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1 Introduction 

 

The history of the evaluation of forecast accuracy goes along with that of time-series analysis. 

The first tests for forecasting models were developed in 1939 by Tinbergen, in response to 

Keynes, who stated that theories must be confirmed if the data and statistical methods are 

employed correctly.  

 

A crucial criticism is the Lucas Critique. It states that the future development is influenced by 

forecasts, because expectations are self-fulfilling. This produces a circuit and raises the 

questions how forecasts should take into account the fact of self-fulfilling prophecies in time-

series forecasting. This theory implies that forecasts are informational input for the data 

generating process (DGP), and that they are invalidated by agents reacting to them. Therefore, 

forecasts are susceptible to biasedness. Opponents of the Lucas critique claim that forecasts 

are no probability-based techniques that point into the future, but rather extrapolative patterns. 

In any statistical problem, the three main sources of uncertainty are: 

 

� Uncertainty about the estimates of the model parameters, assuming that the 

structure of the model is known 

� Uncertainty about the data, for example unexplained random variations of the 

observed variable or measurement errors. 

� Model uncertainty: Uncertainty about the structure of the model, for example 

because the model is misspecified a priori or because the assumption that the 

model parameters are fixed is wrong. Standard analysis ignores model 

uncertainty. 

 

1.1 Model-building procedure using the same data set 

 

The Box-Jenkins model-building procedure suggests the following proceeding for 

econometric data analysis. Model specification means formulating a sensible time-series 

model that is a plausible approximation and predicts future data with adequate precision.  
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After assuming a sensible time-series model to be correct, the model is fitted. Parameters 

which are unobservable are estimated, and strategies are used such as excluding, down-

weighting and adjusting outliers or transformations to achieve normality or constant residual 

variance. Biases in the model-fitting process carry on to predictions. For example, parameters 

may be biased using the same set of data for estimation and for model selection. 

 

The third step is to check for the model’s rationality – also referred to as calibration. The 

shorter the interval is for which the prediction is made, the more input variables for model 

selection and fitting one gets. Still, uncertainty may be reflected better by choosing wider 

intervals for prediction.  

 

An issue that is criticized with emphasis by Chatfield is that problems arise from formulating, 

fitting and testing a model using the same set of data. The least squares theory does so. Biases 

arrising from this procedure are called model-selection biases.  

 

 

2 Model uncertainty 

 

The standard time series literature assumes that there is a true model for a given time series 

and that this model is known before it is fitted to the data. After fitting the ‘true’ model to the 

data the same model is then used for forecasting. Regarding econometric models, the model 

may be misspecified a priori or the parameters assumed to be fixed when they change through 

time. In addition, in time series forecasting the uncertainty problem arises because the model 

is defined, fitted and tested using the same set of data. 

 

Chatfield (2000) departs from the assumption that a true model does not exist. The main task 

would then be to find a model that provides an adequate approximation to the given data. One 

model, that seems to fit the underlying data best, may be selected as a ‘winner’ although the 

other models give a fit very close to the one selected. The properties of an estimator may 

depend, not only on the selected model, but also on the selection process. 

 

 



 4

2.1 Data driven inference 

 

Data dredging is the general process of selecting a model from a large set of candidate 

models, and then used for inference and forecasting1. An example for data-dredging is the 

search for calendar effects in stock market behavior. Analysts may be able to discover some 

regularity when looking at financial series over different time periods. But this regularity may 

fail to generalize to other time periods or to other similar variables. The analyst tests this 

effect because it has been spotted in the data and it may prove significant. This type of data-

driven inference is likely to produce spurious results and suspect forecasts. Based on such 

results rules for investing in the stock market may be recommended, such as ‘Sell on the first 

day of the month’ or ‘Buy on Friday’.  

 

Testing for the presence of unit roots, autocorrelated residuals, presence of break points, 

indicates model uncertainty. The more models are seen as potential candidates of a true model 

and the more testing is carried out on the same data used to fit the model, the more inference 

will be biased. In evaluating the forecasts the question arises how this uncertainty about the 

model will affect the estimates of the forecast accuracy. 

 

2.2 Some research findings 

 

If a time-series model is selected by minimizing the within-sample prediction mean square 

error (PMSE) then the Optimism Principle applies. The fitting of a model gives optimistic 

results in that the performance on new data is on average worse than on the original data. In 

particular, the fit of the best-fitting model is typically better than the resulting accuracy of out-

of-sample forecasts.  

