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Introduction

Models with potentially time varying first and second
moments but

time invariant coefficients

Models with time varying coefficients, e.g. time series with
seasonal pattern.

e.g. a model where only the intercept term varies for s seasons
Yt =0yl + o+ Vs + A1y 1+ o+ Apyep +

where .
nyg = 0or 1 and an‘t =1.

=1



Introduction

= A more general model:
Y = v + A1 + oo+ App—p + up
with

Bt L= [Vt7A1t; ~--;Apt]
= nlt[yl, AH, e Apl] + ...+ nst[lls, Alsa ...,Aps]
=nuB1+ ... + ngBs

and
Y = E(uguy) = nyX1 + ...+ ngDs.



The VAR(p) Model with Time Varying Coefficients

General form of a K-dimensional VAR(p) model with time varying
coefficients:

y=vi+Auy—1+ ...+ Apy—pt+w, t€Z (1)

where u; is a zero mean noise process with covariance matrices
/
E(utut) = Et



General Properties

The VAR(p) model of Equation (1) can be written in VAR(1) form
as:
Yi=vi+AYi 1+ U

where
Vt_ Ut
Yt 0 0
}/t - ) Vi i= ) Ut — )
Yt—p+1
(Kpx1) O- 0
(Kpx1) (Kpx1)
A ... Ap—1,t Apﬁt
Iy 0 0
A= _ . .
0 Ix 0 |

(KpxKp)



General Properties

= By successive substitution we get

(H Ay g) Y- h‘FZ (HAt ]) Vi z"FZ (HAt ]) Ui

=0 \j=0 =0 \j=0

= Using J := [Ix : 0] ((K x Kp)) such that y, = JY; and
premultiplying by this matrix gives

h—1 h—1 h—1
=J | [] A | Yien + > Pave—i + > P, (2)
=0 i=0 i=0



General Properties

where

and it has been used that J'JU; = Uy, JU; = uy, and similar
results hold for vy.

equation (2) can be represented as

oo
Y= e+ > Pirue—; (3)
i=0



Autocovariances

= Equation (3) can be used to derive the autocovariance

structure of the process:

El(ye — pe)(ye — )| = E

(g2 0]

o0 o0
! /
D> S juy ;P
| j=0i=0

o0
= %D,

%



Autocovariances

= and for lag 1

El(ye — pt) (=1 — pu—1)') = E (i ‘I)jtut—j) (i (I)i,t—lut—l—i> }
=0 i=0

o0 oo
— / /
=E Z Z(I)j+17tut—j—1ut—1—iq)i,t—1]
| j=—1i=0

o0
!
= Z Pip142-1-iP; -
i=0

= More generally, for some integer h,

o0
El(ye — 1) We—n — pe—n)'] = Z <I>z‘+h,t2t—h—iq>;,t_h-
i=0



Forecasting

= Optimal forecasts can be obtained recursively from Equation
(1) as

Yi(h) = vign + Avernye(h — 1) + oo+ Apenye(h — p), (4)

where y;(j) := Y45 for j <0.
= Alternatively Equation (3) can be used for calculating optimal
forecasts:

oo
ye(h) = psn + Y i nUsyn—i
i=h
= The forecast error is
h—1

Yirn — Ye(h) =D i gy ntiyyn—i-
i=0



Forecasting

= The forecast MSE matrices are given by

h—1

Si(h) == MSE[ye(h)] = > ®isnSen—i®iyn-
i=0



ML Estimation

= The general model can be written as

yr = BiZi_1 + uy,

where Bt = [Vt7A1t7 ---;Apt]a Zt,1 = (1,}/{_1),, Bt
depending on an (IV x 1) vector « of fixed, time invariant
parameters and the ¥; are assumed to depend on an (M x 1)
vector o of fixed parameters.



Log-likelihood Function

= Assuming u; ~ N (0,%;) the log-likelihood function of the
general model is

KT 1 & 1 &
Inllvy,o) = —Tln 2 — 3 E In|3] — 3 E up Sy g,
t=1 t=1

where any initial condition terms are ignored.



Periodic Processes

In periodic VAR or PAR processes the coefficients vary periodically
with period s,

Y = vp + A1+, (5)
where
Vi = nyly + ...+ ngls, (K x 1)
A = [Altv ...,Apt] =n Al + ...+ ngAs, (K X Kp)
Zt = E(utué) = nltzl + ...+ nStZs, (K X K)

The n;; are seasonal dummy variables which have a value of one if
t is associated with the ¢ — th season and zero otherwise.



