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Introduction 
 

• Assume a K-dimentional multiple time series 𝑦1, … , 𝑦𝑇 with 𝑦𝑡 =

(𝑦1𝑡 , … , 𝑦𝐾𝑡) , known to be generated by VAR (p) process, 

 

𝑦𝑡 = 𝜈 + 𝐴1𝑌𝑡−1 + … + 𝐴𝑃𝑦𝑡−𝑝 + 𝑢𝑡        (1) 

 

Deriving the properties of the estimators, a number of assumptions were made. As it will 
rarely be known with certainty whether the conditions hold that are required to derive 
consistency and asymptotic normality of the estimators, some statistical tools should be 
used to check the validity of the assumptions. 

 

• What to do if the VAR order p is unknown?  

 Choosing p unnecessarily large:  
1) will reduce the forecast precision of the corresponding estimated VAR(p) model.  

2) also the estimation precision of the impulse response.  

3) Approximate MSE matrix will increase with the order p. 

 

 



 
A Sequence of Tests for Determining the VAR Order 

 

• There is not just one correct VAR order for the mentioned process. if (1) is 
a correct summary of the characteristics of the process 𝑦𝑡, then the same 
is true for: 

 𝑦𝑡 = 𝜐 + 𝐴1𝑌𝑡−1 + … + 𝐴𝑃𝑦𝑡−𝑝 + 𝐴𝑃+1𝑦𝑡−𝑝−1 + 𝑢𝑡 
 

with 𝐴𝑃+1 = 0.  (As according to assumptions, the possibility of zero 
coefficient matrices is not excluded) 

 

• It is practical to have a unique number that is called the order of the 
process. 𝑌𝑡 is called a VAR(p) process if 𝐴𝑃 ≠ 0 and 𝐴𝑖 = 0 for 𝑖 > 𝑝 so 
that p is the smallest possible order. This unique number will be called the 
VAR order. 



The Impact of the Fitted VAR Order on the Forecast MSE 

• If 𝑦𝑡 is a VAR(p) process, it is useful to fit a 𝑉𝐴𝑅 𝑝  model and not a 
𝑉𝐴𝑅(𝑝 + 𝑖) because, forecasts from the latter process will be inferior to 
those based on an estimated VAR(p) model. This result follows from the 
approximate forecast MSE matrix.  Example: ℎ = 1, approximate forecast 
MSE is: 

                                   (1)𝑦 =
𝑇+𝐾𝑝+1

𝑇
Σ𝑢 

  

  (1)y  is an increasing function of the order of the model fitted to the 

data.  

 

• The approximate MSE matrix is derived from asymptotic theory. 

  

   

 

 

 

 

 

 

 

 

 



 
Checking whether the result remains true in small samples: 

• 1000 Gaussian bivariate time series generated with process 

 

𝑦𝑡 =
.02
.03

+
.5 .1
.4 .5

𝑦𝑡−1 +
0 0

.25 0
𝑦𝑡−2 + 𝑢𝑡 , 

 

𝛴𝑢 =
.09 0
0 .04

 

 

• 𝑉𝐴𝑅 2 , 𝑉𝐴𝑅 4 , and 𝑉𝐴𝑅 6  fitted to the generated series. 

• forecasts with the estimated models have been computed.  

• These forecasts compared to generated post-sample values. 

• Average squared forecasting errors result for different forecast horizons h 
and sample size T (Table 1). 

 

 

 

 

 



 
Table 1. Average squared forecast errors for the estimated bivariate  

𝑉𝐴𝑅 2  process based on 1000 realizations 

 
 
 
 
  
  
  
  

 
 
 
 
 

• Forecasts based on estimated 𝑉𝐴𝑅 2  models are clearly superior to the 
𝑉𝐴𝑅 4  and 𝑉𝐴𝑅 6  forecasts for sample sizes T = 30, 50, and 100.  
 

