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1 Introduction

This paper investigates the econometric idea of seasonality for typical time series

data, namely the German GDP. Most statistical o�ces provide only seasonal ad-

justed data, however, the Federal Bureau of Statistics Germany (Statistisches Bun-

desamt) also provides the original (non-adjusted) data. I use these data to conduct

several stationarity and non-stationarity tests. When introducing and testing dif-

ferent model classes I abstract from certain di�culties. In particular, I avoid com-

plicated multi-variate models, but rather try to explain the data generating process

by an uni-variate approach.

The two major questions I am concerned with are: a) Is there an overall (zero

frequency) unit root in the time series of GDP data, b) Is there stationarity in

the seasonal data, or c) Is the time series seasonally integrated? To answer these

questions several tests are used, which are the (augmented) Dickey-Fuller test, the

Phillips-Perron test, the DF-GLS test, the KPSS test, and the Hylleberg-Engle-

Granger-Yoo test.

The remainder is organized as follows. Section 2 describes the German GDP

data. In section 3, the relevant model classes are presented. Then, di�erent tests

are carried out in section 4 and �nally, section 5 concludes.

2 Data

I make use of quarterly GDP data from Germany, taken from the Federal Bureau

of Statistics Germany (Statistisches Bundesamt). I cover the time from the �rst

quarter of 1991, right after the German re-uni�cation, up to the �rst quarter of

2012. This leaves me with 85 observations. The currency of consideration is the

Euro (values of Deutsche Mark before 1999, are converted into Euro, according to

a �xed exchange rate). All numbers are expressed in terms of one billion Euros.
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Figure 1 illustrates German GDP data without price adjustment, that is, no

de�ation index is used. Second, There are three di�erent lines. The yellow line

captures the original GDP data, without seasonal adjustments. The red and blue line

display seasonally adjusted GDP data, following two di�erent adjustment processes

(Census X-12-ARIMA and BV4.1, respectively). The �rst thing to note is that there

is a positive long-term trend for all lines. Second, the original series is strongly

�uctuating in the short-term, whereas the adjusted serieses are relatively smooth.

Moreover, the adjusted processes look very similar. Hence, choosing among the

di�erent seasonal adjustment processes does not make a big di�erence � at least,

for the considered data and time frame. The short-term �uctuations seem to follow

a seasonal pattern, since ups and downs happen on a regular basis. A closer look at

the data reveals that there is always a sharp drop from the last quarter of one year

to the �rst quarter of the successive year.

Figure 1: Time Series of Nominal GDP

Figure 2 displays the same dataset, but is price-adjusted. To normalize, the

average GDP from 2005 is set equal to 100. The overall pattern is the same. One

could argue, though, that the slumps (both seasonal and aggregate) look a little
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more pronounced than the upswings after price-adjustment. This e�ect is, however,

not remarkable and the data from �gure 1 and �gure 2 can, therefore, be used inter-

changeably. 1While the trend is obviously positive, there is an enormous negative

spike in 2008. Clearly, this re�ects the the impact of the world-wide �nancial crisis;

with a long-lasting e�ect on the economy. It took about three years, until GDP

recovered to its before-crisis level. While it is interesting to investigate trending

behavior and depicting real-world events in the graphical representation of the data,

the main focus of this paper lies on seasonality.

Figure 2: Time Series of Real GDP

2.1 Data Transformation and Visual Inspection

Figure 3 presents the growth rates of GDP from one year to the subsequent year. A

�rst observation is that the yearly growth rates tend to be positive, except for the

1The nominal series is in fact smoother than the real series, which is interesting, since several
economists often assume that people care about real data and develop their models accordingly.
There is, however, also the opposite view that suggests that people rather care about nominal
aspects, because they are short-sighted, do not fully understand, or are cognitively incapable of
analyzing money devaluation (through in�ation).
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�nancial crises period. Second, on a year by year basis, one cannot �nd a regular

pattern.

