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Introduction

• Models with potentially time varying first and second
moments but

• time invariant coefficients
• Models with time varying coefficients, e.g. time series with

seasonal pattern.
• e.g. a model where only the intercept term varies for s seasons

yt = n1tν1 + ...+ nstνs +A1yt−1 + ...+Apyt−p + ut

where
nit = 0 or 1 and

s∑
i=1

nit = 1.



Introduction

• A more general model:

yt = νt +A1tyt−1 + ...+Aptyt−p + ut

with

Bt : = [νt, A1t, ..., Apt]
= n1t[ν1, A11, ..., Ap1] + ...+ nst[νs, A1s, ..., Aps]
= n1tB1 + ...+ nstBs

and
Σt := E(utu′t) = n1tΣ1 + ...+ nstΣs.



The VAR(p) Model with Time Varying Coefficients

General form of a K-dimensional VAR(p) model with time varying
coefficients:

yt = νt +A1tyt−1 + ...+Aptyt−p + ut, t ∈ Z (1)

where ut is a zero mean noise process with covariance matrices
E(utu′t) = Σt



General Properties

The VAR(p) model of Equation (1) can be written in VAR(1) form
as:

Yt = νt + AtYt−1 + Ut

where

Yt :=

 yt
...

yt−p+1


(Kp×1)

, νt :=


νt
0
...
0


(Kp×1)

, Ut :=


ut
0
...
0


(Kp×1)

,

At :=


A1,t . . . Ap−1,t Ap,t
IK 0 0

. . . ... ...
0 . . . IK 0


(Kp×Kp)

.



General Properties

• By successive substitution we get

Yt =

h−1∏
j=0

At−j

Yt−h+
h−1∑
i=0

i−1∏
j=0

At−j

νt−i+
h−1∑
i=0

i−1∏
j=0

At−j

Ut−i.
• Using J := [IK : 0] ((K ×Kp)) such that yt = JYt and

premultiplying by this matrix gives

yt = J

h−1∏
j=0

At−j

Yt−h +
h−1∑
i=0

Φitνt−i +
h−1∑
i=0

Φitut−i, (2)



General Properties

• where

Φit := J

i−1∏
j=0

At−j

 J ′
and it has been used that J ′JUt = Ut, JUt = ut, and similar
results hold for νt.

• equation (2) can be represented as

yt = µt +
∞∑
i=0

Φitut−i (3)



Autocovariances

• Equation (3) can be used to derive the autocovariance
structure of the process:

E[(yt − µt)(yt − µt)′] = E

 ∞∑
j=0

Φjtut−j

( ∞∑
i=0

Φitut−i

)′
= E

 ∞∑
j=0

∞∑
i=0

Φjtut−ju
′
t−iΦ′it


=
∞∑
i=0

ΦitΣt−iΦ′it.



Autocovariances

• and for lag 1

E[(yt − µt)(yt−1 − µt−1)′] = E

 ∞∑
j=0

Φjtut−j

( ∞∑
i=0

Φi,t−1ut−1−i

)′
= E

 ∞∑
j=−1

∞∑
i=0

Φj+1,tut−j−1u
′
t−1−iΦ′i,t−1


=
∞∑
i=0

Φi+1,tΣt−1−iΦ′i,t−1.

• More generally, for some integer h,

E[(yt − µt)(yt−h − µt−h)′] =
∞∑
i=0

Φi+h,tΣt−h−iΦ′i,t−h.



Forecasting

• Optimal forecasts can be obtained recursively from Equation
(1) as

yt(h) = νt+h +A1,t+hyt(h− 1) + ...+Ap,t+hyt(h− p), (4)

where yt(j) := yt+j for j ≤ 0.
• Alternatively Equation (3) can be used for calculating optimal

forecasts:
yt(h) = µt+h +

∞∑
i=h

Φi,t+hut+h−i

• The forecast error is

yt+h − yt(h) =
h−1∑
i=0

Φi,t+hut+h−i.



Forecasting

• The forecast MSE matrices are given by

Σt(h) := MSE[yt(h)] =
h−1∑
i=0

Φi,t+hΣt+h−iΦ′i,t+h.