Sample 

size 

Forecast 

horizon 

Average squared forecast errors 

VAR(2)   VAR(4)   VAR(6) 

T h 𝒚𝟏 𝒚𝟐   𝒚𝟏 𝒚𝟐   𝒚𝟏 𝒚𝟐 

  1 .111 .052   .132 .062   .165 .075 

30 2 .155 .084   .182 .098   .223 .119 

  3 .146 .141   .183 .166   .225 .202 

                    

  1 .108 .043   .119 .048   .129 .054 

50 2 .132 .075   .144 .083   .161 .093 

  3 .142 .120   .150 .130   .168 .145 

                    

  1 .091 .044   .095 .046   .098 .049 

100 2 .120 .064   .125 .067   .130 .069 

  3 .130 .108   .135 .113   .140 .113 



 

• Another Example: 1000 three-dimensional time series with the 𝑉𝐴𝑅 1  
process 
 

 

  𝑦𝑡=
.01
.02
0

+
.5 0 0
.1 .1 .3
0 .2 .3

𝑦𝑡−1 + 𝑢𝑡     with        Σ𝑢 =
2.25 0 0

0 1.0 .5
0 .5 .74

 

 
 

• 𝑉𝐴𝑅 1 , 𝑉𝐴𝑅 3 , and 𝑉𝐴𝑅 6  models fitted to these data. 

• Forecasts and forecast errors computed.  

• Average squared forecast errors are (Table 2).  

 

 

 



Table 2. Average squared forecast errors for the estimated  
three-dimensional VAR(1) process based on 1000 realizations 

 
 
 
 
 
 
 
 
 
 
 
 

  
  
 
 
 
 Again forecasts from lower order models are clearly superior to higher 

order models. 

  
 

Sample 

size 

Forecast 

horizon 

Average squared forecast errors 

 VAR(2)    VAR(4)     VAR(6) 

T h 𝐲𝟏 𝐲𝟐 𝐲𝟑   𝐲𝟏 𝐲𝟐 𝐲𝟑   𝐲𝟏 𝐲𝟐 𝐲𝟑 

  1 .87 1.14 2.68   1.14 1.52 3.62   2.25 2.78 6.82 

30 2 1.09 1.21 3.21   1.44 1.67 4.12   2.54 2.98 7.85 

  3 1.06 1.31 3.32   1.35 1.58 4.23   2.59 2.79 8.63 

                          

  1 .81 1.03 2.68   .96 1.22 2.97   1.18 1.53 3.88 

50 2 1.01 1.23 2.92   1.20 1.40 3.47   1.48 1.68 4.38 

  3 1.01 1.29 3.11   1.12 1.44 3.48   1.42 1.77 4.66 

                          

  1 .73 .93 2.35   .77 1.00 2.62   .86 1.12 2.91 

100 2 .94 1.15 2.86   1.00 1.24 3.12   1.12 1.38 3.53 

  3 .90 1.15 3.02   .93 1.20 3.23   1.03 1.35 3.51 



Question? 

•  What if the true order is unknown and an upperbound, say M, for the 

order is known only.  

 
       

     Set up a significance test. First, 

     𝐻0:  𝐴𝑀 = 0  

 is tested. If this null hypothesis cannot be rejected, we test  
   𝐻0:  𝐴𝑀−1 = 0  

 and so on until we can reject a null hypothesis.  

 



 The Likelihood Ratio Test Statistic 

Because we just need to test zero restrictions on the coefficients, we may use 
the Wald statistic. For this, it may be instructive to consider the likelihood 
ratio testing principle which based on comparing the maxima of the log-
likelihood function over the unrestricted and restricted parameter space. The 
likelihood ratio statistic is 

 

𝜆𝐿𝑅 = 2[ln 𝑙 𝛿 − ln 𝑙 𝛿 𝑟 ] 

 

𝛿 : unrestricted ML estimator obtained by maximizing likelihood function over 
the feasible parameter space. 

 

𝛿 𝑟: restricted ML estimator obtained by max the likelihood function over that 
part of the parameter space where the restrictions of interest are satisfied. 

 

 

 



 

• In case of linear constraint for the coefficient of a VAR, λLR can be shown to 
have an asymptotic χ2-distribution with as many degrees of freedom as 
there are distinct linear restrictions. 
 

• To obtain this result, assume that yt is a stable Gaussian VAR(p) process. 
The log-likelihood function is 
 

       ln l β, Σu = −
KT

2
ln2π −

T

2
 ln Σu  

−
1

2
[y − Z′⨂IK β]′(IT ⊗ Σu

−1)[y − Z′⨂IK β] 

𝜕 ln l

𝜕β
= Z⨂Σu

−1 y − (ZZ′ ⊗ Σu
−1)β 

 
the unrestricted ML/LS estimator: β = ( ZZ′ −1Z ⊗ IK)y 
 
Restriction for β: Cβ = c 

Where C is a known N × K2p + K matrix and c is a known (N × 1) 
vector. 