Figure 3: Year-on-Year Growth Rates of GDP

In contrast, �gure 4, illustrates the quarter-by-quarter growth rates, which dis-

play a very regular pattern. Ups and downs can be attributed to di�erent quarters

within one year. First, the growth rates from one quarter to the subsequent quarter

are, on average, positive (red line). Second, there is negative growth from the last

quarter (quarter 4) of a year to the �rst quarter (quarter 1) of the subsequent year.

Third, there is a recovery process throughout the rest of the year (quarter 2 - quarter

4). It is clear that there is seasonality in the data and in the remainder, I investigate

it in more detail.

Figure 5 shows that seasonal trends do not diverge (overall trend) and there are

only a few crossings. Clearly, quarter 4 displays the highest GDP. Note that the

winter-GDP is higher than the GDP of quarter 1 and 2 of the subsequent year.

Thus, full recovery is only achieved in quarter 3 of the subsequent year.
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Figure 4: Quarter-on-Quarter Growth Rates of GDP

Figure 5: Franses Graph
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3 Model Classes

In this section I intend to give a short overview. For a self-contained discussion

the reader is referred to more advanced texts or the lecture notes 'Econometrics of

Seasonality' by Robert Kunst.

3.1 Seasonal Deterministic Models

Seasonal deterministic models are often modeled via the dummy variable represen-

tation or its trigonometric counterpart.

The dummy variable representation assumes di�erent means for each season and

takes the following form:

yt =
S∑

s=1

γsδst + zt (1)

S denotes the number of seasons, s the season of consideration (in this work quarterly

data, thus S=4), δst represents the dummy, γs is the seasonal mean, and zt denotes

the zero-mean error term. The unconditional mean µ can be computed by taking the

average of the seasonal means. Hence, ms = γs−µ measures the seasonal deviation

from the unconditional mean.

Sometimes is is more convenient and insightful to use the trigonometric repre-

sentation of equation 1. In this way, one can better see the aggregate mean, the

yearly cycle, the semi-annual cycle, and which of those are dominating.
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3.2 Seasonal Stochastic Models

3.2.1 Stationary Models

A very simple form is the linear stationary seasonal model, given by the following

expression:

yt = φSyt−S + εt, |φS| < 1 (2)

3.2.2 Non-Stationary Models

An important model class is the seasonal unit-root non-stationary model. This is

simply a special case of (2), in which φS is set equal to 1.

yt = yt−S + εt (3)

The seasonal random walk consists of S independent random walks. Since the vari-

ance is increasing the process is not stationary.

4 Tests

4.1 Tests for Non-Seasonal Unit Root

At �rst, I test whether there is a unit root in the non-seasonal, that is, yearly data.

This involves the standard test developed by Dickey and Fuller, with the three stan-

dard cases: a) no constant/no trend, b) constant/no trend, and c) constant/trend.

In practice the augmented Dickey-Fuller test is often applied such that the imposed

assumptions are not violated. This augmented version includes lagged values of the

dependent variable in order to whiten the noise term. Then, I check whether the

same results are obtained when applying the Phillips-Perron test. Additionally, I

use the more advanced method of a DF-GLS test. All these tests have an unit root
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null hypothesis. In contrast, a KPSS test has a null of trend-stationarity. Finally, I

run the KPSS test.

4.2 Tests for Seasonal Unit Roots or Seasonal Integration

In addition to testing non-seasonal patterns, it is interesting to investigate the sea-

sonal structure of the data. There are several seasonal stationarity tests (the null

hypothesis is stationarity), such as, the non-parametric Canova-Hansen test, the

parametric Caner test, and the Tam-Reinsel test. Moreover, there are several tests

that directly test for non-stationarity. I focus on the latter group of tests. One

candidate is the Dickey-Hasza-Fuller (DHF) test, which is a seasonal extension of

the original DF test. It has the drawback that it either rejects or not rejects the

null of non-stationarity. In contrast, the Hylleberg-Engle-Granger-Yoo (HEGY) test

allows to test for the appearance of speci�c unit roots.

4.3 Conducting the Tests

4.3.1 (Augmented) Dickey-Fuller

When investigating the DF-test without constant and without trend (and several

di�erent lag length), there seems to be a unit root. We fail to reject the null, because

1.599 is larger than the critical values, as seen in table 1.