 

2.2.1 Inferential biases – narrow prediction intervals 

 

Empirical studies have shown that the prediction intervals are too narrow in that 95% - 

prediction intervals will contain less than 95% of actual future observations. If a best-fitting 

                                                            
1 Another possible description is data snooping. The expression data mining has been abandoned by statisticians due to its 
application as knowledge discovery in very large databases by computer scientists. Chatfield (2000), ch. 8. 
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model is chosen from many alternatives, the residual variance, and hence the PMSE, are 

underestimated. The predictive variance conditional on the selected model is being taken for 

calculating the prediction intervals.  

 

The example of Draper2 is concerned with forecasting the price of oil. It demonstrates that 

conditioning on a single model or scenario can underestimate the uncertainty in forecasts. The 

problem was to forecast the 1986 price per barrel of crude oil from data up to 1980. 10 

different econometric models and 12 scenarios (low demand elasticity or a drop in OPEC 

production) were considered. He found that the prediction intervals for an individual scenario 

did not reflect the uncertainty. For example, the 90% P.I. for the reference scenario was from 

27 $ to 51 $. The actual price per barrel in 1986 turned out to be 11 $. This was outside the 

different P.I.s that were computed. 

  

Nowadays different computational procedures such as simulation, resampling or cross 

validation are applied because it is difficult to establish in theory how uncertainty about the 

model will affect the estimates of the forecast accuracy. Chatfield (2000) cites the example of 

Hjorth (1987) who simulated data from an ARMA (1,1) model, but found that the correct 

form of the ARMA model was identified in only 28 of 500 series. For the 472 series other 

alternative models were identified as correct. By allowing to select an ARMA model, the 

estimate of forecast accuracy – the PMSE – was optimistic compared to the true forecast 

accuracy, PMSE, of the ARMA (1,1) model. The average estimated prediction MSE was less 

than one third of the true PMSE for the model that was actually fitted.  

 

2.3 Ways of getting more realistic estimates of prediction error 

 

In order to get more precise estimation errors, the following guidelines can be used for 

overcoming the effects of model uncertainty.  

 

In choosing a single model one can distinguish between local and global models. Models with 

constant values and parameters through time, such as regression models with constant 

coefficients are called global. Local models are models that allow parameters to adapt through 

                                                            
2 Chatfield, 2000, ch.7. 
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time. Local models are often fitted by some kind of updating procedure, such as the Kalman 

Filter, which is easy to apply using a computer. 

 

The model building Principle of Parsimony states that the simpler the model, the more 

adequate is the representation of the data. Complicated models may reduce bias but at the 

same time may increase variance. 

  

Sensitivity analysis involves making small changes to the model assumptions in order to see 

how stable the deductions (also the forecasts) from the model are.  

 

When several competing models seem plausible, one can make use of more than one. If the 

pattern of the data changes through time, e.g. changing seasonality or structural breaks, 

different models can be used for different parts of the data. As opposed to univariate models, 

multivariate models have a higher chance of detecting sudden changes. Different models can 

be used for different lead times. h-steps-ahead forecasts require minimizing prediction errors 

h-steps-ahead. An application would be if a short-term forecasting model differs from a long-

term forecasting model.  

 

2.3.1 Bayesian model averaging 

 

Given there exists a set of plausible models, prior probabilities can be attached to them, so 

that the data can be used to evaluate posterior probabilities for the different models. Models 

with low posterior probabilities may be left out for the sake of simplicity. Empirically, the 

weighted sum of the predictions of the competing models has a much lower PMSE in the long 

run than the forecasts from the individual models. An example was Hjorth’s simulation of 

ARMA (1,1) model3. In the example of forecasting the oil price, Draper went on by using a 

Bayesian model averaging approach. The 90% P.I. gave a range between 20 $ and 92 $ when 

both, model and scenario uncertainty, were taken into account. This was much more realistic 

than the P.I.s found for individual models and scenarios. The disadvantages are that there may 

be difficulties specifying prior probabilities. Posterior probabilities require computation by 

means of the Bayes factor, which complicates the model. 

 

                                                            
3 Section 2.2.1., p. 5. 
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When a time series model is formulated and fitted to the same data, then inferences and 

forecasts made from the fitted model will be biased and over-optimistic when the prior data-

dependent model-selection process is ignored. Forecasting aims at producing predictions that 

are as close as possible to the actual data. The deviation of the predictions from the real data 

should be minimized.  