ML Estimation

• The general model can be written as

yt = BtZt−1 + ut,

where Bt := [νt, A1t, ..., Apt], Zt−1 := (1, Y ′t−1)′, Bt
depending on an (N × 1) vector γ of fixed, time invariant
parameters and the Σt are assumed to depend on an (M × 1)
vector σ of fixed parameters.



Log-likelihood Function

• Assuming ut ∼ N (0,Σt) the log-likelihood function of the
general model is

ln l(γ,σ) = −KT2 ln 2π − 1
2

T∑
t=1

ln|Σt| −
1
2

T∑
t=1

u′tΣ−1
t ut,

where any initial condition terms are ignored.



Periodic Processes

In periodic VAR or PAR processes the coefficients vary periodically
with period s,

yt = νt +AtYt−1 + ut, (5)

where

νt = n1tν1 + ...+ nstνs, (K × 1)
At = [A1t, ..., Apt] = n1tA1 + ...+ nstAs, (K ×Kp)
Σt = E(utu′t) = n1tΣ1 + ...+ nstΣs, (K ×K)

The nit are seasonal dummy variables which have a value of one if
t is associated with the i− th season and zero otherwise.



A VAR Representation with Time Invariant Coefficients

• quarterly process with period s = 4 and y1 belongs to the first
quarter.

• define an annual process with vectors

y1 :=


y4
y3
y2
y1

 , y2 :=


y8
y7
y6
y5

 , ..., yτ :=


y4τ
y4τ−1
y4τ−2
y4τ−3

 , ...
• This process has a representation with time invariant

coefficient matrices.



A VAR Representation with Time Invariant Coefficients

• e.g. the process for each quarter is a VAR(1),

yt = νt +A1,tyt−1 + ut

= νi +A1,iyt−1 + ut, if t belongs to the i-th quarter,

• the process yt has the representation
IK −A1,4 0 0
0 IK −A1,3 0
0 0 IK −A1,2
0 0 0 IK



y4τ
y4τ−1
y4τ−2
y4τ−3



=


ν4
ν3
ν2
ν1

+


0 0 0 0
0 0 0 0
0 0 0 0
A1,1 0 0 0



y4τ−4
y4τ−5
y4τ−6
y4τ−7

+


u4τ
u4τ−1
u4τ−2
u4τ−3

 .



A VAR Representation with Time Invariant Coefficients

• More generally, if there are s different regimes with constant
parameters within each regime, we may define the
sK-dimensional process

yτ :=


ysτ
ysτ−1

...
ysτ−s+1


(sK×1)

, τ = 0,±1,±2, ....

• This process has the following VAR(P) representation, where
P is the smallest integer greater than or equal to p/s:

A0yτ = ν + A1yτ−1 + ...+ AP yτ−P + uτ ,



A VAR Representation with Time Invariant Coefficients

where

A0 :=



IK −A1,s −A2,s . . . −As−1,s
0 IK −A1,s−1 . . . −A2,s−1
... . . . ...
... . . . . . .
0 0 0 . . . IK


(sK×sK)

, ν :=


νs
νs−1
...
ν1


(sK×1)

,

Ai :=


Ais,s Ais+1,s . . . A(i+1)s−1,s

Ais−1,s−1 Ais,s−1 . . . A(i+1)s−2,s−1
... ... ...

Ais−s+1,1 Ais−s+2,1 . . . Ais,1


(sK×sK)

, i = 1, ..., P,



A VAR Representation with Time Invariant Coefficients

uτ :=


usτ
usτ−1

...
usτ−s+1


(sK×1)

.

• All Ai,j ’s with i > p are zero.
• The process yτ is stationary if the yt’s have bounded first and

second moments and the VAR operator is stable, that is,

det(A0 − A1z − ...− AP z
P )

= det(IsK − A−1
0 A1z − ...− A−1

0 AP z
P ) 6= 0 for |z| ≤ 1.



A VAR Representation with Time Invariant Coefficients

• Stationarity of yτ does not imply stationarity of the original
process yt. Even if yτ has a time invariant mean vector

µ =


µ4
µ3
µ2
µ1

 ,
for example, the mean vectors µ4 and µ3 may be different.

