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Introduction

Nonlinear models:

— Provide tools to model nonlinear relationship between variables (e.qg.
seasons)

— Examples of nonlinear dynamics: time-changing (seasonal) variance,
asymmetric cycles, higher-moment structures

(Seasonal) Nonlinearity can be primarily found in high-frequency
data like intradaily seasonal patterns

— S&P’s composite stock-price index
— Exchange rates

Different seasonal models with different types of nonlinearity:
— Stochastic seasonal unit roots — varying impact of seasonal shocks
— Seasonal (G)ARCH models — structure of seasonal variance
— Periodic GARCH models — time-varying seasonal coefficients
— Periodic Markov switching models — seasonal mean shifts



Stochastic Seasonal Unit Root

Motivation: not all macroeconomic shocks may have the same
impact

Generalization of linear processes by allowing for random
parameters

First-order seasonal random coefficient autoregressive process:
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where ¢.=1+a, and a,=pa, +<&,

0<p<1, £ and € are i.i.d. and normally distributed with 02, w?
The randomized seasonal autoregressive process is then:
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It is also called a heteroskedastic seasonally integrated process
— Conditional on its own normally distributed past N(pa,, 7, ,.0° +0’y?2,)

If w2 =0, the process is a regular seasonal random walk with
homoskedastic innovations

Hence, the test hypotheses are FH,:0? =0 heteroskedasticity
H,:0*)0

Taylor-Smith test is used for determination of heteroskedastic
seasonal integration
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— Y. =0, -1 - B (ST +5)]
— pis unidentified under the null hypothesis, hence, the two polar cases
Spand S, are computed

— the limiting distributions for S;and S, are nonstandard

However, this process is not a covariance stationary process




Seasonal (G)ARCH Models

» Application: - financial time series
» stock-market dividend yields
» Foreign-exchange volatility
* Lead-lag relations between two or more simultaneously traded markets

- volatility of few macroeconomic time series
 The GARCH(p,q) process:

X, =0,

o’ =w+d(L)e’, +0(L)c’,

ARMA[max(p,q).qd]
model

— ifwe define v, =&’ —o” , one obtains:

& =o+[pL)+0(D)e., 0Ly, +v,

* Analogously, the seasonal GARCH(p,q) process:
g, =0 +[¢(L)+0(D)e/, -0 L)y, , +v,



where: ¢(L)=ijl/ and 0(L)=> a,l’
=1

If Zb +Za I then this GARCH(p,q) process has a unique
stnctly and covanance stationary solution

— Fora GARCH(1,1) process being strictly stationary it is enough to fulfill
the following condition: @, +5, =1

Maximum-Likelihood-based estimation of coefficients

The effects of Filtering on ARCH models
— Seasonal filtering may lead to bias in the autocorrelation function

— In order to present these biases one may define the weak GARCH(p,q)
process, linear filters, and derive the (filtered) autocovariance and
autocorrelation functions

— Then, one can derive conditions to have unbiased autocorrelation
function



The weak GARCH(p,q) process:

max(p.q) q
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— where o} = E,,(¢],) is the conditional variance withe’, = o +v,,, and
E, () is the linear projection on the space spanned by 1, (g,_ j,gf_ i):j20
— V4 Is @ Martingale difference sequence with respect to the linear span
filtration
Suppose the following linear filter that filters the nonseasonal (ns)
components in the data: 2 L)z, = ka Iz
k=-00

— zis a variable with seasonal (s) and nonseasonal components:
Z=75 4 ZNS
— L is the lag operator
Autocovariance function:
- 7,(J)=E; (gtzgtz—j
— Applying the linear filter to the residuals one obtains the filtered
autocovariance function:
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In case of weak GARCH(1,1) one can derive the following
autocovariance (y) and autocorrelation (p) functions:
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Let define A1 =¢+6 and apply the linear filter v(L) = (1-LS) to this
process, then one obtains the filtered autocorrelation function:
24+ A+ 4°

p, (J) = 2+640,(S) P, (J)
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* As afinal step the condition on parameters ¢ and 6 is obtained to

have an unbiased autocorrelation function



* Ifthe parameters ¢ and 6 solve the following equation:
2X0-(1+6> —640) 25" + 64152 +240 —-(1+6%) =0

the autocorrelation function is unbiased

* If the following inequality holds:
2X0-(1+6° —640) A +641°2 + 210 —(1+6%) >0
— the autocorrelation function is upward biased:

20— (1+6% —640) 25" + 6415 +240 —(1+6%) <0

— the autocorrelation function is downward biased