 

Unbiasedness and efficiency are a minimum requirement for optimal or rational forecasts. 

Weak rationality refers to forecasts that are not systematically wrong. Strong rationality or 

efficiency requires that forecast errors are uncorrelated with the series or the information 

available at the time when the forecast was made. Rationality does not rule out serial 

correlation in the error process єT+h. It is a necessary attribute to make forecasts useful.  

 

3 Comparing Outcome and Predictions 

 

Ex post forecast accuracy can be written as a function I of the actual values of a series (At) 

and the predicted values (Pt), for which I(ּ) obtains a maximum. For example: 

 I (Pt,At) , I (At - Pt, At) = I (et,At) , C(et) 

where  

 et = At - Pt 

C are the costs of a forecast error, which only depend on et, and which is a quadratic function 

in order to guarantee mathematical tractability. Real-world cost functions of forecast errors 

are rarely available. The minimum mean-square forecast-error (MMSFE) minimizes  

 [ ]2
teE   in a sample  

 ∑
=

+=
H

h
hTh e

H
MSFE

1

21  

In further discussion we will come back to this model.  

 

3.1 Minimum MSFE  

Taking formula E[et
2] from the beginning of chapter 3, we can reformulate: 

 [ ] papapahT reEMSFE σσσσµµ 2)( 2222 −++−== +  

and derive from this equation the characteristics of the minimum MSFE predictor given by the 

solutions of the first-order conditions: 
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The second-order conditions for a minimum are satisfied only by the first two conditions. We 

know that our model is minimized by µa = µp and σp = rσa. The standard deviation of the two 

series is equal only when the predictor series is perfectly correlated with the actual series 

(r=1) Substituting these gives:  

 )
1

1( 2
2

min −
=

r
MSFE pσ  

 

Assuming that the process is weakly stationary and has finite unconditional moments of at 

least second order, one can write: 

 [ ] [ ]22 )ˆ( hThThTh yyEeEMSFE +++ +==  

The MSFE combines the squared bias in forecast errors with the forecast-error variance. 

 [ ] [ ] [ ][ ]222 )()( hThThThT eEeEeEeE ++++ −+=  

 [ ] [ ]hThThT eVyyE +++ +−= 2)ˆ(  

3.1.1 Allowing for parameter uncertainty 

Even though it is very restrictive, we assume a model such as 

 yt = κ +ρyt-1 + vt with et = vt 

such that the (theoretical) prediction and the (theoretical) forecast error are uncorrelated, 

E[Ptet] = 0.  

Allowing for parameter uncertainty, such that  

 TT yP ρκ ˆˆ1 +=+  

gives the expected value of correlation between prediction and forecast error:  

 [ ] [ ] [ ]1
2

11 ˆˆ)ˆ( +++ +−= ttBTT vyEyEPeE ρρρρ  

Since [ ] 0ˆ 1 =+tt vyE ρ , and approximating [ ]
T

E ρρρ 2ˆ −=  

 [ ] ( )[ ] [ ] [ ]( ) 222
11 ˆˆˆˆ TTTTT yEEyyEPeE ρρρρρρ −=−=++  
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[ ] 2
2

ˆ2
TyV

T 







−≈ ρρ  

( ) 22311
By

T
ρ−−≈  

The variance of the given model for 11 )ˆ( ++ −= TTT vye ρρ  is 

 [ ] [ ] [ ] [ ]11 ˆ ++ += TTT vVyVVeV ρ  

  ≈ T-1 (1- ρ2) σv
2 / (1- ρ2)  + σv

2 

  [ ] )11(2
1 T

eV vT +=+ σ   

The variance therefore is a function of the unknown quantity σv
2. 

 

3.1.2 MSFEs for scalar multi-step systems 

Multi-step MSFEs do not allow for different but isomorphic representations. A common basis 

for comparison is not sufficient. It will be proofed that when 1-step forecasts bring the same 

result for the MSFE, this is not necessarily the case for 2 (or more) period forecasts.  

