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1: Introduction  
• Periodic Process: 
Coefficient changes with the season of the year. Deterministic 
process is the special case of periodic process if intercept 
changes with seasons.  
 
• Gersovitz and Mackinnon (1978) and Osborn (1988): It arises 

when modelling seasonal decisions of consumers.   
• Hansen and Sargent (1993): It  could also arise from seasonal 

technology. 



2: Periodic Process  
Simple Example:  
 
First-order autoregressive process with periodically varying 
coefficients.  
 

푦 = 훿 ∅ 푦 + 휀  

 
Stability conditions : The absolute value of product of all 
coefficients should be less than one. 



2.1: Periodic ARMA (p,q) process 
 

∅ (퐵)푦 = 퐶 + 휃 (퐵)휀                                (1.1)  
 
Where,								푠 = 1, … , 푆		, 			휏 = 1, … ,푇  
and  

∅ 퐵 = 1 − ∅ 퐵 −⋯− ∅ 퐵   
휃 퐵 = 1 − 휃 퐵 −⋯− 휃 퐵   

are polynomials in the conventional lag operator 퐵 and  
Disturbance 휀  is i.i.d over season and year.  
p and q are max AR and MA lags with nonzero coefficients.  
퐸(휀 휀 ) = 0 unless 푠 = 푘 and τ = 푗 
 



• Heteroskedasticity over seasons is permitted , so that 
퐸 휀 = 휎  
 

• B operates on the season and one period lagged 
observation is B푦 = 퐵푦 ,  
 

• ARMA(p,q)  must have at least one ∅ ≠ 0and 휃 ≠ 0 
over 푠 = 1, … , 푆 
 

• Further, ∅ (퐵) and 휃 (퐵) must have no roots in common 
in order to identify the parameters of the process. 
 

• Periodic ARMA processes have distinctive stationarity 
and invertibility properties compared with a conventional 
ARMA processes. 



2.2: Periodic Heteroskedasticity 

• Considering a special case of (1.1) Periodic seasonal 
ARMA process with constant coefficients: 

 
∅	(퐵)푦 = 퐶 + 휃	(퐵)휀                  (1.2) 

 
With all roots of ∅	 퐵  and 휃	(퐵) out side the unit circle.  
This is conventional ARMA process except that we assume 
that  
 
퐸 휀 = 휎  is not constant over seasons.  
퐸(푦 ) = 휇 = 퐶/∅	(1) (mean is unaffected) 
 



Zero mean seasonal heteroskedastic AR(1) process in 
periodic notation: 
 

푦 = ∅푦 , + 휀           (1.3)       
 
assuming 푦  corresponds to 푠 = 푆, repeated substitution yields 
 

푦 = ∅ 푦 , + 휀 + ∅휀 , , 
= ∅ 푦 , + 휀 + ∅휀 , + ⋯+ ∅ 휀 , 

= ∅ 푦 + ∅ ( 휀 , + ∅휀 , + ⋯+ ∅ 휀 , ) 



 
• If starting value 푦  has the same variance as each sample 

period 푦 , it follows that 
 

푉푎푟 푦 = 훾 0 =
휎 + ∅ 휎 + ⋯+ ∅ ( )휎 ( )

1 − ∅
 

 
 

• 푉푎푟 푦  is periodically varying  since the weighting of each 
휎 (푠 = 1, … , 푆) depends on the season 푠 in which 푦  is 
observed.  



 
• The above ARMA process with constant coefficient  has 

autocovariance at lag k:  
   훾 푘 = 퐸(푦 − 휇)퐸(푦 , − 휇) 
That is also seasonally varying. 
 
• Periodic heteroskedasticity can be easily removed by 

Standardization i.e.,  

       

That have zero mean, unit variance and autocovariance are 
independent of 푆. 



2.3: Periodic MA(1) Process 

• The Periodic MA(1) process with no deterministic component: 
 

푦 = 휀 − 휃 휀 , ,                         (1.4) 
 
• The mean of  푦  is zero and variance 퐸 휀 = 휎  is 

constant. But variance of  푦  exhibits periodic 
heteroskedasticity, since 

 
푉푎푟(푦 ) = 훾 0 = 퐸(휀 − 휃 휀 , )  

= (1 + 휃 )휎  



 
• Further autocovariance at lag (1) is 

훾 1 = 퐸(푦 푦 , ) 
= 퐸(휀 − 휃 휀 , ) (휀 , − 휃 휀 ,	 ) 

= −휃 휎  
For k > 1		훾 푘 = 0. Thus,  
• MA(1) exhibits periodic variances and 

autocovariances, observation 1 year apart, 푦  and 
푦 , , are not correlated. 
 