 



The restricted ML estimator may be found by a Lagrangian approach 

 
ℒ β, γ = ln l β + γ′(Cβ − c) 

 

Equating first order partial derivatives to zero and solving: 

β r = β + ZZ′ −1⨂Σu C′[C ZZ′ −1⨂Σu C′]−1(c − Cβ ) 

for any given coefficient matrix B0the maximum of ln l with respect to Σu is 
obtained for  

Σu
0 =

1

T
(Y − B0Z)(Y − B0Z)′ 

the maximum for the unrestricted case is attained for  

Σ u
r =

1

T
(Y − B Z)(Y − B Z)’ 

and for the restricted case we get Σ u =
1

T
(Y − B rZ)(Y − B rZ)’ 

for this particular situation, the likelihood ratio statistic becomes 
 

λLR = 2[ln l β , Σ u − ln l(β r,Σ u
r )] 



Proposition 1. (Asymptotic Distribution of the LR Statistic) 

• Let 𝑦𝑡 be a stationary, stable VAR(p) process with standard white noise 𝑢𝑡. 
Suppose the true parameter vector 𝛽 satisfies linear constraints 𝐶𝛽 = 𝑐, 
where C is an N × K2p + K  matrix of rank N and c is an (N × 1)vector. 
Moreover, let ln 𝑙 denote the Gaussian log likelihood function and let 𝛽  and 
𝛽 𝑟be the (quasi)ML and restricted (quasi) ML estimators, respectively, with 
corresponding estimators Σ 𝑢and Σ u

𝑟  of the white noise covariance matrix Σ𝑢.  
 

λLR = 2[ln l β , Σ u − ln l(β r,Σ u
𝑟)] 

 

= 𝑇(𝑙𝑛 Σ u
𝑟 − 𝑙𝑛 Σ u ) 

 

= (β 𝑟 − β )′(ZZ′ ⊗ Σ u
−1)(β 𝑟 − β ) 

 

= (β 𝑟 − β )′(ZZ′ ⊗ (Σ u
𝑟)−1)(β 𝑟 − β )+𝑜𝑝 1  

= (𝐶𝛽 − 𝑐)′ 𝐶 𝑍𝑍′ −1 ⊗ Σ u 𝐶′
−1

(𝐶𝛽 − 𝑐)+𝑜𝑝 1  

= (𝐶𝛽 − 𝑐)′ 𝐶 𝑍𝑍′ −1 ⊗ Σ u
𝑟 𝐶′

−1
(𝐶𝛽 − 𝑐)+𝑜𝑝 1  

and 𝜆𝐿𝑅 → 𝜒2 𝑁 . T: Sample size and 𝑍 ≔ 𝑍0, … , 𝑍𝑇−1  with 

𝑍′𝑡 = 1, 𝑦′
𝑡
, … 𝑦′

𝑡−𝑝+1
. 

 

 
 



 
A Testing Scheme for VAR Order Determination 

 
Assuming M as upper bound for the VAR order, the following sequence of null 
and alternative hypotheses may be tested using LR tests: 
 

𝐻0
1: 𝐴𝑀 = 0      versus     𝐻1

1: 𝐴𝑀 ≠ 0  

 

𝐻0
2: 𝐴𝑀−1 = 0    versus     𝐻1

2: 𝐴𝑀−1 ≠ 0 ∣ 𝐴𝑀 = 0 

       

𝐻0
𝑖 : 𝐴𝑀−𝑖+1 = 0   versus     𝐻1

𝑖 : 𝐴𝑀−𝑖+1 ≠ 0 ∣ 𝐴𝑀 = ⋯ = 𝐴𝑀−𝑖+2 = 0 

 

𝐻0
𝑀: 𝐴1 = 0      versus     𝐻1

𝑀: 𝐴1 ≠ 0 ∣ 𝐴𝑀 = ⋯ = 𝐴2 = 0 

 

The procedure terminates and the VAR order is chosen accordingly, if one of 

the null hypotheses is rejected. That is, if 𝐻0
𝑖  is rejected, 𝑝 = M − i + 1 will be 

chosen as estimate of the autoregressive order. 