Consider the stationary first-order autoregression 

 ttt uyy += −1ρ  

where ut ~IN [0, σu
2], |ρ|<1 and y0 ~ N [0,σu

2 / (1-ρ2)] so the MSFE for the conditional 1-step 

forecast is 

 [ ] [ ] 22
1

2
11 )ˆ( uTTTT uEyyyE σ==− +++  

Instead one can use the differences for forecasts. ∆yt = yt – yt-1 is forecast using  ∆̂ yT+1 = ρ-

1)yT 

 [ ] [ ] 22
1

2
11 )ˆ( uTTTT uEyyyE σ==∆−∆ +++  

For conditional 1-step forecasts the same MSFE results. 

In a two-period setting the following holds.   

12
2

212 +++++ ++=+= TTTTTt uuyuyy ρρρ  

Using E[yT+2|yT] = ŷ T+2 = ρ2yT the MSFE is: 

[ ] [ ] 222
22

2
22 )1())ˆ( uTTTTT uuEyyyE σρρ +=+=− ++++  

Whereas in terms of changes :  

 ∆yt+2 = (ρ – 1)yT+1 + uT+2 = (ρ – 1) (ρyT + uT+1) + uT+2 

Using the conditional expectation E[∆yT+2|yT]= ∆̂ yT+2 = (ρ -1) ρyT, the MSFE is 
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 [ ] ( )[ ] ( )222
21

2
2 )1(1)1()ˆ( −+=+−=∆−∆ ++++ ρσρ uTTTTT uuEyyyE  

This term is larger than (1+ρ2)σu
2 if ρ< ½ and larger than it if ρ> ½. 

 

Continuing this comparison with calculating the variances, in the 1-step setting we get: 

 [ ] [ ] 22
1 ˆ TnTT yVyeV ρσ +=+  

and for the two-step forecast the variance is 

[ ] ( )[ ] 222222
1 )1(ˆ uTTT yEyeV σρρρ ++−=+  

In the next step the variances are calculated. Assuming parameter uncertainty we get to a 

similar result. 

 

3.2 Testing for unbiasedness 

 

Tests of unbiasedness are often based on a regression equation of the form 

 AT+h = α + βPT+h|T + єT+h 

The null hypothesis α = 0 and β = 1 entails unbiasedness.  

 E[AT+h] = α + βE[PT+h] 

 

The requirement for unbiasedness is  E[AT+h - PT+h] = 0. 

This test checks for efficiency at the same time, because it proves uncorrelation between the 

forecasts and their errors. 

 

One can define forecast efficiency as the condition that β = 1, so that the residual variance in 

the regression equals the variance of the forecast error.  

If α = (1-β) E[PT+h] then we have  

eT+h = AT+h – PT+h = α + (β-1) PT+h + єT+h 

then  

V[eT+h] = (β-1)2 V[PT+h] + V[єT+h] + 2(β-1) C[PT+h,єT+h] 

 

So that β = 1 implies V[eT+h] = V[єT+h] whatever the value of α. If α = 0 then 

 MSFE = E[e2
T+h] = V[eT+h] + V[єT+h] 

 

Under these conditions the forecast error and predictor are uncorrelated: 

 E[PT+h eT+h] = αE[PT+h] + (β-1)E[PT+h] + E[PT+h єT+h] 
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When the data are non-stationary, integrated series4, then a further requirement is that the 

actual and predicted series are cointegrated, which means that the linear combination of two 

non-stationary variables is stationary. Otherwise the forecast would have unbounded variance.  

If we come back to the model yt = κ +ρyt-1 + vt from the beginning of chapter 3, and assuming 

κ = 0 and ρ = 1 gives us a random walk for yt. It is intuitive that this will satisfy the conditions 

for forecast efficiency. Getting consistent with the notation of the test of unbiasedness, it 

follows that 

 yT+h = α + βyT+h - j + єT+h 

where 

yT+h =yT+h - j + ∑j
s=0 vT+h – s 

so that 

 yT+h - j = α + βyT+h - j + ( єT+h - ∑j
s=0 vT+h – s) 

 

3.3 Data splitting 

 

Data splitting means checking out-of-sample forecast accuracy. The set of data is divided into 

two parts: the construction (or calibration) sample and the validation (or hold-out) sample. 

