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Abstract

The aim of this summary is to provide a basic overview of time
series analysis. In a first step, some properties of time series and time
series operators will be discussed. Secondly, the concepts of moving
average processes and autocorrelated processes will be introduced and
reviewed. A section about theoretic concepts of time series forecasting,
such as forecastebility , unpredicatability or informativness, concludes.

1 Lag Operators

A time series operator transforms one group of time series into a new time
series. An input series such as {x;}?° __ or a group of input series such as
({xe}2 ooy ooey {wi } 22 _ ) is transferred into a new sequence {y; }5° . Exam-
ples of time series operators include the multiplication operator, represented
as

Y = By

or the addition operator
Yt = Ty + Wy.

*Written in partial fullfillment of the requirements of the course 7406347 UK
Okonometrische Prognose”. The first six chapters follow Hamilton (1994) and Dinardo
and Johntson (1997). The last chapter follows Clements and Hendry (1998).



Note that it does not matter if one applies the multiplication operator first
and the addition multiplicator second or vice versa, i.e.

Bry + Pwy = By + wy).

A very useful time series operator is the lag operator. The lag operator
creates a new series such that the values of the new series {y,}2__ at t are
equal to the values of {z;}?° __ at t—1. This operation is usually represented
by the symbol L.

Lflft = T¢_1.

If the lag operator is applied twice then the values of the new series {y;}5°_
at t are equal to the values of {z;}°__ at ¢ — 2. Such a double application
of the lag operator is often indicated by L? :

L2$t = L(Ll‘t> = L.Yitfl = T¢—2.

More generally, for any integer k , L* gives the values of the new series
{y:}2_ at t , which are equal to the values of {x;}° _ at t — k:

kat = Tt—k-

Note that the lag operator is commutative, i.e. it does not matter if we apply
the lag operator first and then the multiplication operator or if we apply the
multiplication operator first and then the lag operator. In other words

B(Lxy) = L(Bxy).

An additional property of the lag operator is that it is distributive over the
addition operator, i.e.:

L(.I‘t + yt) = L.I‘t + Lyt

Hence the lag operator follows the same algebraic rules as the multiplica-
tion operator. For this reason the expression "multiply 3; by L” instead of
"operate {y;}7° ., on L” is very often used.



2 Difference equations

2.1 First order difference equations

A first order difference equation is a dynamic equation relating the values
y takes on at date ¢ to another variable w, and to the value y took in the
previous period ¢t — 1.

Y = QY1 + wy.

This equation can be rewritten using the lag operator:
Ye = oLyt + wy.
One can rearrange terms such that
y(1 — L) = w;. (1)

If one multiplies both sides of (1) by (1+@L+¢*L?+ ...+ ¢'L?) it is obtained
that

(14+¢L+¢*L* + ...+ ¢' LNy, (1 — ¢L) = (1 +¢L + ¢*L* + ...+ ¢' L) w,. (2)
Now the left side of (2) can be rewritten as
(14 ¢L + ¢°L* + ...+ ¢'L") — (1 + oL + ¢*L* + ... + ¢' L)L)y,
or equivalently
(1= ¢ L) = (BL+ L2 + .+ 6Ly,
= (1 ¢ Ly 3
Substituting (3) into (2) yields:
(1— ¢ LYy, = (1+ ¢L + *L* + ... + ¢ Lh)wy,
which in turn can written out explicitly:
Y — Oy = Wi + Qwig + PPwia... + Prw

or
yr = ¢y +w + pwiy + PPwi ... + dlwy. (4)
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Thus the value that y takes on at date ¢ can be described as a function of its
initial value y_; and the history of w between date 0 and date ¢t. Another way
of obtaining this result is by ”recursive substitution” where one substitutes
y_1 into the equations for yg, y1, ...y; and recursively solves for y;.

If |¢| < 1 and y_; is a finite number the expression ¢'™y_; will become
negligeable as t becomes large. Hence from (3) and the left side of (1) it is
obtained that:

(14 ¢L + L + ...¢L")(1 — ¢L)y, =y, for t large.

In particular this implies that the operator (1 + ¢L + ¢L? + ... + ¢L7) can be
approximated by the inverse of the operator (1 — ¢L). This approximation
can be made arbitrary accurate by choosing j sufficiently large, i.e.