• The likelihood ratio statistic for testing the i-th null hypothesis is 

 

λLR(i) = T[ln Σ u M − i − ln Σ u M − i + 1 ] 

 Σ u: ML estimator of Σu 

  

• By Proposition 1, this statistic has an asymptotic χ2(K2) distribution if H0
i  

and all previous null hypotheses are true. As K2 parameters are set to 0, 
so we have to test K2restriction and use λLR(i) in conjunction with critical 

values from a χ2(K2) distribution. Alternatively use 𝜆𝐿𝑅(𝑖)
𝐾2 in conjunction 

with the F K2, T − K M − i + 1 − 1 -distribution. 

  

• The order chosen for a process depend on the significance levels used in 
the tests. It is important to realize that the significance levels of the 
individual tests must be distinguished from the Type I error of the whole 

procedure because rejection of H0
i  means that H0

i+1, … , H0
M  are 

automatically rejected too. 

 



• Dj ∶ the event that H0
j
 is rejected in the j-th test when it is actually true. 

The probability of a Type I error for the i-th test in the sequence is 

 

ϵi = Pr(D1 ∪ D2 ∪ … ∪ Di) 

 

• γj = Pr(Dj) is the significance level of the j-th individual test. Hence, for 

independent events in large samples: 

 

 ϵi = Pr(D1 ∪… ∪ Di−1) + Pr Di − Pr*(D1 ∪… ∪ Di−1)∩ Di}= 

 𝜖𝑖−1 + 𝛾𝑖 − 𝜖𝑖−1𝛾𝑖 = 𝜖𝑖−1+𝛾𝑖(1 − 𝜖𝑖−1), i=2,3,…,M 

 

• ϵ1=𝛾1. Thus by induction:  

 
ϵi = 1 − 1 − 𝛾1 … 1 − 𝛾𝑖            𝑖 = 1,2, … , 𝑀 

 

 

 



 

In the literature another testing scheme was also suggested and used. In 
that, the first set of hypotheses (𝑖 = 1) is as the first test and for 𝑖 > 1 
the following hypotheses are tested: 

 

𝐻0
𝑖 : 𝐴𝑀 = ⋯ = 𝐴𝑀−𝑖+1 = 0 

versus 

𝐻1
𝑖 : 𝐴𝑀 ≠ 0 𝑜𝑟 … . 𝑜𝑟 𝐴𝑀−𝑖+1 ≠ 0 

 

 Here 𝐻0
𝑖   is not tested conditionally on the previous null hypotheses being 

true but it is tested against the full VAR(M) model. Unfortunately, the LR 
statistics to be used in such a sequence will not be independent so that 
the overall significance level (probability of Type I error) is difficult to 
determine. 



Example 

 

 

 

 

 

 

 

 

 

 

 

• Variables 𝑦1, 𝑦2, 𝑦3: first differences of the logarithms of the investment, 
income, and consumption data. 

• sample size is T = 71 in each test and M=4.  

Table 3. ML estimates of the error covariance matrix 

VAR order  

m 
𝚺 𝐮(𝐦) × 𝟏𝟎𝟒 𝚺 𝐮(𝐦) × 𝟏𝟎𝟏𝟏 

0 
𝟐𝟏. 𝟖𝟑 . 𝟒𝟏𝟎 𝟏. 𝟐𝟐𝟖

. 𝟏. 𝟒𝟐𝟎 . 𝟓𝟕𝟏

. . 𝟏. 𝟎𝟖𝟒
 2.473 

1 
𝟐𝟎. 𝟏𝟒 . 𝟒𝟗𝟑 𝟏. 𝟏𝟕𝟑

. 𝟏. 𝟑𝟏𝟖 . 𝟔𝟐𝟓

. . 𝟏. 𝟎𝟏𝟖
 1.782 

2 
𝟏𝟗. 𝟏𝟖 . 𝟔𝟏𝟕 𝟏. 𝟏𝟐𝟔

. 𝟏. 𝟐𝟕𝟎 . 𝟓𝟕𝟒

. . . 𝟖𝟐𝟏
 1.255 

3 
𝟏𝟗. 𝟎𝟖 . 𝟓𝟗𝟗 𝟏. 𝟏𝟐𝟔

. 𝟏. 𝟐𝟑𝟓 . 𝟓𝟒𝟑

. . . 𝟕𝟖𝟒
 1.174 

4 
𝟏𝟔. 𝟗𝟔 . 𝟓𝟕𝟑 𝟏. 𝟐𝟓𝟐

. 𝟏. 𝟐𝟑𝟒 . 𝟓𝟒𝟒

. . . 𝟕𝟔𝟓
 .958 



• The corresponding 𝜒2 and F-test values are summarized in Table 4. 
Because the denominator degrees of freedom for the F-statistics are quite 
large, the F-tests are qualitatively similar to the 𝜒2 tests.  