Table 1: Dickey Fuller Case A (No Constant/No Trend)

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value

Z(t) 1.599 -2.606 -1.950 -1.610

D.gdp Coef. Std. Err. t P>t [95% Conf. Interval]

gdp
L1. .0056329 .0035218 1.60 0.114 -.0013718 .0126376
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A similar picture is obtained for di�erent lag length and also when including

a constant. Now, looking at table 2, which performs a DF-test when a trend is

included, delivers an entirely di�erent conclusion. Since the test statistic -4.514

is smaller than the critical values (on all signi�cance levels; 1, 5, and 10 percent)

we reject the null, and thus infer stationarity. Including a trend seems reasonable,

as we have seen in the visual inspection section. This time, I reported the table

when including four lag terms. Again, the qualitative results remain unchanged for

di�erent lag length.

Table 2: Dickey Fuller Case C (With Trend)

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value

��������������������������
Z(t) -4.514 -4.084 -3.470 -3.162

��������������������������
MacKinnon approximate p-value for Z(t) = 0.0014

��������������������������
D.gdp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

����-+���������������������-
gdp |

L1. | -.4227586 .0936614 -4.51 0.000 -.6094255 -.2360916
LD. | .1536495 .1040528 1.48 0.144 -.0537274 .3610264

L2D. | -.0273002 .0898536 -0.30 0.762 -.2063783 .1517778
L3D. | -.0551457 .0801727 -0.69 0.494 -.2149296 .1046382
L4D. | .7092731 .0742346 9.55 0.000 .5613239 .8572224
_trend | 1.224826 .2716355 4.51 0.000 .683457 1.766194
_cons | 169.124 36.97373 4.57 0.000 95.43551 242.8126

��������������������������

4.3.2 Phillips-Perron

The PP test is an alternative test underlying the same null hypothesis. The result

is very much in line with what we obtained from the DF-test. Once, I control for

a trend, and investigate di�erent lag length the test rejects the null and hints at a

stationary process.
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4.3.3 DF-GLS

The Stata dfgls routine includes a trend by default. Running the test delivers results

that are in contrast with earlier �ndings. For lag length from 2 to 11 (maximum

lag length is automatically determined by Stata) the DF-GLS test fails to reject the

null hypothesis. Therefore, it hints at a unit root.

4.3.4 KPSS

Table 3 presents the KPSS test.

Table 3: KPSS Test

10% 5% 2.5% 1%

0.119 0.146 0.176 0.216

Lag order Test statistic
0 .166
1 .122
2 .12
3 .113

For lag length greater than zero, I fail to reject the null hypothesis of trend

stationarity. This is because the test statistic is smaller than the critical values at

the 5 percent signi�cance level. Thus, the KPSS test is in accordance with the PP

and DF test. Only the DF-GLS test suggests that there is a unit root.

4.3.5 HEGY

In the following, I apply the HEGY test to the data. The standard formula looks

as follows:

∆4yt = π1y
(1)
t−1 − π2y

(2)
t−1 − π3y

(3)
t−2 − π4y

(3)
t−1 + εt (4)
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It can be enriched by deterministic parts (constant, trend, seasonal dummies, sea-

sonal trends) and/or lag augmentation (to get white noise errors). I consider four

di�erent speci�cations for lag length from 1 to 5. Stata automatically selects the

best lag length by running sequential tests.

• Speci�cation A: Constant + Trend (Table 4)

Table 4: HEGY Test Speci�cation A

Stat Stat 5% critical 10% critical

t[Pi1] -4.503 -3.512 -3.183
t[Pi2] -1.527 -1.926 -1.586
t[Pi3] -0.705 -1.904 -1.531
t[Pi4] -0.455 -1.673 -1.303

F[3-4] 0.346 2.966 2.273
F[2-4] 0.981 2.718 2.145
F[1-4] 5.914 4.269 3.589

Speci�cation A suggests (in accordance with earlier �ndings) that there is no

overall unit root. But, all seasonal unit roots are present. Moreover, an F-test �nds

π2 − π4 jointly insigni�cant, which corresponds to the null hypothesis that those

values should be zero, in case of unit-root behavior.

