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1. INTRODUCTION: 

 

 

 

In the previous chapters, we have learned modelling the conditional mean of the data 

generation process of a multiple time series. In that context, the variance or covariance matrix 

of the conditional distribution was assumed to be the time invariant. In fact, the residuals or 

forecast errors were assumed to be independent white noise. 

The conditional mean is the optimal forecast and, hence, changes in volatility are of 

less importance from a forecasting point of view. This position ignores, however, that the 

forecast error variances, that is, the variances of the conditional distributions are needed for 

setting up forecast intervals. Taking into account conditional heteroskedasticity is therefore 

important also when forecasts of the variables under investigation are desired.  

More detailed modelling of the volatility of time series was a natural development 

which was introduced by Engle’s invention in 1982 of ARCH (autoregressive conditional 

heteroskedasticity) models. ARCH stands for a wide range of models for changing conditional 

volatility. Therefore, multivariate models for conditional heteroskedasticity are of interest. 

Multivariate ARCH/GARCH models and dynamic factor models, eventually, in a Bayesian 

framework are the basic tools used to forecast correlations and covariances. 

In the following, a brief review of some facts on univariate ARCH and generalized 

ARCH (GARCH) models is given and then multivariate extensions will be explained. 

 

 



2. Univariate GARCH Models 

 

2.1 Definitions 

 

Consider the univariate serially uncorrelated, zero mean process ut. For instance, ut may 

represent the residuals of an autoregressive process. The ut are said to follow an 

autoregressive conditionally heteroskedastic process of order q (ARCH(q)) if the conditional 

distribution of ut, given its past  t-1 = {ut-1, ut-2, . . . .}, has zero mean and the conditional 

variance is 
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that is, ut|Ωt-1 ~ (0,  2
t|t-1). Another quite useful way to define an ARCH process is to specify 

 

ut = σt|t-1Ɛt,        Ɛt ~ i.i.d. (0,1). 

 

Here the i.i.d. assumption for  t is slightly more restrictive than the previous definition which 

makes statements about the first two moments of the conditional distribution only. In the 

following, aforementioned definition will be used. The ut , generated in this way, will be 

serially uncorrelated with mean zero. 

Originally, Engle (1982), in his seminal paper on ARCH models, assumed the 

conditional distribution to be normal so that 

 

 t ~ i.i.d. Ɲ (0,1)     and     ut| Ωt-1 ~ Ɲ (0, 
2

t|t-1 ) 

 



The model is capable of generating series with characteristics similar to those observed time 

series. In particular, it is capable to generate series with volatility. Bollerslev (1986) and 

Taylor (1986) proposed to gain greater parsimony by extending the model in a similar manner 

as the AR model when moving to mixed ARMA models. They suggested the generalized 

ARCH (GARCH) model with conditional variance given by 
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These models are briefly denoted by GARCH(q, m). They generate processes with existing 

unconditional variance if and only if the coefficient sum 

 

γ1 + . . . + γq + β1 + … + βm ˂ 1 

 

The similarity of GARCH models and ARMA models for the conditional mean can be seen 

by defining vt :=u
2

t -
2

t|t-1, substituting u
2

t – vt for 2
t|t-1. 

 

 

3. Multivariate GARCH Models
 

 

Multivariate extensions of ARCH and GARCH models may be defined in principle similarly 

to VAR and VARMA models. Multivariate GARCH models have been used to investigate 

volatility and correlation transaction and spillover effects studies. See Strulz (2003). Early 

articles on multivariate ARCH and GARCH models are Engle, Granger & Kraft (1986). The 

simpler ARCH models will be considered first. Some of the best known multivariate GARCH 



models available include the VECH model of Bollerslev and Wooldridge (1988). It is used for 

the conditional covariance matrix. 

 

 

3.1 Multivariate ARCH 

 

Suppose that ut = ( u1t, …,uKt )
ˈ 
is a K-dimensional zero mean, serially uncorrelated process 

which can be represented as 

 

ut = 
½

t| t -1Ɛt, 

 

where  t is a k-dimensional i.i.d. white noise,  t ~ i.i.d. (0, IK ), and  t|t-1 is the conditional 

covariance matrix of ut, given ut-1, ut- 2. Obviously, the ut’s have a conditional distribution, 

given  t-1 : ={ ut-1, ut-2,…}, of the form 

 

ut| t-1 ~ (0, Ʃt| t-1 ). 