• Using individual significance levels of .05 in each test, 𝐴2 = 0 is the first 
null hypothesis that is rejected. Thus, the estimated order from both tests 
is 2.  

 

 

Table 4. LR Statistic for the investment/income/consumption system 

 
i 𝐇𝟎

𝐢  
VAR order 

under 𝐇𝟎
𝐢  

𝛌𝐋𝐑𝐚  𝛌𝐋𝐑𝐚/𝟗𝐛 

1 𝐀𝟒 = 𝟎 3 14.44 1.60 

2 𝐀𝟑 = 𝟎 2 4.76 .53 

3 𝐀𝟐 = 𝟎 1 24.90 2.77 

4 𝐀𝟏 = 𝟎 0 23.25 2.58 

a: Critical value for individual 5% level test: χ2(9).95=16.92. 
b: Critical value for individual 5% level test: F(9,71-3(5-i)-1).95≈2 



1 
 

Criteria for VAR order selection 

Review of assumptions: 

K-dimensional multiple time series y1, . . . , yT, with yt = (y1t, . . . , yKt), which is 

known to be generated by a VAR(p) process: 

yt = ν + A1yt− 1 + · · · + Apyt− p + ut 

The aim is estimation of the parameters ν,A1, . . . , Ap, and Σu =E(utu’t) 

In deriving the properties of the estimators, a number of assumptions were 

made. Therefore statistical tools should be used in order to check the validity of 

the assumptions made.  



2 
 

In this section, it will be discussed what to do if the VAR order p is unknown. As 

In practice, the order will usually be unknown.  

Till now we have not assumed that all the Ai are nonzero. In particular Ap may 

be zero. In other words, p is just assumed to be an upper bound for the VAR 

order. And we know that the approximate MSE matrix of the 1-step ahead 

predictor will increase with the order p. Thus, choosing p unnecessarily large 

will reduce the forecast precision of the corresponding estimated VAR(p) 

model.  

Therefore it is useful to have procedures or criteria for choosing an adequate 

VAR order. 



3 
 

4.3. INFORMATION CRITERIA FOR VAR ORDER SELECTION 

 

Information criteria (IC) are statistics that measure the distance between 

observations and model classes. If the IC value is small, the distance is small 

and the model class contains a good descriptor of the DGP. 

These criteria consist of two additive parts: 

 The first one is a goodness-of-fit measure, such as minus the maximized 

likelihood within a given model class or a residual variance matrix. It 

becomes smaller as the model becomes more sophisticated.  

 The second part is a penalty that increases with the model’s complexity.  



4 
 

 

In AIC criteria, the most popular information criteria, the second part is just a 

monotonic function of the number of estimated parameters and the first part is 

the ML estimate of the error variance matrix. 

AIC(m)= ln|∑�u (m)|+ 2 𝑚
𝑇

 

m : the number of free parameters ,T : sample size 

∑u  denotes the ML estimate of the error variance matrix based on using the 

given model class with m free parameters. 

 

 



5 
 

 

 

-VAR(p) models have m = K2p + K + K(K + 1)/2 free parameters.  
 
-As here finding p value is central, the dimension K is kept constant, without 
imposing any restrictions on the error variance matrix.  
Acting as if the VAR(p) model have m = p K2 parameters. The AIC for a VAR(p) 
process is defined as: 
 

AIC(m)= ln|∑�u (m)|+ 2 𝑚
𝑇

  , m = p K2 => AIC(p)= ln|∑�u (m)|+ 2 𝑝
𝑇

 k2 

 
The main strength of the AIC is due to the forecasting properties of the 
selected model, in this definition of AIC the MSE of a VAR-based one step 
prediction is approximated. 
 
 AIC also implies a relatively good model choice in small samples under 
different aspects, but it is not consistent. 



6 
 

 
 
 
Paulsen has claimed that only criteria of the form 
 

 
Cr(m)= ln|∑�u (m)|+ 𝑚

𝑇
 cT 

 
can achieve consistency. 
 