(1—¢L) ' =lim (1+@L+ ¢L* + ...+ ¢L7).
j—o0
Note that this operator has the property

(1—¢L) " (1-¢L)=1.

where ”1” refers to the identity operator. If |¢| < 1 and the sequence both
sides of (1) can be "divided” by (1 — ¢L) in order to obtain

Y= (1— CbL)_lwt
or equivalently
Yo = wy + pwy_1 + F*we_a + PPwyz + ... (5)

Hence in the long run the y; will only depend on the sequence w.

2.2 Dynamic multipliers

Looking at (4) it is easy to ascertain the effect of an increase in wy on y;:

Iy
8w0

=¢.

Likewise the effect of w; on y,1; is given by:

i+ Y



Thus the dynamic multiplier only depends on j, the length of time separating
the disturbance to the input w; and the observed value of the output y;
Different values of ¢ can cause different dynamic responses of y to w. If
0 < ¢ < 1 the multiplier in (6) decays geometrically towards zero.
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If —1 < ¢ < 0 the multiplier will alternate in sign. However the absolute
value of the effect will decrease towards zero.
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If however ¢ > 1 the multiplier will exponentially increase over time.



phi=1.1
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Finally, ¢ < —1 implies that the multiplier will exhibit explosive oscilla-
tion.

phi=-1.1

Thus, if |¢| < 1, the system is stable, i.e. any given change of w will die
out. Whereas if |¢| > 1 the system is explosive.

2.3 pth order difference equations

Consider now a difference equation of pth order. A pth order difference
equation is a dynamic equation relating the values y takes on at date t to
another variable w; and to the value y took in the previous periods t — p.



Yt = G111+ PoYi—2 + . + QpYr—p + Wi (7)

The aim now is to find an expression similar to (5) such that y; only depends
on the sequence w. Note that (7) can be rewritten using lag operators:

(1= L —¢pL? — ... — PpLP)ye = wy.

Consider now the operator on the left side. This operator can be factored
such that:

(1= L — ¢pL? — ... — $,IP) = (1 = ML)(1 = AoL)...(1 = A L).

Since the lag operator follows the same algebraic rules as the multiplication
operator this is the same task as finding the values of (A, Ag, ..., A,) such that
the polynomials are the same for all z:

(1= gz — dp2® — .. — ,2°) = (1 = Ai2) (1 — Xo2)...(1 — Ap2).
Now we multiply this equation by 277 :
(277 — 12" P — 2" P — = 9, 2P ) = (1 — Ai2) (1 — Ao2)...(1 — N\p2)z P
Upon setting A = 27! it is obtained:

W = A =X — =) = (A= A1) (A= A)c(A = Np).

Note that for A = Aj, g, ..., or A\, the right side of this expression becomes
zero. Thus the values of (A1, Ag, ..., A,) must be such that the right side of
this expression is zero as well:

A — g N — g, N — =, =0. (8)

If the roots of (8) lie inside the unit circle the difference equation will in fact
turn out to be stable. Furthermore, provided that the values (A1, Ag, ..., Ap)
are all distinct, this allows us to write equation (7) such that y; only depends
on the sequence w:

Yt = rLp(]/wt + wlwtfl + watfl--- (9)

where
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Again, the dynamic multipliers can be directly read off (9):

LI ‘ ‘ : .

ggﬂ =Y =[aM +aXy+ .. FaX + .. F M)

j

3 Expectation, Stationarity, and Ergodicity

3.1 Expectations

Consider a battery of 1 computers separately generating realizations of a
time series {yt }t_foo, {4 }t_foo, o {yPYee . Now one can select from
each sequence the observation associated with time ¢.

I
{yt 7yt 9t 7yt( )}

This describes a sample of [ realizations of the random variable Y;. The
expectation of the tth observation of a time series refers to the mean this
probability distribution, provided that it exists:

[e o]

B(Y;) = / e ()

—0o0

Sometimes the expectation F(Y;) is referred to as unconditional mean of Y7,
which is denoted by p,. One can also think of E(Y;) as the limit probability
of the ensemble average:

I

E(Y;) =plim =YY,

1
I—o00 i—1

—

The variance of the random variable Y; which is denoted by 7, is defined as:

oo

Yor = E(Y: — ,Ut)2 = /(yt — 1¢) fy (Ye) dys.