A VAR Representation with Time Invariant Coefficients

= quarterly process with period s = 4 and y; belongs to the first
quarter.

= define an annual process with vectors

Ya Ys Yar
Y3 — yr — Yar—1
oL Y2 92 ; Yo e B Ydr—2
2l Y5 Yar—3

= This process has a representation with time invariant
coefficient matrices.



A VAR Representation with Time Invariant Coefficients

= e.g. the process for each quarter is a VAR(1),

Y = Vg + Arpyi—1 +
= v + A1iy—1 + uy, if t belongs to the i-th quarter,

= the process 1; has the representation

Ix —Aia 0 0 Yar
0 Iy —Ai3 0 Yar—1
0 0 Iy —Ai2]| |yar—2

0 0 0 Ik Yar—3
vy 0 0 0 Of |Yar—a Ugr
2 0 0 0 0| |yar—s Ugr 1
Bz Tlo 00 0 Yar—6 * Udr—2
v A1 0 0 0] |yar—7 Ugr—3



A VAR Representation with Time Invariant Coefficients

= More generally, if there are s different regimes with constant
parameters within each regime, we may define the
sK-dimensional process

Yst

Ysr—1
N, = ) , T7=0,%£1,4£2,....

Ysr—s+1
(sKx1)

= This process has the following VAR(P) representation, where
P is the smallest integer greater than or equal to p/s:

QlOUT =v+ Ql107’*1 + ..+ QlPUT—P + ur,



A VAR Representation with Time Invariant Coefficients

where
IK _Al,s _A2,s s _As—l,s
0 Ix —Aje1 ... —Ass Vs
. . Vs—1
Ao := , V= E
: . e "
|0 0 0 .. Ix | (sKx1)
(sKxsK)
Ais,s Ais+1,s <o A(i—i—l)s—l,s
Ajs—1,5-1  Aisis—1 A
—1,5— ,5— s +1)s—2,5—1
Qli = . . . , 1= 1, o Pa
Ais—s+1,1  Ais—sy21 ... Aisi

(sKxsK)



A VAR Representation with Time Invariant Coefficients

UsT

UsT—1

Usr—s+1
(sKx1)

= All A;;'s with ¢ > p are zero.

= The process 1), is stationary if the 3;'s have bounded first and
second moments and the VAR operator is stable, that is,

det(Ayg — Ayz — ... — Ap2T)
= det(Is — Ay Arz — ... — A Ap2T) A0 for 2] < 1.



A VAR Representation with Time Invariant Coefficients

= Stationarity of 1), does not imply stationarity of the original
process y;. Even if v, has a time invariant mean vector

M4

_ | M3
124 fo |

H1

for example, the mean vectors 14 and ps may be different.

= 1, can also be used to determine an upper bound for the
order p of the corresponding periodic process y;. If 1, is
stationary and order P is selected, then p < sP.



A VAR Representation with Time Invariant Coefficients

= Optimal forecasts of a periodic process can be obtaind from
the recursions of equation (4)

= Forecast origin t is associated with the last period of the year,

() =1+ Ay + .+ Ap1Yi—pt1
ye(2) = vo + A1y (1) + oo+ Ap oY pro

() =vs + A1 syi(s — 1)+ ...+ Ay sui(s — p)
Yi(s+1) =v1 + Aray(s) + .. + Apaye(s +1 - p)



ML Estimation and Testing for Time Varying Coefficients

Cases of Interest:
@ All coefficients time varying
® All coefficients time invariant
©® Time invariant white noise
® Time invariant covariance structure

® Time varying error covariance matrix only



All Coefficients Time Varying

= a periodic VAR(p) model for which all coefficients are time
varying, that is

Hy: By = [v, Ay] = anth Y= Znitxi-
i=1

= |n this case
~ = vec[By, ..., Bs] and o = [vech(31), ..., vech(Xs)"].
= The ML-estimators are obtained to be

T T
= (Z ”itytZ£—1> <Z nitZt12£_1>
=1

t=1

-1



All Coefficients Time Varying

and

ant v — BV Zo 1) (e — BV Zo1) ) T,

fori=1,...,s. Here n; = ZtT:1 ni /T
Except for an additive constant, the corresponding maximum
of the log-likelihood function is

1 ~ 1 ~ -
Aii=—3 ) n sM) = 5T (min ISW)+ 4 agin [SO)).
t



All Coefficients Time Invariant

= Hs is a null hypothesis of interest in the present context:
H2 ZBZ‘:Bl, 21221, i:2,...,3.