Cr(m) is consistence criteria, because when  T → ∞, the selected p will be the 
true p with probability one.  
 
cT is a function of T and can not be constant as 
 T → ∞ then . 𝐶𝑇

𝑇
 → 0  and cT → ∞ 

 
If cT be constant can not complete the former condition. 
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Hannan-Quinn (HQ) and Schwartz criterion fulfill the conditions ascribed to 
Paulsen  

HQ(m)= ln|∑�u (m)|+ 2 𝑚
𝑇

 ln(ln T) 

 
 
Schwarz version  

SC(m)= ln|∑�u(m) |+ 𝑚
𝑇

 lnT 

 
 

 HQ imposes a milder penalty in relation to SC, then SC selects 
comparatively smaller lag orders. 

 



8 
 

 HQ is consistent for univariate process and strogly consistent for K>1.And 
SC(m) is strongly consistent for any K. 

 
 
If applied to vector auto regressions of order p, SC has the form 
 
 

SC(p)= ln| ∑�u (p)|+  𝑝
𝑇

 k2 Ln T 

 
Notes: 

 
 These criteria vary across authors and software. 

 
 The estimate of ∑�u  is supposed to be a ML estimate but is occasionally 

replaced by a bias-corrected estimate with a correction for degrees of 
freedom. With these modifications the name  of AIC changes to AICC and 
in some cases is preferred due to better small-sample properties. 

 



9 
 

 
 
 
To illustrate these procedures for VAR order selection, using 
investment/income/consumption example. 

VAR order AIC(m) HQ(m) SC(m) 

0 -24.42 -24.42 -24.42 

1 -24.5 -24.38 -24.21 

2 -24.59 -24.37 -24.02 

3 -24.41 -24.07 -23.55 

4 -24.36 -23.9 -23.21 

 

 

The estimated p�  (HQ or SC or AIC) is the order that minimize HQ or SC or AIC 
for m=0,1,…,M 
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4.4. RESIDUAL ANALYSIS: AUTOCORRELATION 

Chitturi  1974 

Hosking 1980 

Li&McLeod 1981 

Ahn 1988 

It is helpful to note that estimated residuals from VAR models are not white 
noise, while errors from the true VAR are white noise.  
 
All tests for misspecification rely on these none WN estimated residuals, and 
then what is checked is whether the residuals are ‘too non-white Noise’. 
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ut : K-dimensional white noise process with nonsingular covariance matrix Σu.  

ut represents the residuals of a VAR(p) process. 
U := (u1, . . . , uT ) 
The autocovariance matrices of ut are estimated as 
 

Ci=
1
𝑇
∑ 𝑢𝑡𝑇
𝑡=𝑖+1  𝑢′𝑡−𝑖 

 
Let Ch:= Vec(C1, C2 ,…, Ch) and also rh:=vec(Rh) 

rh is also the vectorization of the first h ,ACF matrices  . 
 
 

Formally it can be proved that the asymptotic distribution of rh (white noise 
Auto covariance) and Ch(white noise Autocorrelation) 
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√𝑇 Ch  
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠
�⎯⎯⎯⎯⎯⎯� Ν(0, Ih ⨂ ∑u ⨂ ∑u ) 

And  

√𝑇 rh  
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠
�⎯⎯⎯⎯⎯⎯� Ν(0, Ih ⨂ 𝑅u ⨂ 𝑅u ) 

 
 
The Matrix Ri that is assumed to be an estimator of the true correlation matrix 
corresponding to ∑u , and 

Rj = D-1 Cj D-1 

 
 

The diagonal matrices D contain the estimate of standard deviation (square 
roots of the variance ) of the K component. 
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Of more concern here is that these equations are literally only valid for true 
white noise, and residuals are not white noise.  
 
Therefore, it is important that similar results hold for the estimated 
autocovariances of residuals from a fitted valid VAR model. It can be shown 
that 
 

√𝑇 𝐶̂h  
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠
�⎯⎯⎯⎯⎯⎯� Ν(0, Ih ⨂ ∑u ⨂ ∑u –(𝐺̅ ‘⨂ Ik)(ΓY(0)-1⨂ ∑u) (𝐺̅ ⨂ Ik) 

 
𝐺̅ Matrix , which is defined as 
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-This𝐺̅ Matrix has dimension Kp × Kh, not quadratic. Here it is assumed h > p.  
 
-The elements Φj come from the infinite MA representation. 
 