—00



3.2 Autocovariances

Given a realization of the a time series process {y,gl)}fi_oo, one can construct
a vector xﬁl) associated with date ¢ which collects the [j + 1] most recent
observations:

y!

creates one particular vector z;. The distribu-

—00

Each realization of {y;}°

tion of this vector :)sgl) across realizations ¢ is called the joint distribution of

(Y;,Y;_1,...Y;;) and can be used to calculate the jth autocovariance of Y7,
denoted ;.

Vit = E(Y, — Nt)(Yt—j - :ut—j)' (10)
Note that (10) has the form of a covariance between two variables. Hence the
autocovariance 7, is the covariance of Y; with its own lagged value. Again

the jth autcovariance can be thought of as the probability limit of an ensem-
ble average:

I—o00

I
.1 i i
BOY) =plim 7.3 (% - ) (V0 = i)

3.3 Stationarity

If neither the mean p, nor the autocovariances 7;, of a process depend on the
date t then the process for Y; is said to be covariance-stationary or weakly
stationary.

E(Y;) = pforallt
E(Y; —p)(Yi—j —p) = ~,forallt and all j.

A different concept of stationarity is that of strict stationarity. A process
is said to be strictly stationary if for any values of j;, jo, ..., j, the joint distri-
bution of (Y, Yiij,, Yitjs, s Yitjryn) depend only on the intervals separating
the dates (j;, Jo, ..., jn) and not the date t itself. To see why the concept of
strict stationarity is stronger than the concept of covariance-stationary, note
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that it can be the case that, although the autocovariances and the mean are
independent of the date ¢ , higher moments of the distribution depend on ¢.

3.4 FErgodicity

Assume that we have observed a time series (y%l),yél), - C(pl )). From these

observations one can calculate the sample mean 7 :

1 T
= _ (1)
y= T ;Zl Yt

In this context, a covariance-stationary process is said to be ergodic for the
mean if § converges in probability to E(Y;) as T' — co.

4 Moving Average Processes

4.1 The First-Order Moving Average Process

Consider a process
th :u—i-&?t—i—ﬁat,l

Where i and 6 could be any constants. It is called a "first-order moving
average process” or short M A(1) and it is constructed from a weighted sum
of the two most recent values of ¢ (white noise).

The expectation or mean of Y} is

E(Y;) = E(p+er+0e1) = p+ E(er) +0E(e1-1) = p
The variance is given by:
Yo = E(Y; = p)* = By + 021-1)° = (1 + 6%)0”
and the first autocovariance is
71 =E; = p)(Yia — p) = a%6.

All higher autocovariances v, are zero for j>1 and hence the variance and
the autocovariance are not functions of time which implies that a MA(1)
process is covariance-stationary regardless of the value of 6. Furthermore,
the M A(1) is ergodic for all moments since {¢;} is white noise.

10



The jth autocorrelation is defined as

’y .
corr(Yy, Yi_j) = p; = .
Yo
For the first autocorrelation, this means
fo? 2

N AT -0

This indicates that different values of 6 have different effects on the correla-
tion type. If # >0, it induces positive correlation, meaning that a high Y; is
likely to be followed by a very high Y;,;. The opposite is correct for negative
values of 6.

4.2 The qth-order Moving Average Process
A M A(q) process is characterized by
}/t = U +é& + 91€t_1 + 928,5_2 + ...+ qut—q

Where {¢,} is white noise and (6, ..., 6,) are any real numbers.
The expectation or mean is given by

E(Y,) = p.
The variance of a M A(q) is
Yo=EY,—p)?=0"+00"+.. + 60" =(1+6]+..+6)0°
For 7 = 1,2, ..., q, the autocovariance is

’}/j = F [(St + 915t—1 + ...+ 9q€t_q)X(€t_j + 918,5_]‘_1 + ...+ 9q€t_j_q)]
= F [9j5t2—j + 9j+191€?—j—1 + ...+ 9q9q_jsf_q} .
Terms involving €‘s at different points in time drop out because their products

are zero.
vy =105+ 050101 + .. + 040451 0% for j=1,...q

0 for j >q.

The M A(q) process is covariance-stationary and ergodic for all moments.

11



4.3 The Infinite-Order Moving Average Process

A M A(q) process can be rewritten:
q
Yi=p+ Z 0iei—;
=0
If ¢ goes to infinity we obtain a M A(oco) process:

Y, =p+ Zgojat,j = U+ QoEr + P1E1-1 + ...
=0

This infinite sequence is a covariance-stationary process if it is square sum-

mable: -
D <oo
=0

or absolutely summable (stronger condition)
> eyl < o0
=0

The mean of a M A(co) process is given by:

E(Y;) = Th_rgo E(p+ @oet + @161+ oo +0pp) = p.

