Some Nonlinear Seasonal Models

Chapter 7 from Ghysels and Osborn: The Econometric

Analysis of Seasonal Time Series

Presented by Mag.Syed Zafar Saeed

OUTLINE

- 1.INTRODUCTION
- 2.STOCHASTIC SEASONAL UNIT ROOTS
- 3. SEASONAL ARCH MODELS
- 4. THE CLASS OF MODELS
- 5. THE EFFECTS OF FILTERING ON ARCH MODELS
- 6. THE GENERAL CASES OF LINEAR FILTER
- 7. SOME CASES OF LINEAR FILTERS
- 8. THE CASE OF WEAK GARCH (1,1)

Introduction

- Nonlinear models:
 - Provide tools to model nonlinear relationship between variables (e.g. seasons)
 - Examples of nonlinear dynamics: time-changing (seasonal) variance, asymmetric cycles, higher-moment structures
- (Seasonal) Nonlinearity can be primarily found in high-frequency data like intradaily seasonal patterns
 - S&P's composite stock-price index
 - Exchange rates
- Different seasonal models with different types of nonlinearity:
 - Stochastic seasonal unit roots varying impact of seasonal shocks
 - Seasonal (G)ARCH models structure of seasonal variance
 - Periodic GARCH models time-varying seasonal coefficients
 - Periodic Markov switching models seasonal mean shifts

Stochastic Seasonal Unit Root

- Motivation: <u>not</u> all macroeconomic shocks may have the <u>same</u> impact
- Generalization of linear processes by allowing for random parameters
- First-order seasonal random coefficient autoregressive process:

$$(1-\widetilde{\phi}_{s\tau}L^s)\widetilde{y}_{s\tau}=\varepsilon_{s\tau} \qquad \qquad s=1,...,S$$

$$\tau=1,2,...,T_{\tau}$$
 where
$$\widetilde{\phi}_{s\tau}=1+\widetilde{\alpha}_{s\tau} \quad \text{and} \quad \widetilde{\alpha}_{s\tau}=\rho\widetilde{\alpha}_{s,\tau-1}+\xi_{s\tau}$$

- $0 \le \rho \le 1$, ϵ and ξ are i.i.d. and normally distributed with σ^2 , ω^2
- The randomized seasonal autoregressive process is then:

$$\Delta_{S}\widetilde{y}_{s\tau} = \widetilde{\alpha}_{s\tau}\widetilde{y}_{s,\tau-1} + \varepsilon_{s\tau}$$

- It is also called a heteroskedastic seasonally integrated process
 - Conditional on its own normally distributed past $N(\rho \widetilde{\alpha}_{s,\tau-1} \widetilde{y}_{s,\tau-1}, \sigma^2 + \omega^2 \widetilde{y}_{s,\tau-1}^2)$
- If $\omega^2 = 0$, the process is a regular seasonal random walk with homoskedastic innovations
- Hence, the test hypotheses are $H_0:\omega^2=0$ heteroskedasticity $H_4:\omega^2 > 0$
- Taylor-Smith test is used for determination of heteroskedastic seasonal integration

$$S_{\rho} = \frac{1}{\sigma^4} \sum_{s=1}^{S} \sum_{j}^{T_{\tau}} \rho^{-2j} \left[\left(\sum_{\tau=j}^{T_{\tau}} \rho^{\tau} y_{s,\tau-1} \Delta_S y_{s\tau} \right)^2 - \sigma^2 \sum_{\tau=j}^{T_{\tau}} \rho^{2\tau} y_{s,\tau-1} \right]$$

- $y_{s\tau} = \phi(L) \left[\widetilde{y}_{s\tau} \mu_s^* \beta_s^* (S\tau + s) \right]$
- $\,\rho$ is unidentified under the null hypothesis, hence, the two polar cases S_0 and S_1 are computed
- the limiting distributions for S₀ and S₁ are nonstandard
- However, this process is not a covariance stationary process

Seasonal (G)ARCH Models

- Application: financial time series
 - stock-market dividend yields
 - Foreign-exchange volatility
 - · Lead-lag relations between two or more simultaneously traded markets
 - volatility of few macroeconomic time series
- The GARCH(p,q) process:

$$X_{t} = \sigma_{t} \varepsilon_{t}$$

$$\sigma_{t}^{2} = \omega + \phi(L) \varepsilon_{t-1}^{2} + \theta(L) \sigma_{t-1}^{2}$$

- if we define $v_t = \varepsilon_t^2 - \sigma_t^2$, one obtains:

$$\Leftrightarrow \varepsilon_t^2 = \omega + [\phi(L) + \theta(L)] \varepsilon_{t-1}^2 - \theta(L) v_{t-1} + v_t$$