The construction sample is used to choose and fit a model. A prediction over the following 

period is made, where the forecast data can be compared with the validation sample. The data 

during time 1 to N are collected, and a point in time between 1 and N is chosen, which 

partitions the sample into the construction sample (N – m) and the validation sample m. In the 

next step the construction sample is used to find and fit a model, which predicts the values in 

the validation sample. At N-m the value for N-m+j is predicted where j goes from 1 to m. This 

produces a prediction for all values between N-m+1 and N. Two problems are linked to data 

splitting: firstly the question how data should be split, and secondly the fact that again the 

same set of data is used for defining fitting and checking a model. There are no guidelines of 

how to split the data. The drawback is efficiency loss because the model is fitted only to part 

of the time-series. But it is widely used for checking over-optimistic forecasts. Analysts 

usually hold back 10% of the data but this has no theoretical meaning. 

 

                                                            
4 Integrated: non-stationary series can be differentiated so as to make them stationary. The undifferenced series is 
the integrated series. 
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3.4 Rival forecasts 

 

Simple time series models and stationary predictors are commonly used for forecasting, 

despite their limited validity. According to Clements and Hendry, stationary series, 

autoregressive-distributed lag models or vector autoregressive representation (VARs) are 

preferred over univariate time-series models. They mention four models. Clements and 

Hendry judge the no-change rule of Theil to be the most naive forecast. The second is the 

Box- Jenkins model, described as the best available univariate extrapolative model. Referring 

to Mincer and Zarnowitz, the third method is defining relative efficiency (RE) as the ratio of 

the MSFEs and the rival model (a benchmark model that is extrapolative in that it is based on 

the variable’s own history). Forth, Salmon and Wallis show that structural econometric 

models can be approximated by finite-order ARMA models.  

 

There are cases in which there is no unambiguous superior model. Models can dominate each 

on different measures, or dominance may alter with forecast horizons or the choice of 

variables. 

 

 

4 Relevant measures in forecast evaluation 

 

Fair (1986) discusses the three most common measures of predictive accuracy, namely 

RMSE, MAE, and Theil’s inequality coefficient U. These measures have been used to 

evaluate the accuracy of ex post as well as ex ante forecasts. An ex post forecast is one in 

which the actual values of the exogenous variables are used; an ex ante forecast is one in 

which guessed values of the exogenous variables are used. There are two main reasons why 

ex ante forecasting comparisons are of little interest. First, the ex ante forecasts are based on 

guessed rather than actual values of the exogenous variable(s). Thus the error cannot be 

separated into the part due to bad guesses and the part due to other factors. The second reason, 

according to Fair (1986), is the use of subjective add factors in forecasts. ‘It is thus the 

accuracy of the forecasting performance of the model builders rather than of the models that 

are being examined.’5   

                                                            
5 Fair (1986), ch. 33, p.1985. 
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Zhuo Chen and Yuhong Yang (2004) distinguish between stand-alone and relative accuracy 

measures. Stand-alone accuracy measures are those that can be obtained without additional 

reference forecasts. They are usually associated with a certain loss function, e.g. accuracy 

measures that are based on quadratic and absolute loss functions. Accuracy measures based on 

the mean square error criterion, especially MSE itself, have been the most preferred measures 

in evaluating forecasts for a single series. 

 

4.1 Stand-alone accuracy measures 

4.1.1 RMSE 

The RMSE depends on the scale of the dependent variable. It should be used as relative 

measure to compare forecasts for the same series across different models. The smaller the 

error, the better the forecasting ability of that model according to the RMSE criterion. 

 

∑
+

=
− −

+
=

hs

st
tt xx

h
RMSE 2

1 ))1(ˆ(
1

1
 

 

One problem associated with the use of the RMSE or similar measures is the fact that the 

forecast error variance vary across time. It can vary because of nonlinearities in the model and 

because of variation in exogenous variables (if included in the model). Fair (1986) states that 

no rigorous statistical interpretation can be put on the RMSEs because they are not estimates 

of any parameter in the model6.    

 

4.1.2 Decomposition of the MSE 

The MSE mean squared forecast error can be decomposed as 

xxxxtt ssrssxxhxx ˆ
2

ˆ
22

1 )1(2)()ˆ())1(ˆ( −+−+−=−∑ −  

                                                            
6 Although they are in a loose sense estimates of the averages of the variances across time, Fair (1986), ch. 33, 
p.1987. 
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x̂ and x are the means of the forecasted variable and of the true variable respectively. xs  and 

xs are the standard deviations of the forecasted variable and of the true variable, respectively. r 

is the correlation between x̂  and the true variable x. The proportions are defined as: 

The bias proportion 
hxx

xx

tt∑ −
−

2

2

)ˆ(
)ˆ(  measures how far the mean of the forecast is from the 

mean of the actual series. The variance proportion 
hxx

ss

tt

xx

∑ −
−

2

2
ˆ

)ˆ(
)(  measures how far the 

variance of the forecast is from the variance of the actual series. The covariance proportion 

hxx
ssr

tt

xx

∑ −
−

2
ˆ

)ˆ(
)1(2  measures the remaining unsystematic forecasting errors. If the forecast is 

‘good’, the bias and the variance proportions should be small so that most of the bias should 

be concentrated on the covariance proportions7. 

