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1. Model Checking

� Residual covariances and autocorrelations
� Portmanteau test
� LM test for residual autocorrelation

2. Example

� EGLS estimates
� Estimated residual autocorrelations
� Point and interval forecasts
� Estimated responses of consumption to an orthogonalized

impulse
� Example - Interpretation
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K-dimensional stationary, stable VAR(p) process:

yt = v + A1yt−1 + ...+ Apyt−p + ut (1)

with

v = (v1, ...vK)
′ a (K × 1) vector of intercepts

Ai (k ×K) coefficient matrices and

ut white noise (with a non-singular covariance matrix Σu

→ same assumptions as in the unconstrained case
(see: Lütkepohl, chapter 3)
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in compact form model (1) can be written as:

Y = BZ + U with

Y ≡ [y1, ..., yT ], Z ≡ [Z0, ..., ZT−1] with Zt ≡











1
yt
...

yt−p+1











,

B ≡ [v,A1, ..., Ap], U ≡ [u1, ..., uT ]

constraints for B: β ≡ vec(B) = Rγ + r

β (K(Kp+ 1)× 1) matrix
R (K(Kp+ 1)×M) matrix
γ (M × 1) vector
r (M × 1) vector
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by vectorizing and plugging in Rγ + r for β we get:

y ≡ vec(Y ) = (Z ′ ⊗ IK)vec(B) + vec(U)

= (Z ′ ⊗ IK)(Rγ + r)+ u

or

z = (Z ′ ⊗ IK)Rγ+ u

with z ≡ y−(Z ′ ⊗ IK)r

and u≡ vec(U)

→ while there are other forms of representing linear constraints, the
chosen form is convenient as it allows to derive the estimators in the
same manner as in the unconstrained model (see: Lütkepohl, chapter 3)
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minimizing:

S(γ) = u
′ (IT ⊗ Σ−1

u ) u

= [z −(Z ′ ⊗ IK)Rγ]′(IT ⊗ Σ−1
u )[z −(Z ′ ⊗ IK)Rγ]

yields the GLS estimator for γ:

γ̂ = [R′(ZZ ′ ⊗ Σ−1
u )R]−1R′(Z ⊗ Σ−1

u ) z

asymptotic properties:

Under the condition, that yt is a K-dimensional stable,stationary VAR(p)
process, ut is white noise with bounded fourth moments and
β = Rγ + r with rk(R) = M

- γ̂ is a consistent estimator of γ
-

√
T (γ̂ − γ) is asymptotically normally distributed with covariance

matrix: [R′(Γ⊗ Σ−1
u )R]−1
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In practice an Σu is not known and has to be estimated. One consistent
estimator of Σu is:

Σ̂u = 1
T−Kp−1

(Y − B̂Z)(Y − B̂Z)′

where B̂ = Y Z ′(ZZ ′)−1 is the unconstraint multivariate LS estimator
of the coefficient matrix B

→ ˆ̂γ = [R′(ZZ ′ ⊗ Σ̂−1
u )R]−1R′(Z ⊗ Σ̂−1

u )z

asymptotic properties:

Under the previous conditions and if plimΣ̂ = Σ the EGLS estimator is
asymptotically equivalent to the GLS estimator
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→ from ˆ̂γ the implied restricted EGLS estimator
ˆ̂
β can be obtained:

ˆ̂
β = Rˆ̂γ + r

asymptotic properties of:

-
ˆ̂
β is a consistent

-
√
T (

ˆ̂
β − β) is asymptotically normally distributed with covariance

matrix: R[R′(Γ⊗ Σ−1
u )R]−1R′



constrained vs. unconstrained

Introduction

Model

Estimators

GLS

EGLS

EGLS

constrained vs.
unconstrained

Forecasting

Specification of Subset
VAR Models

Choosing the constraints

Model selection criteria

Model selection
approaches

Model Checking

Example

10

How does the covariance matrix of the restricted estimator compare to
the covariance matrix of the unrestricted estimator?

Under the assumption that the restrictions are valid:

- the asymptotic variances of the restricted estimator is smaller or
equal to the asymptotic variances of the unrestricted estimator

- asymptotic efficiency gains
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optimal h− step forecast of process (1):

yt(h) = v +A1yt(h− 1) + ...+Apyt(h− p)

with yt(j) = yt+j for J ≤ 0

replacing true coefficients by estimators one gets (i.e. B = (υ,A1, ..., Ap) with

B = (υ̂, Â1, ..., Âp):

ŷt(h) = v̂ + Â1ŷt(h− 1) + ...+ Âpŷt(h− p)

with ŷt(j) = yt+j for J ≤ 0

and the forecast error matrix: Σŷ(h) = Σy(h) +MSE[yt(h)− ŷt(h)]

with Σy(h) =
∑h−1

i=0 φiΣuφ
′

i

under the assumption, that only data up to the forecast origin is used for estimation it
can be approximated by: Σŷ(h) = Σy(h) +

1
T
Ω(h)
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→ general results from forecasting without linear constraints remain valid,as before we
get:

Σŷ(h) = Σy(h) +
1
T
Ω(h)

with Σy(h) and Ω(h) ≡ E[(∂yt(h)/∂β
′)Σ

β̂
(∂yt(h)

′/∂β)]

in the case with parameter restrictions, Σ
β̂

has the following form (compared to the
unrestricted case, where Σ

β̂
= Γ⊗ Σu) :

Σ
β̂
= R[R′(Γ⊗ Σ−1

u )R]−1R′

→ the covariance matrix is (under the assumption that the restrictions are valid)
smaller in the restricted case than in the unrestricted case, hence Ω(h) will also
become smaller
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A model with zero constraints on the coefficients is a subset model of
the general VAR model

Zero restrictions can be written formally as r = r = 0

As the choice of restrictions may not always be undebatable, statistical
procedures may be used to detect possible zero constraints or confirm
intuition

One common solution: Fit all possible subsets of a VAR(p) process with
p known and select the one that optimizes the chosen criterion.

- For instance,modified AIC, SC or HQ may be used
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Subsets with j elements from K2p coefficients can be chosen, such that
a total of
∑K2p−1

j=0

(

K2p

j

)

VAR models, that is

(

K2p

j

)

subsets from K2p coefficients have to be estimated and
compared.

There are several approaches to reduce the number of potential models.
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AIC = lnσ̃2 + 2
T

(number of estimated parameters)

BIC = lnσ̃2 + lnT
T

(number of estimated parameters)

HQ = lnσ̃2 + 2lnlnT
T

(number of estimated parameters)

with lnσ̃2 being the sum of squared estimation residuals
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The k − th equation of the system may be written as

yk =







yk1
...

ykT






= Z ′bk + uk = Z ′Rkck

ĉk = (R
′

kZZ ′Rk)
−1R

′

kZy(k) + u(k)

A corresponding estimator for the residual variance is

σ̃2(Rk) = (y(k) − Z ′b̂k)/T

AIC(Rk) = lnσ̃2(Rk) +
2
T
rk(Rk)

Several zero restrictions for example are not linear independent ⇒ ↓ 2
T
rk(Rk)

but if the eliminated coefficients are significantly different from zero, ↑ lnσ̃2(Rk) and
AIC(Rk) will not become smaller for these restrictions.
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Penm & Terrel (1982)

Number of models to be compared:
∑p

j=0

(

p

j

)

from K2pj = 2p

Useful approach for data with strong seasonality, but somewhat strong
assumption while at the same time precluding further zero coefficients.
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The unrestricted model with Rk = I(Kp+1) is estimated first and the
corresponding AIC(I(Kp+1)) obtained

Restriction by eliminating the last column of I(Kp+1) → R
(1)

k if

AIC(R
(1)

k ) ≤ AIC(I(Kp+1))

=⇒ go on like this!
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Considering lags of each variable separately and choosing its lag order
based on the minimization of some model selection criteria, that is

ykt = vk + αk1,1y1,t−1 + ...+ α1,t−n + ukt

with n ranging from zero to some prespecified upper pound p

Variables are added sequentially, the variables that have been evaluated
already are held fixed:

ykt = vk+αk1,1y1,t−1+ ...+α1,t−p1 +αk2,1y2,t−1+ ...+α2,t−p2 +ukt

This can be combined with the top-down approach to account for the
problem of omitted variable effects that may lead to overstatement of
some lag lengths in the final equation
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Individual zero coefficients are chosen on the basis of the t-ratios of the
parameter estimators until all t-ratios are greater than some threshold
value in absolute value

If the threshold value is chosen accordingly this is equivalent to
sequential elimination of regressors by minimizing some model selection
criteria
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ĉh := vec(Ĉh),

Ĉh := (Ĉ1, ..., Ĉh)

Ĉi :=
1
T

∑T

t=i+1 ûtû
′

t−ii = 0, 1, ..., h

r̂h := vec(R̂h),

R̂h := (R̂1, ..., R̂h)

R̂i := D̂−1ĈiD̂
−1, i = 0, 1, ..., h

with D̂ being a diagonal matrix with the square roots of the diagonal
elements of Ĉ on the diagonal
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The Portmanteau statistic

Qh := TΣh
i=1tr(Ĉ

′

iĈ
−1
0 ĈiĈ

−1
0 )

= T ĉ′h(Ih ⊗ Ĉ−1
0 ⊗ Ĉ−1)ĉh

has a different asymptotic distribution than in the unrestricted case

λLM(h) converges in distribution to χ2(hK2)
which is the same asymptotic distribution as in the unrestricted case
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Estimation of the logarithmized investment, income and consumption
data

1961.2 - 1978.4

T = 71

Top-down strategy

VAR-order p = 4
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Causality checking has been built into the model selection procedure:
income and consumption are not Granger causal for investment

Although theoretically, the more parsimonious model chosen by SC
should be more precise than the one chosen by AIC that has more
parameters if the restrictions are correct, this is not the case here.
Lütkepohl argues that this is not a big issue here because the estimation
has been made on the basis of a single realization of an unknown data
generation process
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Thank you for your attention!
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