- Correction terms are non-negative definite, therefore estimated auto 
covariance and autocorrelation functions tend to be smaller than those defined 
from the unobserved errors 
 
-A similar result with similar structure holds for the estimates of the errors 
autocorrelation function based on residuals 𝑟̂h.  
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Usually, the hypothesis of whiteness of errors is tested using portmanteau or Q 
tests.  
 
Q statistics is defined as 

Qh = T ∑ 𝑡𝑟 (𝑅′�ℎ
𝑗=1 j 𝑅�u

-1𝑅� j 𝑅�u
-1) 

 
-𝑅� j are estimates of the autocorrelation function of the errors at lag j 

- 𝑅� u is an estimate of the errors correlation matrix Ru = R0.  
 
- Under the H0 : R1 = R2 = . . . = Rh = 0 
 

Qh~𝜒2(K2(h-p)) 
 
 
- Important: approximation will be invalid for small h. 



Brief recap 
 
Statistical tools to check validity of assumptions regarding consistency and asymptotic 
normality of the estimators considered, eg... 
 
...so far: 

 Procedures or criteria for choosing adequate VAR order. 

 Tools for checking whiteness of residuals.  
 
...next: 

 Tests for nonnormality (normality assumption used in setting up forecast intervals). 

 Tests for structural change (system stationarity is important assumption). * 
 
 
 
 

* Nonstationarities may have various forms; trends indicate deviations from stationarity, but also changes 
in the variability or variance of the system; exogenous shocks may affect various characteristics of the 
system. 



Residual analysis: testing for nonnormality (1) 
 
Univariate models (vector white noise process): 

 Most common check for nonnormality in univariate models is Jarque-Bera test. 

 Checks if skewness (third moment) is zero and kurtosis (normalised fourth moment) 
is 3  null hypothesis contains non-Gaussian distributions. 

 Under null, statistic is asymptotically distributed as 2 with 2 degrees of freedom. 
 
Multivariate models (VAR process): 

 Corresponding multivariate version is sum of K univariate statistics calculated from 
K orthogonalised VAR residuals (orthogonalisation via Cholesky split). * 

 Statistic distributed as 2 with 2K degrees of freedom under null. 
 
 
 
 
 
 

* Only sum of uncorrelated 2 random variables will yield a 2 distribution.  



Residual analysis: testing for nonnormality (2) 
 
Univariate models (vector white noise process): 
 
Proposition (asymptotic distribution of skewness and kurtosis):  

If ut is Gaussian white noise with nonsingular covariance matrix u and expectation µu, 

ut    (µu, u), then 
 

√ [
  

     
]

 
→ (  [

    
     

]).  

 
So b1 and b2 (estimators of vectors in next slide) are asymptotically independent and 
normally distributed.  
 
 
 
 
 



Residual analysis: testing for nonnormality (3) 
 
The proposition implies that  

       
     

 
→     , and             

           
 
→       

 

 s can be used to test     [
   

 

 
   

 
]    against     [

   
 

 
   

 
]    

 

 k can be used to test     [
   

 

 
   

 
]     against     [

   
 

 
   

 
]    . * 

 

Also,           
 
→       can be used for joint test of null hypotheses above. 

 
 
 

* Components of wt are independent standard normal random variables.  



Residual analysis: testing for nonnormality (4) 

 
Multivariate models (VAR process): 
 
Transform residual vector to make individual components independent; check if all 
have third and fourth moments corresponding to those of normal distributions.  

 
More precisely, for given residuals ût (t = 1,...,T) of estimated process, determine 

residual covariance matrix ̃  and compute corresponding square root matrix ̃ 
   

. 
 
Test for nonnormality based on skewness and kurtosis of standardised residuals 

 ̂ 
    ̂  

     ̂  
    ̃ 

    
 ̂   * 

 

              
 with        ∑   ̂  

   
 

   
, and 

              
 with        ∑   ̂  

   
 

   
 

 

* Choleski decomposition of residual covariance matrix can be used to standardise residuals. 



Residual analysis: testing for nonnormality (5) 

 
Standardised residuals should be mean-adjusted unless ût’s have zero sample mean. 
 
Tests can be based on third moments only, using test statistic  

  
     

     , or on fourth moments only, using  

  
          

           . Here             is a (K x 1) vector.  
 

Both statistics have asymptotic 2 (K)-distributions if underlying white noise process ut 

is normally distributed. 
 