• The characteristic of seasonality in economic 
variables that the patterns in the observations tend 
to repeat each year, and hence that 푦 ,  provides 
relevant information for the prediction of 푦 , cannot 
be delivered by a periodic MA (1) process.  



2.4: Periodic AR (1) Process 

• The simple Periodic AR (1), or PAR (1) process: 
푦 = ∅ 푦 , + 휀 ,                         (1.5) 

푠 = 1, … , 푆  
With substitution for lagged y,   

푦 = ∅ ∅ 푦 , + 휀 + ∅ 휀 ,  
= ∅ ∅ …∅ 푦 , + 휀 + ∅ 휀 , + ∅ ∅ 휀 ,  

+⋯∅ ∅ …∅ ( )휀 ( ),  
• The coefficient of 푦 ,  is the product of all S periodic 

AR(1) coefficients, namely ψ = ∅ ∅ …∅ . 
• The presence of PMA process implies that 푉푎푟(푦 ) and 

its autocovariances vary over s. While starting value 
퐸(푦 ) = 0 and 퐸(푦 ) = 휇 = 0 

 



 
Var 푦 = 훾 0

=
1

1 − ψ
휎 + ∅ 휎 + ∅ ∅ 휎

+ ∅ ∅ ∅ 휎 . 
• Even with homoskedasticity in the disturbances the 

periodic AR(1) process 푦  exhibits periodic 
heteroskedasticity.  

• The autocovariances at lag 1 for the PAR (1)  
훾 1 = 퐸 푦 푦 , = ∅ 훾 0 , 

At annual lag S,  
훾 푆 = 퐸 푦 푦 , = ψ 훾 0             (1.6) 

• The 훾 1  is periodic through both ∅  and 훾 0 ,  
• While 훾 푆  is periodic only through the variance 훾 0 .  



• Consequently, the autocorrelation of 푦  at lag S is: 
휌 푆 = 훾 푆 / 훾 0 = ψ, 

Which is constant over 푠 = 1, … , 푆. 
• Above 훾 푆 	 in equation (1.6) implies that PAR (1) process 

gives rise to an annual pattern in the conditional expectations, 
with, 

퐸 푦 푦 , = ψ푦 ,  applies for all s 
• In contrast to the PMA(1) process, the PAR(1) process gives 

rise to a type of seasonal habit persistence whereby an annual 
pattern in the observations will tend to be repeated when ψ is 
positive. 



3: The VAR Representations 
• VAR representation  of the PAR (1) process of equation (1.5) 

becomes, 
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• Or more compactly,    Φ 푌 = Φ 푌 + 퐶 + 푈                      (1.7) 

퐸 푈 푈 = =푑푖푎푔(휎 ,휎 ,휎 ,휎 ) 

Φ  and Φ are 푆 × 푆 coefficient matrices and 퐶 is 푆 × 1 vector of 
intercept.  



• The general Vector representation for a PAR(p) process is the 
VAR(P): 

Φ 푌 = Φ 푌 + ⋯+ Φ 푌 + 퐶 + 푈  
Using the matrix polynomial lag operator 

 Φ 퐵 = Φ −Φ 퐵 −⋯−Φ 퐵  
Φ 퐵 푌 = 퐶 + 푈  

• The more usual VAR(P)representation can be obtained by 
inverting Φ , 
푌 = Φ Φ 푌 + ⋯+ Φ Φ 푌 + Φ 퐶 + Φ 푈  

푌 = 퐴 푌 + ⋯+ 퐴 푌 + 퐶 + 푉  
Where, 
 퐴 = Φ Φ 푖 = 1, … ,푃 ,퐶 = Φ 퐶, and 푉 = Φ 푈  
• And Φ  must be nonsingular then VAR(P) representation is 

well defined.  



4: Integration In PAR 

• Stationarity condition for PAR process Φ 퐵  lie outside the 
unit circle. In PAR three types of integrated process for first 
order non stationarity, 
 

• 푦 ~퐼 1 . PAR operator ∅ 퐵  contains the common factor 
∆ = 1 − 퐵  but ∆ 푦  is a stationary PAR process. 
 