ARMA[max(p,q),q] model

Analogously, the seasonal GARCH(p,q) process:

$$\varepsilon_t^2 = \omega + [\phi(L) + \theta(L)]\varepsilon_{t-s}^2 - \theta(L)v_{t-s} + v_t$$

- where: $\phi(L) = \sum_{j=1}^{p} b_j L^j$ and $\theta(L) = \sum_{j=1}^{q} a_j L^j$
- If $\sum_{j=1}^{p} b_j + \sum_{j=1}^{q} a_j \langle 1 \rangle$ then this GARCH(p,q) process has a unique strictly and covariance stationary solution
 - For a GARCH(1,1) process being strictly stationary it is enough to fulfill the following condition: $a_1 + b_1 = 1$
- Maximum-Likelihood-based estimation of coefficients
- The effects of Filtering on ARCH models
 - Seasonal filtering may lead to bias in the autocorrelation function
 - In order to present these biases one may define the weak GARCH(p,q) process, linear filters, and derive the (filtered) autocovariance and autocorrelation functions
 - Then, one can derive conditions to have unbiased autocorrelation function

The weak GARCH(p,q) process:

$$\varepsilon_t^2 = \omega + \sum_{j=1}^{\max(p,q)} (\phi_j + \theta_j) \varepsilon_{t-j}^2 - \sum_{j=-1}^q \theta_j v_{t-j} + v_t$$

- where $\sigma_t^2 = E_{Lt}(\varepsilon_{t+1}^2)$ is the conditional variance with $\varepsilon_{t+1}^2 = \sigma_t^2 + v_{t+1}$ and $E_{Lt}(.)$ is the linear projection on the space spanned by $1, (\varepsilon_{t-j}, \varepsilon_{t-j}^2) : j \ge 0$
- v_{t+1} is a Martingale difference sequence with respect to the linear span filtration
- Suppose the following **linear filter** that filters the nonseasonal (ns) components in the data: $z_t^{ns} = z_t^F = v(L)z_t = \sum_{k=0}^{+\infty} v_k L^k z_t$
 - z is a variable with seasonal (s) and nonseasonal components: $z = z^S + z^{NS}$
 - L is the lag operator
- Autocovariance function:
 - $\gamma_2(j) = E_L(\varepsilon_t^2 \varepsilon_{t-j}^2)$
 - Applying the linear filter to the residuals one obtains the filtered autocovariance function:

$$\gamma_2^F(j) = E_L(\varepsilon_t^F)^2 (\varepsilon_{t-j}^F)^2 = E_L(v(L)\varepsilon_t)^2 (v(L)\varepsilon_{t-j})^2$$

 In case of weak GARCH(1,1) one can derive the following autocovariance (γ) and autocorrelation (ρ) functions:

$$\gamma_{2}(0) = \frac{\left[1 + \theta^{2} - 2(\phi + \theta)\theta\right]}{\left[1 - (\phi + \theta)^{2}\right]} \sigma_{v}^{2}$$

$$\gamma_{2}(j) = \frac{\phi\left[1 - (\phi + \theta)\theta\right]}{\left[1 - (\phi + \theta)^{2}\right]} (\phi + \theta)^{j-1} \sigma_{v}^{2}$$

$$\rho_{2}(j) = \frac{\phi\left[1 - \phi\theta - \theta^{2}\right]}{\left[1 - 2\phi\theta - \theta^{2}\right]} (\phi + \theta)^{j-1}$$

• Let define $\lambda \equiv \phi + \theta$ and apply the linear filter $v(L) \equiv (1-L^S)$ to this process, then one obtains the **filtered autocorrelation function**:

$$\rho_2^F(j) = \frac{2 + \lambda + \lambda^S}{2 + 6\lambda \rho_2(S)} \rho_2(j)$$

• As a final step the condition on parameters ϕ and θ is obtained to have an unbiased autocorrelation function

• If the parameters ϕ and θ solve the following equation:

$$2\lambda^{S}\theta - (1 + \theta^{2} - 6\phi\theta)\lambda^{S-1} + 6\phi\lambda^{S-2} + 2\lambda\theta - (1 + \theta^{2}) = 0$$

the autocorrelation function is unbiased

If the following inequality holds:

$$2\lambda^{S}\theta - (1 + \theta^{2} - 6\phi\theta)\lambda^{S-1} + 6\phi\lambda^{S-2} + 2\lambda\theta - (1 + \theta^{2}) > 0$$

the autocorrelation function is upward biased;

$$2\lambda^{S}\theta - (1 + \theta^{2} - 6\phi\theta)\lambda^{S-1} + 6\phi\lambda^{S-2} + 2\lambda\theta - (1 + \theta^{2}) < 0$$

the autocorrelation function is downward biased