The variance is given by:

Yo = E(Yi—p)* = Tim (g5 + @7 + ... + ¢7)0”,

and the autocovariances are given by:

v =B —pu)(Yij —p) = Uz(‘ﬂj% + 0101 + Pipap0 + -0

If a M A(o0) process is absolutely summable, it is ergodic for the mean and
ergodic for all moments when {e,} is white noise.

12



5 Autoregressive Processes

5.1 The First-Order Autoregressive Process

An AR(1) satisfies the following difference equation with the input variable
wy = C+ &
Yi=c+ oY1 +e&

If |¢| > 1, the consequences of the ‘s for Y accumulate rather than die out
over time. This implies that there is a covariance-stationary process for Yt
when |¢| < 1. There are two possibilities of deriving the moments for an
AR(1). One is by viewing it as an M A(oo). The second alternative is the
assumption that the process is covariance-stationary and we can calculate
the moments directly from the difference equation. I will consider the first
proposal.

V; = (c+e)+dlcte)+d*(ctes)+ ..

c
Y, = lm} + &+ pep1 + ¢28t72 + ...
Now, take the expectation to get the mean
c c
EY)=———4+04+0+..= =i
==y =y
The variance is
Yo=EY —p)?=E(e + ¢er1 +..)° = 1+ ¢+ ¢* + ....)07
o2
’y =
(1-¢)

0_2

%IEO&wMKl—mz[

It follows that autocorrelation looks like
b=l
Yo
This is equivalent to the dynamic multiplier or impulse-response function
mentioned earlier. The effect of a one-unit increase in on Y;,; is equal to
the correlation between Y; and Y;;. If ¢ > 0, we have positive correlation.
On the other hand, if ¢ < 0, this indicates negative first-order but positive

second-order autocorrelation.

13



5.2 The Second-Order Autoregressive Process
An AR(2) process satisfies:

Yi=c+ ¢ Y1+ dyYs o+ et
Expressed in Lag operator notation:

(1—¢1L — ¢ L?)Y; = c + &4

The difference equation is stable if |¢|<1 and the roots lie outside the unit
circle. When this is satisfied, the AR(2) process is covariance-stationary and
the operator is invertible:

U(L) = (1= ¢, L — ¢y L) " = Wo+ U L+ U L? + U3L® + ...
Now, multiply the Lag operator by W(L):
Y; = U(L)c+ ¥(L)e
c
(L)c

= VY(L)c=

(1= ¢y —¢y)

J=0

We obtain a M A(co) process, so the mean is given by the constant term

. C
SR G —

Following, rewrite the difference equation in order to find second moments:
Vi=p(l— ¢y — ) + 01 Y1 + Y0+ &

Multiply both sides by (Y;—; — i) and take expectations to get the autoco-
variances:

Y= ¢1’Yj—1 + ¢2’Yj—2

To obtain the autocorrelations, divide this expression by the variance ,:

pP; = ¢1ij1 + ¢2ij2

14



The variance is

E(Y;—pn)? = 0 E(Yiey — p)(Ye — p) + ¢y (Yio — 1) (Ve — ) + E(e) (Vs — )
Yo = P11+ PoYe Tt o’
Yo = $1p1V0 T Pap2Yo + o’
B & Go 91
A (TS

+¢§ ’Yo+02

" L (-
U () [(1— )2 — 7]

5.3 The pth-Order Autoregressive Process
An AR(p) process satisfies
Yi=ct+¢ Vit oY+ .. +o,Ypt+e

The mean is

EY, = p=c+oip+ dop+ ... +opp
C

M =
(1—¢r—dy— ... — &)
Rewriting the AR(p) process by substracting u gives

Vimp=¢1(Yier —p) + ¢o(Yig — p) + oo + 0, (Yip — 1) + &

Then multiply this expression by (Y;_; — u) to find autocovariances:

. ¢1’y‘771+...+¢p’y]7p fO’f’j: ]_727....

