bias should be concentrated on the
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covariance proportions. The informative value of the decomposition has not
been accepted universally, however.

7.6 Diebold-Mariano statistics

The econometricians DIEBOLD and MARIANO were interested in a situation
where a ‘cheap’ benchmark forecast is compared to a sophisticated forecast.
A forecaster may prefer the cheap forecast up to a point where the sophisti-
cated forecast shows its relative merits ‘significantly’. It is uncertain whether
this situation is common in applications and empirical projects. Usually,
various forecasting methods are considered and an optimum method is then
selected, while the cost of a forecast method play little role. A complicated
forecasting method may even be selected if it only achieves a slight improve-
ment on average. Some economic projects may even show an instinctive bias
toward more sophisticated and costly methods, as these demonstrate the
forecasting team’s skills.

CHATFIELD ranks among the few statisticians who criticized the null
hypothesis of these tests expressis verbis. That null hypothesis would be
that the expected difference in squared error (or some other loss moment) is
zero. It is doubtful whether this null hypothesis is of central interest to the
typical forecaster.

DIEBOLD&MARIANO assume that the precision is basically measured by
Eg(x; —2;1(1)) and Eg (z; — ;1 (1)) for two different forecasts Z and &
and a loss function g (.). Under the hypothesis that the difference is zero, it
can be shown that the test statistic

d
m_lzﬁfd (0)

Si =

converges to a standard normal distribution as m — oo. Here, d denotes
the sample average of d; = g (v; — #;-1 (1)) — g (¥¢ — #;-1 (1)). The element
fa(0) is a scale factor defined as the spectral density estimate of d; at the
frequency 0. An operable definition for f; (0) is

. m—1

fa(0)=(2m)™" 3 w(k,m) (k).

k=—m-+1

where 9, (k) is the sample autocovariance at lag k and w (.) is a kernel weight
function that obeys certain consistency conditions, such as w (k, m) — 1 for
fixed k and m — oo.
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7.7 Qualitative measures

Sometimes, macroeconomists maintain that they are less interested in the
accuracy of a real growth forecast than in forecasting ‘turning points’ of the
business cycle. It is uncertain whether such turning points exist outside of
the official NBER, chronology and economics textbooks. Similarly, a stock
market analyst may be more interested in whether a specific security price is
going to rise or to fall in the immediate future than in the numerical accuracy
of the price prediction for the next day. Again, it is often uncertain whether
the implied picture of longer sinusoidal swings in the security price with local
maxima (peaks) and local minima (troughs) corresponds to reality.

It is difficult to construct an accuracy measure for this type of loss func-
tion, at least as long as the variable of concern x is quantitative. Some econo-
mists tend to ‘code’ and discretize some real-valued variables, such that ‘x
increases’, ‘x decreases’, and ‘x remains approximately constant’ become the
three events or ‘states’. Then, one may count the occurrences of successes
and failures. The ‘better’ procedure is the one that yields more successes or
a larger success ratio. While the winning procedure may miss the exact value
of x by far, its forecast for the ‘sign’ of x is reliable. Here, an inherent diffi-
culty is the definition of ‘approximate constancy’. Instead of success ratios,
one may also summarize this type of evidence in coincidence matrices.

A different kind of success ratio is suggested by CHATFIELD who, in
comparing two methods A and B, counts the cases when A is closer to the
true value and when B is closer. A forecaster who predicts many values
closely and misses a few ones by far, would attain a good ‘Percent Better’
ratio. In this sense, CHATFIELD’s ‘Percent Better’ is a robust criterion and
comparable to the MAE. Note, however, that it is scale-independent, unlike
the MAE.

7.8 Forecast bias or mean error

The sample average of the prediction errors

N

m > (z— 81 (1))

t=n—m-+1

is also often reported for prediction experiments. It is not a real measure of
accuracy, although it contains some important information. A forecast with a
large and systematic forecast bias could be improved by some straightforward
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adjustment. In this sense, systematic over-prediction or under-prediction
points to an inefficiency, or otherwise to an asymmetric loss function.
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