A macroeconomic forecasting model for Bulgaria

Presented by Catherine Keppel and Anna Orthofer

Our forecasting exercise

- Forecasting model for GDP, imports and exports
- We consider only consumption, investment, import and exports equations in the macroeconomic model (BG is in a currency board arrangement since June 1997, thus has no room for independent monetary policy...)

IS-LM Model

- Consumption:

$$
C=c+\beta_{C, 1} Y+\beta_{C, 2} R_{c p i}
$$

- Investment:

$$
I=c+\beta_{l, 1} Y+\beta_{l, 2} R_{p p i}
$$

- Exports:

$$
X=c+\beta_{X, 1} Y+\beta_{X, 2} Y_{E U 27}+\beta_{X, 3} X_{E U 27}+\beta_{X, 4} Q_{p p i}
$$

- Imports:

$$
M=c+\beta_{M, 1} Y+\beta_{M, 2} Q_{p p i}
$$

- and the Identity:

$$
Y=C+I+G+X-M+S C
$$

We transformed E to Q with PPI rather than CPI, since both Bulgaria's M and X are mainly commodities ($>80 \%$) and not manufactured goods.

The Data

- The data stem from Eurostat, the BNB and the wiiw monthly Database
- Our sample covers data from Q1/1998 (End of Hyperinflation) - Q1/2009
- The data were seasonally adjusted

The order of integration

Time series are I(1)

- Dickey Fuller tests for the 15 variables: We cannot reject the null hypothesis of a unit root for any variable on5\% confidence levels
- We conclude that our time series are all at least trend-stationary in first differences

Cointegration

C, I, M and X equations are cointegration relations

- Engle and Granger: A number of $\mathrm{I}(1)$ series are cointegrated if there exists an $I(0)$ linear combination of them (e.g. the error term)
- Engle and Granger 2-step Test on Cointegration: 2-step procedure
- $1^{\text {st }}$ step: Estimate the cointegration equation, store residuals
- $2^{\text {nd }}$ step: Dickey-Fuller tests on a unit root in the fitted residual series: We can reject the null hypothesis of a unit root on 5\% confidence levels
- We conclude that our macroeconomic equations are cointegration relations

The Error Correction Model

- Let \mathbf{x}_{t} and y_{t} denote cointegrated variables. Then they have an error correction representation of the form

$$
\Delta y_{t}=\mathbf{a}_{1}^{\prime} \Delta \mathbf{x}_{\mathbf{t}-\mathbf{1}}+b_{1} \Delta y_{t-1}-\underbrace{\lambda\left(y_{t-1}-\mathbf{a}_{0}^{\prime} \mathbf{x}_{\mathbf{t}-\mathbf{1}}\right)}_{\text {EC-Term }}+\epsilon_{t}
$$

- There exists a long-run equilibrium between y and x
- Deviations from long-run equilibrium: corrected at speed λ.
- Interpretation: Error correction models allow the long-run components of variables to obey equilibrium constraints (modeled through the error correction part) while short-run components have a flexible dynamic specification

Eventually, our SUR system looks like this:
$C=C(1)+C(2) Y+C(3) R_{c p i}$
$I=C(4)+C(5) Y+C(6) R_{p p i}$
$X=C(7)+C(8) Y+C(9) Y_{E U}+C(10) X_{E U}+C(11) Q_{p p i}$
$M=C(13)+C(14) Y+C(15) Q_{p p i}$

+ endogenized explanatory variables as $A R(1) / A R(2)$ processes
(Effectively, each equation will enter in EC form

$$
\Delta y_{t}=\mathbf{a}_{1}^{\prime} \Delta \mathbf{x}_{\mathbf{t}-\mathbf{1}}+b_{1} \Delta y_{t-1}-\underbrace{\lambda\left(y_{t-1}-\mathbf{a}_{0}^{\prime} \mathbf{x}_{\mathbf{t}-\mathbf{1}}\right)}_{\text {EC-Term }}+\epsilon_{t})
$$

Endogenized explanatory variables as $\operatorname{AR}(1) / \operatorname{AR}(2)$ models:

- for BG: nominal and real interest rate $i, R_{C P I}, R_{P P I}, C P I$, PPI, government consumption G and stock changes $S C$
- for the Eurozone: PPI, the real exchange rate $Q_{P P I}$, output and export levels Y, X
- The nominal exchange rate against the Euro, E , is fixed within the Bulgarian Currency Board arrangement and is expected to remain at 1.9558 in the future.

Model $=$ System + Identity Equations

- In order to use the system of equations for forecasting, we transform it into a model, which further includes the
- necessary identity equations - to solve the set of equations for time periods, where the variables are unknown
- Identity equations for: GDP, consumer and producer price inflation π, the real interest rates $R_{C P I}, R_{P P I}$ and the real exchange rate $Q_{P P I}$.

