A macroeconomic forecasting model for Bulgaria

Presented by Catherine Keppel and Anna Orthofer

A macroeconomic forecasting model for Bulgaria

() < </p>

Da C

Our forecasting exercise

- ► Forecasting model for GDP, imports and exports
- ➤ We consider only consumption, investment, import and exports equations in the macroeconomic model (BG is in a currency board arrangement since June 1997, thus has no room for independent monetary policy...)

イロト イポト イヨト イヨト

3

Da C

Introduction The Model Forecasting Results	IS-LM Model Data Our System
Results	_ · · _ J · · · ·

Consumption:

 $C = c + \beta_{C,1}Y + \beta_{C,2}R_{cpi}$

Investment:

 $I = c + \beta_{I,1}Y + \beta_{I,2}R_{ppi}$

► Exports:

 $X = c + \beta_{X,1}Y + \beta_{X,2}Y_{EU27} + \beta_{X,3}X_{EU27} + \beta_{X,4}Q_{ppi}$

► Imports:

 $M = c + \beta_{M,1}Y + \beta_{M,2}Q_{ppi}$

• and the Identity: Y = C + I + G + X - M + SC

We transformed *E* to *Q* with *PPI* rather than *CPI*, since both Bulgaria's *M* and *X* are mainly commodities (> 80%) and not manufactured goods.

San

Introduction The Model Forecasting Results	IS-LM Model Data Our System

The Data

- The data stem from Eurostat, the BNB and the wiiw monthly Database
- Our sample covers data from Q1/1998 (End of Hyperinflation) - Q1/2009
- The data were seasonally adjusted

(《國》 《臣》 《臣》 三臣

The order of integration

Time series are I(1)

- Dickey Fuller tests for the 15 variables: We cannot reject the null hypothesis of a unit root for any variable on5% confidence levels
- We conclude that our time series are all at least trend-stationary in first differences

A macroeconomic forecasting model for Bulgaria

NQ CV

Cointegration

C, I, M and X equations are cointegration relations

- ► Engle and Granger: A number of I(1) series are cointegrated if there exists an I(0) linear combination of them (e.g. the error term)
- Engle and Granger 2-step Test on Cointegration: 2-step procedure
 - ▶ 1^{st} step: Estimate the cointegration equation, store residuals
 - ► 2nd step: Dickey-Fuller tests on a unit root in the fitted residual series: We can reject the null hypothesis of a unit root on 5% confidence levels
- We conclude that our macroeconomic equations are cointegration relations

イロト イポト イヨト イヨト 二日

The Error Correction Model

Let x_t and y_t denote cointegrated variables. Then they have an error correction representation of the form

$$\Delta y_t = \mathbf{a}'_1 \Delta \mathbf{x}_{t-1} + b_1 \Delta y_{t-1} - \underbrace{\lambda(y_{t-1} - \mathbf{a}'_0 \mathbf{x}_{t-1})}_{\text{EC-Term}} + \epsilon_t$$

- ► There exists a long-run equilibrium between y and x
- Deviations from long-run equilibrium: corrected at speed λ .
- Interpretation: Error correction models allow the long-run components of variables to obey equilibrium constraints (modeled through the error correction part) while short-run components have a flexible dynamic specification

Da C

Eventually, our SUR system looks like this:

$$C = C(1) + C(2)Y + C(3)R_{cpi}$$

$$I = C(4) + C(5)Y + C(6)R_{ppi}$$

$$X = C(7) + C(8)Y + C(9)Y_{EU} + C(10)X_{EU} + C(11)Q_{ppi}$$

$$M = C(13) + C(14)Y + C(15)Q_{ppi}$$

+ endogenized explanatory variables as AR(1) / AR(2) processes

(Effectively, each equation will enter in EC form

$$\Delta y_t = \mathbf{a}_1' \Delta \mathbf{x_{t-1}} + b_1 \Delta y_{t-1} - \underbrace{\lambda(y_{t-1} - \mathbf{a}_0' \mathbf{x_{t-1}})}_{\text{EC-Term}} + \epsilon_t)$$

A macroeconomic forecasting model for Bulgaria

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

Introduction The Model Forecasting Results	IS-LM Model Data Our System
Results	

Endogenized explanatory variables as AR(1) / AR(2) models:

- ▶ for BG: nominal and real interest rate i, R_{CPI}, R_{PPI}, CPI, PPI, government consumption G and stock changes SC
- ▶ for the Eurozone: PPI, the real exchange rate Q_{PPI}, output and export levels Y, X
- ► The nominal exchange rate against the Euro, E, is fixed within the Bulgarian Currency Board arrangement and is expected to remain at 1.9558 in the future.

The Wandering Hole Szenarios

Model = System + Identity Equations

- ► In order to use the system of equations for forecasting, we transform it into a model, which further includes the
- necessary identity equations to solve the set of equations for time periods, where the variables are unknown
- Identity equations for: GDP, consumer and producer price inflation π, the real interest rates R_{CPI}, R_{PPI} and the real exchange rate Q_{PPI}.

NQ CV

The Wandering Hole Szenarios

Estimation and Forecasting Window

- Starting with Q1/2002, we cut out a hole of 8 quarters the forecasting window.
- ► The rest of the sample is used for estimating the model.
- We perform 1 to 8 step ahead forecasts on the (wandering) forecasting window. The forecasts obtained are stored for later evaluation.