= The ML estimators are
-1
B%z) = (Z ytZ£—1> (Z ZtlZé—l)
t t

£P = > (e - BPZ, 1)y — BY Z,1)'T.
t

= The maximum likelihood is, except for an additive constant,

1 .
Ag 1= —§Tln \Z§2)|.



Time Invariant White Noise

= Just the white noise covariance matrix is time invariant while
the other coefficients vary,

Hs: By = [, A] = anth, and 3; =%y, i =2,...,s.

= The ML estimators are

s T

=3 naly — VZ 1) (e B( 'Z,0)T.

i=11t=1

= The maximum likelihood is,

1 ~
Ag =~ Tln 5.



Time Invariant Covariance Structure
= Model with seasonal dummies,

s
H4:Vt:ZnitVi and Ai:Al, Eizzl, i:2,...,8.

i=1
= defining
Nt
Wt—l — : and C: [V17-"7VS7A1]
Nst
Yiq

= the ML estimators are
-1
= (Z thtI1> (Z Wt—lwt,l)
t t

=M =3 — OWist) (e — CWir)'/T.

t



Time Invariant Covariance Structure

= The maximum likelihood is (dropping an additive constant)

1 .
Ay i= = Tin IS} (6)



Tests for time varying parameters

Tabelle: LR tests for time varying parameters

null alternative LR statistic

hypothesis hypothesis Apgr degrees of freedom

H2 H1 2()\1 - AQ) (8 - 1)K[ ( *) %]
Hy H; 2001 —A3) (s—1K(K+1)/2

H, H, 20— M) (s— DK[Kp+ (K +1)/2]
HQ H3 2()\3 — /\2) (8 — 1)K(Kp + 1)

H2 H4 2()\4 - )\2) (S - 1)K




Further Testing

= Time varying error covariance matrix only,
S
H5 :Bi:Bl, i:2,...,8 and Zt:antZl
=1

= Testing Hs against H; using a Wald test.
= Testing Hy against Hs using a LM-test.



Intervention Models

= a particular stationary data generation mechanism until period
T1, another process generates the data after period 73. For
instance,

y=v1+AYio1+w, Eluwuw) =%, t<T}
and
y=vo+ AYi 1 +w, E(wuy) =3, t>Th.

= For simplicity, it is assumed that A = A; and Yo = ¥; and
that the process is stable.



Interventions in the Intercept Model

= Then
oo
> Pivn, t<Ty
i=0
E =

() =19, -

Z D5 + Z Q,v, t>1T1
T

where the ®;'s are the coefficient matrices of the moving
average representation of the mean-adjusted process, i.e.,

> .
Z@iz’ == (IK - AHZ — .. — plzp)_l
=0



Interventions in the Intercept Model

= The process mean does not reach a fixed new level
immediately but only gradually,

t—)oo Z(I) Vs



Interventions in the Intercept Model

The model setup from the previous section can also be used
for intervention models with properly specified 7.

Same hypotheses, same formulas for test statistics, but

test statistics do not necessarily have the indicated asymptotic
distributions



Interventions in the Intercept Model

= e.g. model with all coefficients time varying, model as given
before.

= If T} is some fixed finite point and T" > 17,
~ ~ T T -1
Bi=[m, A=Y wZ | (D212,

t=1

will not be consistent because the sample information
regarding B := [v1, A1] does not increase when T goes to
infinity.



Interventions in the Intercept Model

= Then, under common assumptions,
- 1 1 & B
plimB; = plim | — ZytZg_l plim | — Z AR = B
i =

= Also asymptotic normality is easy to obtain in this case and
the test statistics have the limiting y2-distributions obtained
before.



A Discete Change in the Mean

= If a one-time jump in the process mean after time T} is
plausible a model in mean-adjusted form could be considered,

Y — e = A1(ye—1 — pe—1) + . + Ap(Ye—p — ti—p) + ws.

= = E(y¢) and for simplicity, all other coefficients are
considered time invariant and the process as stable.

=, is Gaussian white noise with time invariant covariance,
Ut ~ N(O, Zu)



A Discete Change in the Mean

= The p;'s may be estimated by

1

T
— Znityt 1= 1, ey S
Tnl- =1

fi =

= if Tn; = >, n; approaches infinity with T, it can be shown
under general assumptions that ji; is consistent and

VThi(ji; — i) % N(0,%5)



A Discete Change in the Mean

= Furthermore, the f[i; are asymptotically independent

= The hypothesis Hg : 4; = 41 @ = 2,..., s can be tested with
a Wald test.



Thank you for your attention!