• yτ can also be used to determine an upper bound for the
order p of the corresponding periodic process yt. If yτ is
stationary and order P is selected, then p < sP .



A VAR Representation with Time Invariant Coefficients

• Optimal forecasts of a periodic process can be obtaind from
the recursions of equation (4)

• Forecast origin t is associated with the last period of the year,

yt(1) = ν1 +A1,1yt + ...+Ap,1yt−p+1

yt(2) = ν2 +A1,2yt(1) + ...+Ap,2yt−p+2
...

yt(s) = νs +A1,syt(s− 1) + ...+Ap,syt(s− p)
yt(s+ 1) = ν1 +A1,1yt(s) + ...+Ap,1yt(s+ 1− p)

...



ML Estimation and Testing for Time Varying Coefficients

Cases of Interest:
1 All coefficients time varying
2 All coefficients time invariant
3 Time invariant white noise
4 Time invariant covariance structure
5 Time varying error covariance matrix only



All Coefficients Time Varying

• a periodic VAR(p) model for which all coefficients are time
varying, that is

H1 : Bt = [νt, At] =
s∑
i=1

nitBi, Σt =
s∑
i=1

nitΣi.

• In this case
γ = vec[B1, ..., Bs] and σ = [vech(Σ1)′, ..., vech(Σs)′]′.

• The ML-estimators are obtained to be

B̃
(1)
i =

(
T∑
t=1

nitytZ
′
t−1

)(
T∑
t=1

nitZt−1Z
′
t−1

)−1



All Coefficients Time Varying

and

Σ̃(1)
i =

∑
t

nit(yt − B̃(1)
i Zt−1)(yt − B̃(1)

i Zt−1)′/T n̄i,

for i = 1, ..., s. Here n̄i =
∑T
t=1 nit/T .

• Except for an additive constant, the corresponding maximum
of the log-likelihood function is

λ1 := −1
2
∑
t

ln |Σ̃(1)
t | = −

1
2T (n̄1ln |Σ̃(1)

1 |+ ...+ n̄sln |Σ̃(1)
s |).



All Coefficients Time Invariant

• H2 is a null hypothesis of interest in the present context:

H2 : Bi = B1, Σi = Σ1, i = 2, ..., s.

• The ML estimators are

B̃
(2)
1 =

(∑
t

ytZ
′
t−1

)(∑
t

Zt−1Z
′
t−1

)−1

Σ̃(2)
1 =

∑
t

(yt − B̃(2)
1 Zt−1)(yt − B̃(2)

1 Zt−1)′/T.

• The maximum likelihood is, except for an additive constant,

λ2 := −1
2T ln |Σ̃

(2)
1 |.



Time Invariant White Noise

• Just the white noise covariance matrix is time invariant while
the other coefficients vary,

H3 : Bt = [νt, At] =
s∑
i=1

nitBi, and Σi = Σ1, i = 2, ..., s.

• The ML estimators are

B̃
(3)
i = B̃

(1)
i , i = 1, ..., s,

Σ̃(3)
1 =

s∑
i=1

T∑
t=1

nit(yt − B̃(1)
i Zt−1)(yt − B̃(1)

i Zt−1)′/T.

• The maximum likelihood is,

λ3 := −1
2T ln |Σ̃

(3)
1 |.



Time Invariant Covariance Structure

• Model with seasonal dummies,

H4 : νt =
s∑
i=1

nitνi and Ai = A1, Σi = Σ1, i = 2, ..., s.

• defining

Wt−1 =


n1,t
...
ns,t
Yt−1

 and C = [ν1, ..., νs, A1]

• the ML estimators are

C̃ =
(∑

t

ytW
′
t−1

)(∑
t

Wt−1W
′
t−1

)−1

Σ̃(4)
1 =

∑
t

(yt − C̃Wt−1)(yt − C̃Wt−1)′/T.