 

They represent a multivariate ARCH(q) process if 

 

vech(Ʃt| t-1) = γo +  1 vech ( ut- 1 u
'
t- 1 ) + . . . +  q vech (ut - qu

'
t-q), 

 

where vech denotes the half-vectorization operator which stacks the columns of a square 

matrix from the diagonals downwards in a vector, γo is a ½K(K+1)- dimensional vector of 

constants and the  j
's 

are (½K(K+1) × ½K(K+1) coefficient matrices. 

 As an example, consider a bivariate (K = 2) ARCH (1) process, 
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This is a simple model for a bivariate series but it has a fair number of parameters. 

Baba, Engle, and Kraft & Kroner (1990) investigated the following variant of a multivariate 

ARCH model. 

 

Ʃt|t-1 =  0
*
 +  1

*' 
ut - 1u't - 1 1

* 
+ . . . + q

*'
ut - qu't - q q

*
 

  

where the  j
*’ 

s are ( K×K ) matrices. This particular multivariate model has been named as 

BEKK model .One advantage of this model is that it is relatively parsimonious. For instance, 

for a bivariate process with K=2 and q=1, there are only 7 parameters, whereas the full model 

has 12 coefficients. 

 

 

3.2 MGARCH 

 

MGARCH stands for multivariate GARCH or generalised autoregressive conditional 

heteroskedasticity. The development of MGARCH models from the orignal univariate 

specifications represented a major step forward in the modelling of time series. MGARCH 

models permit time-varying conditional covariances as well as variances, and the former 

quantity can be of substantial practical use for both modelling and forecasting, especially in 

finance for example, applications to the calculation of time-varying hedge ratios, value at risk 

estimation and portfolio construction have been developed. 



 In principle, multivariate ARCH models may be generalized in 

the same way as the univariate case. In multivariate GARCH (MGARCH) model for ut, the 

conditional covariance matrices have the form 
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where the Gj’s are also fixed ( ½K( K + 1 ) × ½K ( K + 1 ) coefficient matrices. 

 A VARMA representation of an MGARCH process may be 

obtained similarly to the univariate case. Engle & Kroner (1995) showed that the MGARCH 

process ut with conditional covarianes as given above is stationary if and only if all 

eigenvalues of the matrix 
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have modulus less than one.  

 The parameter space of an MGARCH model has a large 

dimension in general and needs to be restricted to guarantee uniqueness of the representation 

and to obtain suitable properties of the conditional covariances To reduce the parameter 

space, Bollerslev et al. (1988) discussed diagonal MGARCH models, where the  j 
,
s and Gi

‚
s 

as in the above model are diagonal matrices. Alternatively, a BEKK GARCH, Baba-Engle 

Kraft-Kroner, model of the following form may be useful. 
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where again C0
* 
is a triangular ( K×K ) matrix and the coefficient matrices  j

*
n, Gj

*
n are also 

(K×K). Given the similarity of MGARCH and VARMA models, it is clear from Chapter 12, 

Section 12.1, that restrictions have to be imposed on the coefficient matrices to ensure 

uniqueness of the parameterization. 

 More general BEKK GARCH (1,1) model: 
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3.3 Other Multivariate ARCH and GARCH Models 

 

These are special BEKK models. For example, Lin (1992 ) specified a factor GARCH 

model, where the  1
*
n and G1

*
n 

´
s in a BEKK GARCH (1,1) model of the form  

 

 1
*

n = γn ηnξ
´
n     and     G1

*
n = ɡn ηn

 
ξ

´
n,    n=1,. . . . N. 

 

Here γn and ɡn are scalars and ηn and ξn are (K×1)-vectors. 

 A closely related model the so-called generalized 

orthogonal GARCH model was proposed by van der Weide (2002). 

 In 1990, Bollerslev had obtained constant conditional 

correlation ( CCC) MGARCH model. 

 Clearly, in this model, the time invariant R is the correlation 

matrix corresponding to the covariance matrix Ʃt|t-1 for all t. Engle (2002) extended the model 



by allowing for richer dynamics and proposed the so-called dynamic conditional 

correlation (DCC) model.  

 Many ARCH variants are popular in empirical finance. For 

example, the exponential GARCH (EGARCH ) model by DANIEL NELSON 

(1991).  

  

Xt = t exp
 
( ht / 2 ). 

  

ht = γ0 + γ1 ht -1 + w t - 1 + λ ( |  t – 1 | - E |  t -1 | ) 

 

A range of other models was also proposed and the literature on MGARCH models has grown 

rapidly over the last years. 