• 푦 ~푆퐼 1 . PAR operator ∅ 퐵  contains the common factor 
∆ = 1 − 퐵  but ∆ 푦  is a stationary PAR process. 
 

• 푦 ~푃퐼 1 . Φ 퐵  contains the factor 1 − 퐵  but ∆  is not 
common to each polynomial ∅ 퐵 (푠 = 1, … . 푆), with the 
VAR for  ∆ 푦  being stationary. 
 
 



 
• 푦 ~푃퐼 1  is the special form of periodic integrated 

process and the process is non-stationary with 
∅ ∅ ∅ ∅ = 1 but not all individual ∅ = 1. For 
stationarity quasi difference is required, 

 
퐷 푦 = 푦 − ∅ 푦 , 	 

 
• If ∅ = 1 then 퐼 1  process can be viewed as special 

case of PAR process.  
 



4.1: GHL Test (Ghyzel, Hall and Lee 1996)  
• GHL proposed using HEGY test as in chapter 3, who examine the 

null hypothesis 푦 ~푆퐼 1 .  
 
• The test regression of GHZ test by allowing each coefficient varies 

over the seasons. 
 

∆ 푦 = 휋 훿 푦( ) − 휋 훿 푦 − 휋 훿 푦 − 휋 훿 푦 + 휀  

 

• 훿  is the quarterly dummy variable, 푦( ) , 푦( ) , 푦( )  and 푦( ) 	is  
HEGY transformed variables 

 
• 휋 =	 Seasonal varying coefficients where 푠 = 1, … .4 and 푖 = 1, … 4 

so there are 16 coefficients 
 
• Seasonal integration null hypothesis implies 휋 = 	0 and adopt a 

Wald test for estimation. 
 
 
 



4.2: Cointegration to test seasonal 
integration 

• In chapter 3 we have studied that 푦  process can not be 
cointegrated with each other.  
 

• Franses (1994) adopt this idea and develops a cointegration 
for testing a null hypothesis of seasonal integration.  
 

• He treats the series separately for seasons S and adopt a 
VAR(1) representation.  

 
Φ 푌 = Φ 푌 + 푈 	 

 
Δ 푌 = A푌 + 푉  

 
Where A = −(퐼 − Φ Φ ) and 푉 = Φ 푈  

 



• Franses applies Johansen (1988) terminology to this VAR 
representation.  

 
• Seasonal random walk implies A = 0 and 푉 = 푈   
 
• Clearly rank of A is then zero implies process 푦 is 

individually 퐼 1  and not cointegrated.  
 
• When Rank A is r then null hypothesis of no cointegration 
    	r = 0, also a test that univariate process	푦 ~푆퐼 1 . 

 
 



 
• The Null hypothesis r = 0	is tested against the alternative	r > 0.  
     If null is rejected r = 1	is tested against the alternative	r > 1.  
     The process continues until the null cannot be rejected and  
      this specifies Rank of A as	푟∗. 

 
• Quarterly case: 		푦 ~푃퐼 1 , r = 3  (Periodic Seasonal Unit Root) 
 
• Matrix A is computed from equation 1.7 , 
 

• A = −(퐼 − Φ Φ ) =
−1 0 0
0 −1 0
0
0

0
0

−1
0

				

휙
휙 휙
휙 휙 휙

휙 휙 휙 휙 − 1

  

 



• We can see that final row contains zero only when 
∅ ∅ ∅ ∅ = 1  

 
• The three cointegrating relationships are	푦 − 휙 푦 , 
푦 − 휙 푦 , and 푦 − 휙 푦 . 

 
• Another Case: 푦 ~퐼 1 , r = 3 (No seasonal Unit root) 
 
• There is also a cointegration relationship as	푦 − 푦 , 
	푦 − 푦 , and 푦 − 푦 . 

 
• The coefficients of cointegrating relationships are (1, -1).  

 



4.3: Periodic and nonperiodic integration 
testing 

• Franses Multivariate test unable to consider highly 
parameterized nature of periodic integration. Because Franses 
consider null hypothesis that 푦 ~푆퐼 1 . 
 
 

• Boswijk and Franses (1996) develop a test for null hypothesis 
푦 ~푃퐼 1 . 
 

• Test Exploits  푃퐼 1  implication that matrix A of the VAR 
representation has a rank of 3 and series 푦 , 푦 , 푦  and 푦  
posses a single common stochastic trend.  