Da C

The Wandering Hole Szenarios

Szenarios

- ► Baseline Model: We use
 - True realizations of data until Q4/2008 for Euro Area and BG.
 - Without any assumptions on Euro Area: How would our model see the future of BG?
- ► Szenario 1: Eurozone enters recession
 - True realizations of data until Q4/2008 for the Euro Area and BG + exogenous assumptions on the Euro Area.
 - To which degree does the BG economy depend on Euro Area, which role do the channels suggested by the van Aarle model play?

Da C

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Baseline NWH-Forecast

A macroeconomic forecasting model for Bulgaria

Ξ

Baseline

A macroeconomic forecasting model for Bulgaria

Ξ

Introduction The Model Forecasting Results	AR(1)-Endogenization AR(2)-Endogenization Comparison of Results
---	---

Baseline

A macroeconomic forecasting model for Bulgaria

Ξ

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Scenario1 NHW-Forecast

A macroeconomic forecasting model for Bulgaria

Ξ

Scenario 1

A macroeconomic forecasting model for Bulgaria

Ξ

Introduction The Model Forecasting Results	AR(1)-Endogenization AR(2)-Endogenization Comparison of Results
---	---

Scenario 1

A macroeconomic forecasting model for Bulgaria

Ξ

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Comparison: Light Blue - Baseline, Dark Blue - Scenario1

프 > 프

-4

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Comparison: Light Blue - Baseline, Dark Blue - Scenario1

A macroeconomic forecasting model for Bulgaria

Ξ

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Baseline NWH-Forecast

- AR(2)-Endogenization for the variables where the AIC suggest that they are higher-order processes than AR(1) may improve forecasting quality!
- ▶ Try AR(2) for all processes except the interest rate

A macroeconomic forecasting model for Bulgaria

Sar

Introduction The Model Forecasting Results	AR(1)-Endogenization AR(2)-Endogenization Comparison of Results
---	---

A macroeconomic forecasting model for Bulgaria

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

Introduction The Model Forecasting Results	AR(1)-Endogenization AR(2)-Endogenization Comparison of Results
---	---

Baseline

A macroeconomic forecasting model for Bulgaria

Ξ

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Scenario1 NHW-Forecast

A macroeconomic forecasting model for Bulgaria

Ξ

Introduction The Model Forecasting Results	AR(1)-Endogenization AR(2)-Endogenization Comparison of Results
---	---

Scenario 1

A macroeconomic forecasting model for Bulgaria

1

Ξ

Introduction The Model Forecasting Results AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Comparison: Light Blue - Baseline, Dark Blue - Scenario1

A macroeconomic forecasting model for Bulgaria

Ξ

ntroduction The Model Forecasting Results	AR(1)-Endogenization AR(2)-Endogenization Comparison of Results
--	---

Comparison: Light Blue - Baseline, Dark Blue - Scenario1

A macroeconomic forecasting model for Bulgaria

문 문 문

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Comparison: AR(1) vs. AR(2) Endogenization, Baseline

A macroeconomic forecasting model for Bulgaria

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Comparison: AR(1) vs. AR(2) Endogenization, Scenario1

A macroeconomic forecasting model for Bulgaria

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Comparison: AR(1) vs. AR(2)

A macroeconomic forecasting model for Bulgaria

() < </p>

DQC

AR(1)-Endogenization AR(2)-Endogenization Comparison of Results

Comparison: AR(1) vs. AR(2)

A macroeconomic forecasting model for Bulgaria

<ロト < 回 > < 回 > < 三 > < 三 >

Ξ

troduction The Model Forecasting Results	AR(1)-Endogenization AR(2)-Endogenization Comparison of Results
---	---

Comparison of Results: 2009/2010

A macroeconomic forecasting model for Bulgaria

→□→ < □→ < □→ < □</p>

na a

ntroduction The Model Forecasting Results	AR(1)-Endogenization AR(2)-Endogenization Comparison of Results
--	---

Comparison of Results: Baseline versus Scenario (AR(1))

yoy	Baseline AR(1)	Scenario1 AR(1)
2009q1	-3.3%	-3.3%
2009q2	-5.8%	-6.2%
2009q3	-10.6%	-9.3%
2009q4	-8.0%	-9.2%
2010q1	-4.1%	-5.7%
2010q2	-2.0%	-5.8%
2010q3	+4.3%	-3.3%
2010q4	+6.03%	-3.9%

回下 イヨト イヨト

Ξ

ntroduction The Model Forecasting Results	AR(1)-Endogenization AR(2)-Endogenization Comparison of Results
--	---

Comparison of Results: Baseline versus Scenario (AR(2))

yoy	Baseline AR(2)	Scenario1 AR(2)
2009q1	-3.3%	-3.3%
2009q2	-6.4%	-6.5%
2009q3	-10.8%	-8.2%
2009q4	-10.1%	-8.9%
2010q1	-6.1%	-3.8%
2010q2	-5.3%	-3.7%
2010q3	-0.3%	-1.3%
2010q4	+1.9%	-0.6%

回下 イヨト イヨト

Ξ

Introduction The Model Forecasting Results	AR(1)-Endogenization AR(2)-Endogenization Comparison of Results
---	---

Remarks on our Model and Open Questions

- We had to introduce the Bulgarian GDP to the Export equation (as the group did) in order to avoid a Multicollinearity Problem. How can one justify the presence of GDP in the Export equation?
- ► AR(2) seems to provide a smoother path than AR(1)

▶

Sac