Misspecification

Using filtered data

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Estimation and Hypothesis Testing with Unfiltered and Filtered Data Ghysels & Osborn Chapter 5

Nora Prean

Econometrics of seasonality, May 2012

Using filtered data

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Adjusted versus unadjusted data

- Seasonally adjusted data
 - e.g. structural models designed to capture business cycle fluctuations
- Unadjusted data
 - models should reflect decision-making process of representative agents **facing seasonal fluctuations**
- Question will remain unsolved; BUT researchers should be aware of econometric consequences of using seasonally unadjusted and seasonally adjusted data

Misspecification

Using filtered data

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 1. Misspecification of stochastic structure of seasonality in linear regression models
- 2. Consequences of using seasonally adjusted (filtered) data
- 3. Conclusion

Misspecification

Using filtered data

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Sources of misspecification

Misspecifying seasonality as deterministic when in fact it is stochastic and nonstationary and vice versa

Assume

$$y_t = \sum_{s_1}^S \delta_{st} \gamma_s + z_t \tag{5.1}$$

where $\phi(L)z_t = \theta(L)\epsilon_t$, $\epsilon_t \sim iid(0, \sigma^2)$

Misspecification

Using filtered data

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Inappropriate seasonal differencing:
 - if seasonality is deterministic (all roots outside unit circle): run regression in (5.1)
 - corresponding seasonal difference model:

 $\Delta_S y_t = \Delta_S z_t \tag{5.2}$

- seasonal differences operator Δ_s removes seasonal means (no longer identified)
- furthermore, the Δ_S filter results in Δ_{SZ_t} ("overdifferencing" of the data, see Maravall, 1995)

Using filtered data

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Misspecification, cont.

- Inappropriate seasonal dummies [φ(L) has roots on unit circle at seasonal frequencies]:
 - "spurious deterministic seasonality" (Abeysinghe, 1991, 1994; Franses, Hylleberg, Lee (1995)
 - R2 misleading (estimation of (5.1) might lead to high R2 even if DGP is nonstationary seasonal process)
 - conventional F test for the null $\gamma_1 = ... = \gamma_S$ not valid

Misspecification

Using filtered data •000000 Conclusion o

Excursus: filtering

- Idea: filter raw data such that seasonal fluctuations disappear from the series
- Long tradition of decomposing time series in mutually orthogonal unobserved components
 - any seasonal adjustment procedure rests on specific decomposition of a series into a "trend cycle", and seasonal and irregular components
 - multiplicative, pseudo-additive, (log) additive decomposition
- Linear X-11 filter (U.S. Census Bureau, N.B.E.R), for monthly and quarterly data
 - 3 stage procedure, each with several sub-stages, using different MA filters, seasonal moving average filters,...

Using filtered data

Conclusion o

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Regression models and Filtering

Consider:

$$y_{t} = \sum_{j=1}^{p} \alpha_{j} y_{t-j} + x_{t}' \beta + \delta_{t} + \epsilon$$

$$t = -l, ..., 0, 1, ...T + k$$
(5.6)

regressors non-stochastic, error process $\epsilon' = (\epsilon_{-l}, ..., \epsilon_{T+k})$ has known covariance matrix $E(\epsilon \epsilon') = \Omega$

Assume that data is filtered with a known and linear filter; filter weights $(v_{-l}, ..., v_k)$

Misspecification

Using filtered data

Conclusion o

(ロ) (同) (三) (三) (三) (○) (○)

Filter matrix F

 $(T+1) \times (T+k+l+1)$ filter matrix *F*:

 $F = \begin{pmatrix} v_{-l} & \dots & v_k & 0 \\ & \ddots & & \ddots & \\ & & \ddots & & \ddots \\ 0 & & v_{-l} & & v_k \end{pmatrix}$

- Filter matrix *F* transforms sample of size T = T + k + l + 1 into filtered data set with T + 1 observations (at each end of sample data are discarded by the two-sided filter)
- Symmetric, two-sided filter (v_{−l} = v_l); filtering weights sum to one (∑_{i=-m}^m v_i = 1 with m = k = l)
- Constant and time trend in regression model invariant to filtering $(X_F = X)$

Misspecification

Using filtered data

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Define filtered and unfiltered data sets as

 Matrix U cuts away observations at each end of the sample so that y_F and y_U are filtered and unfiltered data sets of equal sizes T + 1 with disturbances drawn from the same random vector ε

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Simple case: no lagged dependent variables

- Suppose $y_t = x'_t \beta + \epsilon_t$, t = -l, ..., 0, 1, ..., T + k
- Ω and F known, thus we know

$$E(\epsilon_U \epsilon'_U) \equiv \Omega_U = U \Omega U E(\epsilon_F \epsilon'_F) \equiv \Omega_F = F \Omega F$$

•
$$\hat{\beta}_j = (X'_j X_j)^{-1} X'_j y_j, \qquad j = U, F$$

- $\hat{\beta}$ unbiased: $E(\hat{\beta}_F) = (X'_F X_F)^{-1} X'_F E(X_F \beta + F \epsilon) = \beta$
- and $Var(\hat{\beta}_F) = (X'_F X_F)^{-1} X'_F \Omega_F X_F (X'_F X_F)^{-1}$

Using filtered data

Conclusion o

(ロ) (同) (三) (三) (三) (○) (○)

Filtering ARIMA types of models

Suppose

$$y_t = \mu + \gamma_t + z_t$$

and linear filter v(L) where $v(L) = v(L^{-1})$ and v(1) = 1

• Filtered version of y_t an be written as:

$$y_t = z_t, y_0 = 0$$

 $y_t^F = v(L)z_t, y_0^F = 0$
i.e. $y_t^F = v(L)y_t$

- Then (consider simple case) $y_t = \alpha y_{t-1} + \epsilon_t$
- \longrightarrow compare $\hat{\alpha}$ with $\hat{\alpha}_F$ to determine asymptotic bias

- Filtering of unit root processes:
 - when $\phi(L)$ has root on unit circle, $\hat{\alpha}$ and $\hat{\alpha}_F$ both converge to one
 - thus, NO bias \longrightarrow asymptotic null distributions of unit root test statistics not affected by filtering of the data
 - HOWEVER, finite sample distributions are affected by filtering
- Filtering Stationary ARMA processes:
 - when $\phi(L)$ does not contain unit root \longrightarrow asymptotic bias induced by filtering
 - Ghysels and Perron (1993) show: positive bias in case of linear X-11 filter (thus, unit root tests performed with filtered data can be expected to be less powerful against stationary alternatives)

Misspecification

Using filtered data

Conclusion

Conclusions

- Use of adjusted (filtered) data
 - discards important information about economic dynamics
 - possibly introduces severe biases
- Use of unfiltered data
 - incorporates misspecification risk
 - standard statistical inference procedures often result in close fits at seasonal frequencies but underemphasizes other frequencies (Sims, 1974, 1993); loss function might put a heavy penalty on misfitting the seasonal frequencies
 - Hansen and Sargent (1993) exploit further sources of misspecification; their findings seem to support Sims (1974, 1993)
 - however, debate still ongoing; depends on the context