 

4.1.3 MAE 

The Mean absolute error MAE is also dependent on the scale of the dependent variable but it 

is less sensitive to large deviations than the usual squared loss. 

 

∑
+

=
− −

+
=

hs

st
tt xx

h
MAE )1(ˆ

1
1

1  

 

4.1.4 MAPE 

Another popular accuracy measure is the Absolute Percentage Error (MAPE). The MAPE is 

scale independent. However, MAPE was criticized for the problem of asymmetry and 

instability when the original value is small. MAPE as accuracy measure is affected by four 

problems: (1) Equal errors above the actual value result in a greater APE; (2) Large 

percentage errors occur when the value of the original series is small; (3) Outliers may distort 

the comparisons in empirical studies; (4) MAPEs cannot be compared directly with naive 

models such as random walk. 

 

                                                            
7 Acc. to Pindyck & Rubinfeld (1996). Prof. Kunst disagreed with this opinion in his lecture on 16th June 2004. 
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4.2 Relative measures 

 

The idea of relative measures is to evaluate the performance of a forecast relative to that of a 

benchmark forecast. Measures may produce very big numbers due to outliers and/or 

inappropriate modeling, which in turn make the comparison of different forecasts not feasible 

or not reliable. A shock may make all forecasts perform very poorly, and stand-alone 

measures may put excessive weight on this period and choose a measure that is less effective 

in most other periods. Relative measures may eliminate the bias introduced by potential 

trends, seasonal components and outliers, provided that the benchmark forecast handles these 

issues appropriately. However, choosing the benchmark forecast is subjective and not 

necessarily easy. The earliest relative forecast accuracy measure seems to be Theil’s U2-

statistic, of which the benchmark forecast is the value of the last observation. 

 

4.2.1 The standardized root mean-squared error 

 

The idea of the standardized root mean-squared error – denoted by U2 – is to facilitate 

comparison between different variables. This equation is referred to as the no-change rule of 

Theil.  
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The Theil coefficient is scale invariant and it lies between zero and one. If the Theil 

coefficient equals zero then we have a perfect fit. 
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4.3 Stability to linear transformation 

 

Stability of accuracy measures is another issue worth of consideration. As Clements and 

Hendry (1993) suggested, stability of accuracy measures with respect to the linear 

transformation of the original series is an important factor.  

 

Zhuo Chen and Yuhong Yang (2004) use a series of monthly Austria/U.S. foreign exchange 

rate from January 1998 to December 2001. The original series is measured as how many 

Austrian Schillings are equivalent to one U.S. Dollar. It is calculated as the average of daily 

noon buying rates for cable transfers payable in foreign currencies. The authors perform a 

linear transformation of the original series by subtracting the mean of the series and multiply 

it with 10, i.e., y new =10 · y original - 10 · mean(y original) 

 

There are 4 forecasts generated by a random walk, an ARIMA(1,1,0), an ARIMA(0,1,1), and 

a forecast generated by a model selected based on BIC criterion. Table 1 presents the change 

of the values produced by the accuracy measures using the last 20 points. The first two 

accuracy measures – MAPE and RMSE – produced very different values after the 

transformation since they are not scale transformation invariant. The last accuracy measure – 

Theil’s inequality coefficient – had some minor changes. This suggested that the first two 

measures are generally not good for cross-series comparison of forecasting procedures since a 

linear transformation of the original series may change the ranking of the forecasts. 

 

 

Table 1 – Comparison of different criteria after transformation 

Forecast RW ARIMA(1,1,0) ARIMA(0,1,1) ARIMA(BIC) 

series original  new 

origina

l new original new Original new 

MAPE 0,024 0,302 0,023 0,306 0,022 0,296 0,03 0,381

RMSE 0,428 4,278 0,431 4,305 0,421 4,207 0,569 5,489

Theil's U2 1 1 1,006 1,006 0,983 0,983 1,331 1,283
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