7T ¢171+¢2”72+---+¢p’7p+02 forj=0

To get the autocorrelations, just divide the v, -function by the variance v,
(Yule-Walker-equation):

ol

5 =p; = P1pjo1 + Papjot o+ Ppp, for j =12,
0

We can see that p; and ~; follow the same pth-order difference equation as
the process itself.
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6 Mixed Autoregressive Moving Average Processes

This ARM A(p, q) processes contain terms of AR and M A processes and have
the following shape:

Vi=c+ ¢ Y+ Yo+ .. +¢,Yip+e+0ie 1406 0+ ...+ 0
or in Lag operator form,
(1= ¢ L—¢yL? — ... — ¢, LP)Y, = c+ (1 + 0, L + 05L% + ... + 0,L%)e,
By dividing both sides by (1 — ¢, L — ¢,L* — ... — ¢, L”) we obtain

)/;f = U + \P(L)gt

with
¥(L) = (14 61L+60,L% + ...+ 6,L9)
(1—6,L — 6,17 — ... — §,L7)
and
Z |io;] < o0
=0
and a mean of c

a0y
Now we see that the stationarity of an ARM A-process only depends on the
AR-parameters (¢y, ¢, ..., ¢,) not on the MA-parameters.
In order to express the autocovariances, we substract the mean from the
Y;-equation and multiply it by the term (Y;_; — ). For j > g, the resulting
equations are

Vi =01Vt Vot Oy for =a+ 1,942, ..

From this it follows that after ¢ lags the autocovariance follows the pth-order
different equation determined by ¢;, ¢y, ..., @,
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7 Principles of Forecasting

In this section the basic concepts of unpredictability and forecastability are
defined and the notions of loss functions and optimal predictors are ad-
dressed..

The variables to be forecast are an n-dimensional discrete-time stochastic
process {z;}, where 7, = (v1; ... Tn,) for t = 1,...,T + H. The joint density
of x; at time ¢, given the history of the process, is assumed to exists and is
D,, (x| X;_1,0) where the vector of k parameters § € © C R*. Thus, D,,(*)
is a function of past information: X; 1 = (... 1 ... z;_1). We assume the
existence of any necessary pre-sample information, X, and use the notation
Xt—l = (X07Xt1_1) SO th—l = (Zli'l I’t_l).

The period up to 1" is deemed to have occurred, and the forecast interval
is T+1, ..., T+ H. A statistical forecast Zr.for period T+ h, conditional on
information up to period T + h, is given by T, ,= fn(Xr), where the prior
estimate of 8 may be needed in order to compute the forecast. We assume 6
to be the same over t = 1, ... , T, but all elements of # need not be relevant at
all points in time. For simplification we take n = 1 and we refer to a scalar
element of z; as y;.

The best known theorem is that, when the first two moments exist, forecasts

A
calculated as the conditional expectation Y7y y= FE [(yrin |Y7] are unbiased,
and no other predictor conditional on Y alone has a smaller mean-square
forecast error (MSFE):

Mh[gT-i-H ‘YT] =F [(yT+h_ QT+H)2 |YT] .

However, MSFE is not necessarily the most desirable criterion, and under
other loss functions, the conditional expectation may not be optimal. For ex-
ample, one may be concerned with the 'profitability’ resulting from a forecast,
or the costs of forecast errors may not be symmetric. If loss is asymmetric so
that there are proportionately greater costs attached to, say, under-prediction
than over-prediction, an optimal predictor would on average over-predict.
While asymmetries are clearly important for individual agents’s decisions,
their importance at the macro-level is less obvious.

Now we want to define the notion of an unpredictable process, and note
some of its implications. Unpredictability is the property of a random vari-
able in relation to an information set, so is well defined. The same cannot be

17



said of the next two concepts, namely informativeness, which is a relation-
ship between information and a pre-existing knowledge state, and forecasting,
which is a process of producing statements about future events.

7.1 Unpredictability

The definition of the unpredictability is equivalent to the statistical inde-
pendence of an m-dimensional stochastic variable v; for an information set
denoted T;_;. So vy, is unpredictable with respect to T;_; if the conditional
and unconditional distribution coincide:

Dut(Vt ‘irt—l) = DVt(Vt)

The knowledge of T;_; does not improve prediction or reduce any aspect of
the uncertainty about v;.A simple example is tossing of a unbiased coin: the
next outcome of a head or a tail is unpredictable however many previous
trials are observed, but one of the two outcomes is certain.