Estimation and Forecasting Window

- Starting with Q1/2002, we cut out a hole of 8 quarters - the forecasting window.
- The rest of the sample is used for estimating the model.
- We perform 1 to 8 step ahead forecasts on the (wandering) forecasting window. The forecasts obtained are stored for later evaluation.

Szenarios

- Baseline Model: We use
- True realizations of data until Q4/2008 for Euro Area and BG.
- Without any assumptions on Euro Area: How would our model see the future of BG?
- Szenario 1: Eurozone enters recession
- True realizations of data until Q4/2008 for the Euro Area and BG + exogenous assumptions on the Euro Area.
- To which degree does the BG economy depend on Euro Area, which role do the channels suggested by the van Aarle model play?

Introduction

AR(1)-Endogenization

 AR(2)-Endogenization Comparison of Results
Baseline NWH-Forecast

A macroeconomic forecasting model for Bulgaria

AR(1)-Endogenization

 AR(2)-Endogenization Comparison of Results
Baseline

RESULTS_GDP_YOY

A macroeconomic forecasting model for Bulgaria

Baseline

A macroeconomic forecasting model for Bulgaria

AR(1)-Endogenization

 AR(2)-Endogenization Comparison of Results
Scenario1 NHW-Forecast

A macroeconomic forecasting model for Bulgaria

AR(1)-Endogenization

 AR(2)-Endogenization Comparison of Results
Scenario 1

RESULTS_GDP1_YOY

A macroeconomic forecasting model for Bulgaria

AR(1)-Endogenization

 AR(2)-Endogenization Comparison of Results
Scenario 1

A macroeconomic forecasting model for Bulgaria

Comparison: Light Blue - Baseline, Dark Blue - Scenario1

Comparison: Light Blue - Baseline, Dark Blue - Scenario1

Baseline NWH-Forecast

- AR(2)-Endogenization for the variables where the AIC suggest that they are higher-order processes than $\operatorname{AR}(1)$ may improve forecasting quality!
- Try $\operatorname{AR}(2)$ for all processes except the interest rate

A macroeconomic forecasting model for Bulgaria

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Baseline

RESULTS_GDP_YOY

A macroeconomic forecasting model for Bulgaria

Scenario1 NHW-Forecast

A macroeconomic forecasting model for Bulgaria

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Scenario 1

RESULTS_GDP1_YOY

A macroeconomic forecasting model for Bulgaria

Comparison: Light Blue - Baseline, Dark Blue - Scenario1

Comparison: Light Blue - Baseline, Dark Blue - Scenario1

Comparison: $\operatorname{AR}(1)$ vs. $A R(2)$ Endogenization, Baseline

Comparison: $\operatorname{AR}(1)$ vs. $A R(2)$ Endogenization, Scenario1

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Comparison: $\operatorname{AR}(1)$ vs. $\operatorname{AR}(2)$

A macroeconomic forecasting model for Bulgaria AR(2)-Endogenization Comparison of Results

Comparison: $\operatorname{AR}(1)$ vs. $\operatorname{AR}(2)$

A macroeconomic forecasting model for Bulgaria

Comparison of Results: 2009/2010

Baseline
Scenario 1
$\operatorname{AR}(1)$ End. $\quad-6.9 \% /+1.1 \% \quad-7.0 \% /-4.7 \%$
$\operatorname{AR}(2)$ End. $-7.7 \% /-2.4 \% \quad-6.7 \% /-2.3 \%$

Comparison of Results: Baseline versus Scenario (AR(1))

yoy	Baseline $A R(1)$	Scenario1 AR(1)
$2009 q 1$	-3.3%	-3.3%
$2009 q 2$	-5.8%	-6.2%
$2009 q 3$	-10.6%	-9.3%
$2009 q 4$	-8.0%	-9.2%
$2010 q 1$	-4.1%	-5.7%
$2010 q 2$	-2.0%	-5.8%
$2010 q 3$	$+4.3 \%$	-3.3%
$2010 q 4$	$+6.03 \%$	-3.9%

Comparison of Results: Baseline versus Scenario (AR(2))

yoy	Baseline $\operatorname{AR}(2)$	Scenario1 AR(2)
$2009 q 1$	-3.3%	-3.3%
$2009 q 2$	-6.4%	-6.5%
$2009 q 3$	-10.8%	-8.2%
$2009 q 4$	-10.1%	-8.9%
$2010 q 1$	-6.1%	-3.8%
$2010 q 2$	-5.3%	-3.7%
$2010 q 3$	-0.3%	-1.3%
$2010 q 4$	$+1.9 \%$	-0.6%

Remarks on our Model and Open Questions

- We had to introduce the Bulgarian GDP to the Export equation (as the group did) in order to avoid a Multicollinearity Problem. How can one justify the presence of GDP in the Export equation?
- $A R(2)$ seems to provide a smoother path than $\operatorname{AR}(1)$