Moreover, they can be combined as       
    

  to check third and fourth 

moments jointly. Statistic     has 2 (2K) limiting distribution under normality of 
process. 
 
 

 



Residual analysis: tests for structural change (1) 
 
Objective:  

 Check stability or time invariance/detect structural breaks during sample period. 

 Model defects may indicate poor representation of data generating process (DGP).  

 Then find better representation (eg, add other variables or further lags, include 
nonlinear terms/change functional form, modify sampling period, get other data).  

 
Two tests for alternative that some characteristics of VAR have changed over time: 

 Multivariate version of univariate Chow test assumes given possible time point at 
which process may have changed. 

 Stability test checks whether linear VAR forecast behaves as it should under 
assumption of normal errors and well-specified time-constant VAR.  

 
 

 
 



Residual analysis: tests for structural change (2) 
 
Chow test: 
 
Tests for significance of all VAR regressors (pK2 + K) including intercept multiplied with 
a dummy that is 0 before a break point and one afterwards. 
 

Chow statistic has an asymptotic 2 distribution with pK2 + K degrees of freedom 
under null. 
 
Potential practical problems in applying these tests: 

 If possible break date is very close to sample beginning or end, LS/ML estimators of 
Bi may not be available due to lack of degrees of freedom.  

 Problems may also result from multiple structural breaks within sample period.  

 Asymptotic theory may be poor guide for small sample properties of Chow tests, in 
particular, if models with many parameters are under consideration.  

 



Residual analysis: tests for structural change (3) 
 
Suppose change in parameters of VAR(p) process is suspected after period T1 < T. 
Given sample y1,...,yT plus required presample values, model can be set up as follows 
for estimation purposes: 
 

[         ]  [     ]  [         ]      , 

where       [        ]       [          ]   is partitioned accordingly, 

    [           ]  and     [           ]  are (K x (pK +1)) dimensional 

parameter matrices associated with first (t = 1,...,T1) and last (t = T1 + 1,...,T) 

subperiods, respectively,    [     ] is (K x 2(Kp + 1)) dimensional and  

   [
     

     
] . 

Here,       [          ] and       [          ] with   
   (    

          
 ). 

 
 



Residual analysis: tests for structural change (4) 
 
            or  [     ]         versus            
  
The LS estimator of B is 
 

  ̂  [          ] 
         [        

 (        
 )

  
          

 (        
 )

  
] 

 
Estimator has asymptotic normal distribution under certain assumptions (see 
proposition on next slide); it must be assured that        converges in probability to 

nonsingaluar matrix, ie     
  

 

 

  
        

 ,        must exist and be nonsingular.  

 
     must not go to zero when   goes to    both subperiods before and after 
break assumed to increase with  . 
 
If asymptotic normality assumptions justified, Wald test could be used to test stability 
hypothesis; or, LR or quasi LR test may be applied (also known as Chow test).  



Residual analysis: tests for structural change (5) 

 
Proposition (asymptotic properties of LS estimator):  
Let yt be a stable, K-dimensional VAR(p) process with standard white noise residuals, 

 ̂             is the LS estimator of the VAR coefficients B and all symbols 
correspondingly defined.  
 

Then       ̂   , and  
 

 √ ( ̂   )  √     ( ̂   )
 
→               ,  

 
or, equivalently,   
 

 √ ( ̂   )  √     ( ̂    )
 
→                ,  

 
where             . 



Residual analysis: tests for structural change (6) 
 
Forecast tests for structural change: 
 
Departs from observation that (theoretical, ie for known VAR coefficients) h-step 
forecast error from VAR model at time T has property                , where  

        
        

 . * 

 

 j denotes matrices from infinite MA representation of VAR; entities on right side 

must be replaced by estimates; then may hope that  ̅       
 ̂    

        ** is 

distributed with 2 with K degrees of freedom und null. *** 
 
 

* Forecast MSE matrix. 
** Statistic used to test whether yT+h is generated by same Gaussian VAR(p) process that has generated 
y1,...,yT (null hypothesis). 

*** But this is not quite true, as the naive estimate for y underestimates variance of prediction error; it is 

recommended to add adjustment term to ̂  that cares for fact that VAR parameters must be estimated 

and are not known to forecaster.  



 
 
 
 
 
 
 
 
 
 

Thank you for your attention! 
 
 