 
 



• Test regression proposed by Boswijk and Franses (1996) has the 
form 

푦 = ∑ 휙 훿 푦 + 휀   
 
• Under the null hypothesis, Non linear estimation is required in 

order to impose the periodic integration restriction 
∅ ∅ ∅ ∅ = 1, while under the alternative, ∅ ∅ ∅ ∅ ≠ 1	 
 

• Likelihood ratio test is used to compare the results of these 
estimations. 
 

• Asymptotically test statistics converges to  square of DF t-
distribution. 

 



5: Periodic Cointegration 
• Periodic cointegration can be defined as stationary linear 

combination  푦 − 푘 푥  exist between two integrated series. 푃 
represents parameter varying periodically.  

 
• Birchenhall et al. (1989) was the first who consider periodic 

cointegration and then Franses et al., (1995, 1999), 
  
• Definition: 
    (Boswijk and Franses, 1995) , 
 
“Consider 푦  and 푥  for 푠 = 1, … .4 each of which is 퐼 1 . The 
variables x and y are fully periodically cointegrated of order (1,1) if 
there exist coefficients푘 such that 푦 − 푘 푥  is stationary for 
푠 = 1, … .4  with not all 푘 equal. Partially cointegrated if 푘 exist 
such that 푦 − 푘 푥  is stationary for only some 푠 = 1, … .4 ”. 

 
 
 



• Acooriding to definition each series 푦 ,	푥  contains 퐼 1 , 푆퐼 1  or 
푃퐼 1 .  But Ghysels and Osborn (2001) criticised the definition of 
Boswijk and Franses (1995) and redefine as it does not permit 
cointegration vector to be common across all four quarter. 
Furthermore, cointegrating relationship is periodically varying and 
that is the genuine definition. Three possibilities to consider, 

 
1. 푥 ~퐼 1 . With full periodic cointegration between 푦 	and	푥 , then 

푦 ~푃퐼 1 . 
 푦 = 푘 푥 + 푢   

 
where 푢  is stationary and 푥 ~퐼 1 , implies  

푥 = 푥 , + 푣  
푦 = 푘 푥 , + 푘 푣 + 푢   (1.8) 

 
Periodic cointegration also implies 
 

푦 , = 푘 푥 , + 푢 ,   (1.9) 
 



• Multiply the equation (1.9) by푘 /푘 and subtract from 
equation (1.8). We obtained 

푦 −
푘
푘

푦 , = 푘 푣 + 푢 −
푘
푘

푢 ,  

 
• All right-hand side variable are stationary therefore left-

hand side is stationary.  
 

• The coefficient of 푦 ,  is 훼 = , the 푃퐼 1  restriction 

훼 훼 훼 훼 = 1 must hold for 푦 . 

 



2. 푥 ~푃퐼 1 . With full periodic cointegration or non 
periodic cointegration, then 푦 ~푃퐼 1 . 

 
• Same logic as in the case 1 but difference in coefficients 

 

푦 −
훼 푘
푘

푦 , = 푘 푣 + 푢 −
훼 푘
푘

푢 ,  

훼 =
훼 푘
푘

 

 
• 푃퐼 1  restriction 훼 훼 훼 훼 = 1 must hold for 푦  
 
• Non Periodic cointegration then 훼 = 훼  



3. 푥 ~푆퐼 1 . Combine with periodic cointegration between 
푦 	and	푥 . 

 
• The four unit process in 푥 (푠 = 1,2,3,4) give rise to four 

distinct unit root process in 푦  through 푦 = 푘 푥 + 푢 . 
Therefore 푦 ~푆퐼 1 . 

 
 



6: Comments on Empirical Evidences 

• Wells (1997) and Novals and de fruto (1997): 
 Periodic models produce less accurate forecasts than nonperiodic 
models. Novals and de fruto also conclude that important accuracy 
gains can be made by imposing nonperiodic coefficients across 
some seasons of periodic model.  

 
• Franses (1995b): 

Seasonal adjustment does not remove all periodic characteristics 
and hence he recommends the use of periodic approach even for 
seasonal adjusted data.  

 



• Conclusion: 
Periodic processes have some attractive features, great strides 
have been made in establishing an appropriate toolkit for the 
statistical analysis of such processes. Overall, however, empirical 
applications in economics are relatively few to date. While 
evidence of periodicity has been found, so it is difficult to 
assume that the majority of important real macroeconomic 
variables are of this type. 
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