Time Invariant Covariance Structure

• The maximum likelihood is (dropping an additive constant)

λ4 := −1
2T ln |Σ̃

(4)
1 |. (6)



Tests for time varying parameters

Tabelle: LR tests for time varying parameters

null alternative LR statistic
hypothesis hypothesis λLR degrees of freedom

H2 H1 2(λ1 − λ2) (s− 1)K[K(p+ 1
2) + 3

2 ]
H3 H1 2(λ1 − λ3) (s− 1)K(K + 1)/2
H4 H1 2(λ1 − λ4) (s− 1)K[Kp+ (K + 1)/2]
H2 H3 2(λ3 − λ2) (s− 1)K(Kp+ 1)
H2 H4 2(λ4 − λ2) (s− 1)K



Further Testing

• Time varying error covariance matrix only,

H5 : Bi = B1, i = 2, ..., s and Σt =
s∑
t=1

nitΣi.

• Testing H5 against H1 using a Wald test.
• Testing H2 against H5 using a LM-test.



Intervention Models

• a particular stationary data generation mechanism until period
T1, another process generates the data after period T1. For
instance,

yt = ν1 +A1Yt−1 + ut, E(utu′t) = Σ1, t ≤ T1

and

yt = ν2 +A2Yt−1 + ut, E(utu′t) = Σ2, t > T1.

• For simplicity, it is assumed that A2 = A1 and Σ2 = Σ1 and
that the process is stable.



Interventions in the Intercept Model

• Then

E(yt) =



∞∑
i=0

Φiν1, t ≤ T1

t−T1∑
i=0

Φiν2 +
∞∑

i=t−
T1+1

Φiν1, t > T1

where the Φi’s are the coefficient matrices of the moving
average representation of the mean-adjusted process, i.e.,

∞∑
i=0

Φiz
i = (IK −A11z − ...−Ap1z

p)−1.



Interventions in the Intercept Model

• The process mean does not reach a fixed new level
immediately but only gradually,

E(yt)
t→∞−−−→

∞∑
i=0

Φiν2.



Interventions in the Intercept Model

• The model setup from the previous section can also be used
for intervention models with properly specified nit.

• Same hypotheses, same formulas for test statistics, but
• test statistics do not necessarily have the indicated asymptotic

distributions



Interventions in the Intercept Model

• e.g. model with all coefficients time varying, model as given
before.

• If T1 is some fixed finite point and T > T1,

B̃1 = [ν̃1, Ã1] =

 T1∑
t=1

ytZ
′
t−1

 T1∑
t=1

Zt−1Z
′
t−1

−1

will not be consistent because the sample information
regarding B1 := [ν1, A1] does not increase when T goes to
infinity.



Interventions in the Intercept Model

• Then, under common assumptions,

plimB̃1 = plim

 1
T1

T1∑
t=1

ytZ
′
t−1

 plim
 1
T1

T1∑
t=1

Z ′t−1

−1

= B1

• Also asymptotic normality is easy to obtain in this case and
the test statistics have the limiting χ2-distributions obtained
before.



A Discete Change in the Mean

• If a one-time jump in the process mean after time T1 is
plausible a model in mean-adjusted form could be considered,

yt − µt = A1(yt−1 − µt−1) + ...+Ap(yt−p − µt−p) + ut.

• µt := E(yt) and for simplicity, all other coefficients are
considered time invariant and the process as stable.

• ut is Gaussian white noise with time invariant covariance,
ut ∼ N (0,Σu).



A Discete Change in the Mean

• The µi’s may be estimated by

µ̃i = 1
T n̄i

T∑
t=1

nityt i = 1, ..., s.

• if T n̄i =
∑
t nit approaches infinity with T, it can be shown

under general assumptions that µ̃i is consistent and
√
T n̄i(µ̃i − µi)

d−→ N (0,Σµ̃)



A Discete Change in the Mean

• Furthermore, the µ̃i are asymptotically independent
• The hypothesis H6 : µi = µ1 i = 2, ..., s can be tested with

a Wald test.



Thank you for your attention!