Unpredictability is invariant under non-singular contemporaneous transforms,
and conversely it is not invariant under intertemporal transforms since if
uy = vy + Af(T;_1) then

Dut(ut ‘irt—l) = Dut(ut)

when A # 0 since F [u;|T;—1] = Af(T;—1). This concept helps to remove
a possible 'paradox’: the change in the log of real equity prices seam to be
unpredictable in mean but the level is predictable. When the time series z; is
of interest, we assume the information set includes at least the history of ;.
Thus, a necessary condition for x; to be unpredictable is that it is an inno-
vation, and (weak) white noise (when its variances exists). Unpredictability
is relative to the information set used; when I;,_; C T;_; it is possible that

Dy, (ug |It—1) = Dy, (uy)

yet

Dut<ut ‘,I;ffl) 7& Dut<ut)

Any joint density D, (X1 |Xy,6) can be sequentionally factorized as

18



T
Dy (X} |Xo,0) =] [ Da. (21| Xi-1,0)
t=1

and if we define the 1-step error as:
€t = Ty — E [flft ‘Xt—l]

then
FE [et |Xt,1] =0=F [et] =0

which is unpredictable by construction. Consequently, predictability requires
combinations of the unpredictable with 7. In an odd sense, we can only
predict what has already happened, or less paradoxically, the ’cause’ must
already be in train. For forecasting, a view has to be taken concerning both
the relevant information set 7T;_; and the form of the conditional density that
relates the quantity to be forecast to the information set.

7.2 Informativeness

Informativeness is a relative concept, dependant on the pre-existing state of
the recipient’s information set I;_;. If a variable is unpredictable, then the
forecasts of it would seem to be uninformative, depending on the background
information. For example knowing the form of D,,(v;), may be highly infor-
mative relative to not knowing it.

One might take one forecast to be more informative than another if its
forecasting error has a more concentrated probability distribution given I.
For example, over a horizon of H periods for two forecasts fr., and gr.p,
consider an e-neighborhood N,(-), that

P (Friy € Ne(Xriy 1) > P (Grly € Ne(Xplp 1)

where FJTL; (fr41 .- frem), then f is more informative.

7.3 Forecastability

A forecasting rule is any systematic operational procedure for making state-
ments about the future. It is extremely difficult to define forecastable and
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unforecastable. One could perhaps define events as forecastable relative to a
loss measure if the relevant procedure produced a lower expected loss than
the unconditional mean.

For a weakly stationary, scalar time series, we define the limit of forecasta-
bility horizon H to be such that

V lyriw |Tr] > (1 = @)V [yrin]

a may be 0.05, 0.01 or else, so the forecast error variance is 100a percent
of the unconditional variance. The choice of a will depend on the context
and objectives of forecasting, and the value of H, where the limit is reached,
will depend on the dynamics of the time series. If the time series is non-
stationary, suitable differencing might reduce it to stationarity so the formula
above could be applied to the differenced series. If the series is inherently
positive, one could use instead:

VV lyrem |Tr] > kY

where xk may be 0.25, 0.5 or else, or alternatively, scaling could be relative
to y;. If gy, is in logs, there is no need to scale by the sample mean or initial

forecast (¥).

7.4 Implications

These concepts have a number of important implications applicable to most
statistical forecasting methods.

1. Since the conditional mean of an unpredictable process is its uncondi-
tional mean, predictability is necessary for forecastability. However it is not
sufficient, since the relevant information set may be unknown in practice.
T, 1 denotes the conditioning set of relevant events, this events are, or are
not, predictable relative to 7;_;. But as an action by humans forecasting
also requires knowledge of how T;_; enters the conditional density.

2. If the occurrence of large ex-ante shocks (such as earth quakes, or oil
crisis) induced their inclusion in later information sets the past will be more
explicable then the future is forecastable.
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T
3. From D, (X7} |Xo,0) =[] D, (7:|X;_1,0) intertemporal transforms
i=1
affect predictability, so no unique measure of predictability, and hence of
forecast accuracy, exists.

4. Because new unpredictable components can enter in each period, fore-
cast uncertainty could increase or decrease over increasing horizons from any
given T'. For integrated processes V' [yr., | Tr] is nondecreasing in h when the
innovation distribution is homoscedastic. If the distribution is heteroscedas-
tic forecasting uncertainty may increase or decrease in h.

5. If the true T;_; is unknown, one cannot prove the genuinely relevant
information is needed to forecast.
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