• Speci�cation B: Constant + Trend + Seasonal Dummies (Table 5)

Speci�cation B only hints at the semi-annual unit root. There is joint signi�cance

π1 − π4.

• Speci�cation C: Constant + Seasonal Dummies (Table 6)

Speci�cation C suggests that there are both an overall unit root (zero frequency) and

a semi-annual one. This should not come as a surprise, as this is the speci�cation

without a trend. The non-seasonal unit root tests also suggest unit-root behav-

ior when the trend was excluded. Therefore, this speci�cation should be watched

cautiously. Also note that π1 − π4 are jointly signi�cant.
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Table 5: HEGY Test Speci�cation B

Stat 5% critical 10% critical

t[Pi1] -4.387 -3.606 -3.283
t[Pi2] -2.033 -2.999 -2.672
t[Pi3] -5.419 -3.556 -3.199
t[Pi4] -6.453 -1.927 -1.497

F[3-4] 72.660 6.579 5.457
F[2-4] 73.787 6.032 5.130
F[1-4] 66.673 6.495 5.693

Table 6: HEGY Test Speci�cation C

Stat 5% critical 10% critical

t[Pi1] -0.411 -3.005 -2.668
t[Pi2] -2.355 -2.982 -2.655
t[Pi3] -4.758 -3.512 -3.182
t[Pi4] -6.015 -1.968 -1.530

F[3-4] 59.956 6.583 5.535
F[2-4] 65.385 6.054 5.172
F[1-4] 49.093 5.833 4.980
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• Speci�cation D: Constant + Seasonal Dummies + Seasonal Trends (Table 7)

Table 7: HEGY Test Speci�cation D

Stat 5% critical 10% critical

t[Pi1] -4.503 -3.390 -3.081
t[Pi2] -1.527 -3.380 -3.075
t[Pi3] -0.705 -4.183 -3.869
t[Pi4] -0.455 -1.852 -1.435

F[3-4] 0.346 9.867 8.536
F[2-4] 0.981 9.333 8.140
F[1-4] 5.914 9.035 7.978

Speci�cation D does not suggest an overall unit root, but all seasonal unit roots

(semi-annual + complex). Furthermore, π2 − π4 are jointly insigni�cant. Note that

this is the richest speci�cation with constant, seasonal dummies, and seasonal trends.

Now, on which speci�cation should we rely, for a �nal statement about the 'true'

unit-root behavior? As already pointed out, speci�cation c does not contain a trend

and should thus be neglected. The three other speci�cations contain a trend and

reject the overall unit root. It is relatively hard to choose one of those three to be

the right one, but there are certain di�erences that can help. As �gure 5 has shown,

all seasons seem to follow the same trend. Thus, speci�cation d, with seasonal

trends is unlikely, since we cannot observe the trends to drift apart. Finally, �gure 5

also shows that the seasonal means are di�erent. Thus, I prefer speci�cation b over

speci�cation a, since it includes seasonal dummies, in addition to a common trend.

In summary, a seasonal stochachastic non-stationary model, with deterministic

components describes the data best. In particular, I �nd that a semi-annual unit-

root describes the non-stationary part. A constant, a trend, plus seasonal dummies

give a description of the deterministic part.

An alternative Stata routine is the sroot command, developed by Depalo (2009).

It has certain advantages, for instance, better small sample properties. Moreover,
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it comes along with a greater number of options. In general, however, it gives the

same predictions as the HEGY test.

Many econometricians prefer log-transformations to level data. Therefore, I took

the logarithm of GDP and repeated all tests. Except for minor di�erences, the test

results are robust to log-transformations.

5 Conclusion

The previous sections have shown that a zero frequency unit root is rather unlikely.

Since the series is trending, trend-stationarity seems the most likely scenario. As

soon as I consider seasonal structures as well, the tests hint at some underlying unit

root process. In particular, there is very strong evidence for a semi-annual unit

root. All HEGY test speci�cations support such a semi-annual unit root. There is

also some evidence for complex unit roots at +i and -i. These results are robust

against log-transformations. The most appropriate model to describe the data is a

non-stationary stochastic model, that contains lags and deterministic components.
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